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BACKGROUND: Sound is the sensory cue that
travels farthest through the ocean and is used
by marine animals, ranging from invertebrates
to great whales, to interpret and explore the
marine environment and to interact within
and among species. Ocean soundscapes are
rapidly changing because of massive declines
in the abundance of sound-producing animals,
increases in anthropogenic noise, and altered

contributions of geophysical sources, such as
sea ice and storms, owing to climate change.
As a result, the soundscape of the Anthro-
pocene ocean is fundamentally different from
that of preindustrial times, with anthropo-
genic noise negatively impacting marine life.

ADVANCES: We find evidence that anthropo-
genic noise negatively affects marine animals.

Strong evidence for such impacts is available
for marine mammals, and some studies also
find impacts for fishes and invertebrates, ma-
rine birds, and reptiles. Noise from vessels,
active sonar, synthetic sounds (artificial tones
and white noise), and acoustic deterrent de-
vices are all found to affect marine animals,
as are noise from energy and construction in-
frastructure and seismic surveys. Although there
is clear evidence that noise compromises hear-
ing ability and induces physiological and behav-
ioral changes in marine animals, there is lower
confidence that anthropogenic noise increases
the mortality of marine animals and the settle-
ment of their larvae.

OUTLOOK: Anthropogenic noise is a stressor
for marine animals. Thus, we call for it to be
included in assessments of cumulative pres-
sures on marine ecosystems. Compared with
other stressors that are persistent in the envi-
ronment, such as carbon dioxide emitted to
the atmosphere or persistent organic pollutants
delivered to marine ecosystems, anthropogenic
noise is typically a point-source pollutant, the
effects of which decline swiftly once sources are
removed. The evidence summarized here en-
courages national and international policies to
become more ambitious in regulating and de-
ploying existing technological solutions tomiti-
gate marine noise and improve the human
stewardship of ocean soundscapes tomaintain
a healthy ocean. We provide a range of solu-
tions that may help, supported by appropriate
managerial and policy frameworks that may
help to mitigate impacts on marine animals
derived from anthropogenic noise and pertur-
bations of soundscapes.▪
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Changing ocean soundscapes. The illustrations from
top to bottom show ocean soundscapes from before
the industrial revolution that were largely composed of
sounds from geological (geophony) and biological
sources (biophony), with minor contributions from
human sources (anthrophony), to the present Anthro-
pocene oceans, where anthropogenic noise and
reduced biophony owing to the depleted abundance of
marine animals and healthy habitats have led to
impacts on marine animals. These impacts range from
behavioral and physiological to, in extreme cases,
death. As human activities in the ocean continue to
increase, management options need be deployed to
prevent these impacts from growing under a “business-
as-usual” scenario and instead lead to well-managed
soundscapes in a future, healthy ocean. AUV, autono-
mous underwater vehicle.IL
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Oceans have become substantially noisier since the Industrial Revolution. Shipping, resource exploration,
and infrastructure development have increased the anthrophony (sounds generated by human
activities), whereas the biophony (sounds of biological origin) has been reduced by hunting, fishing,
and habitat degradation. Climate change is affecting geophony (abiotic, natural sounds). Existing evidence
shows that anthrophony affects marine animals at multiple levels, including their behavior, physiology, and, in
extreme cases, survival. This should prompt management actions to deploy existing solutions to reduce noise
levels in the ocean, thereby allowing marine animals to reestablish their use of ocean sound as a central
ecological trait in a healthy ocean.

S
oundscapes, defined as “ambient sound
in terms of its spatial, temporal, and fre-
quency attributes, and the types of sources
contributing to the sound field” (1), are
changing rapidly in the Anthropocene.

In contrast to the long-standing recognition of
the effects of anthropogenic sound in terres-
trial systems (2), the impacts of changing
ocean soundscapes on marine animals have
received relatively limited attention. This neg-
lect percolates reviews of cumulative stressors

(3, 4) and drivers of global change in the ocean
(5, 6), as well as scientific assessments (7) and
policy frameworks [United Nations Conven-
tion on Biological Diversity (UNCBD), UN Con-
vention for the Law of the Sea (UNCLOS), UN
Sustainable Development Goals (UN SDGs)]
aimed at improving ocean conservation and
sustainability. Given the rapid pace of change
in ocean soundscapes, we argue that there is
an urgent need to assess the evidence for im-
pacts of anthropogenic noise on marine life,
which will enable policy frameworks to miti-
gate human impacts on ocean soundscapes as
a necessary foundation for a healthy ocean.
Here, we review how the changing ocean

soundscape of the Anthropocene is affecting
marine life. We do so by first summarizing our
current understanding of the importance of
sound to marine animals and the components
and ecological relevance of undisturbed ocean
soundscapes. We show how ocean sound-
scapes are changing in the Anthropocene and
assess, on the basis of a systematic review of
four decades of published research, the evi-
dence for the resulting impacts on marine
animals. We then discuss how available solu-
tions, if supported by appropriate manage-
rial and policy frameworks, may help mitigate
impacts on marine animals that arise from
anthropogenic noise and perturbations of
soundscapes.

Hearing the ocean soundscape

Sound propagates relatively fast and far under
water, carrying information over greater spa-
tial scales than most other sensory cues such
as light or chemicals (8). As a result, marine
animals have evolved a wide range of re-
ceptors to detect sound, which have been well
studied for marine mammals but have been

only recently described for invertebrates, such
as jellyfish (9, 10) (Fig. 1). Hearing in marine
animals (Fig. 1) ranges from marine inverte-
brates, fishes, and reptiles, which perceive
sounds of relatively low frequency (generally
<5 kHz), to cetaceans, which can detect high-
frequency (up to 200 kHz) sound (Figs. 1 and
2B). The hearing range of marine animals is
a key determinant of their potential responses
to different components of ocean soundscapes
and their vulnerability to impacts from differ-
ent sources of underwater noise (Fig. 2B).
Before the Industrial Revolution, ocean

soundscapes were largely composed of sounds
from geological (geophony) and biological
sources, produced both intentionally and
unintentionally (biophony), with minor con-
tributions from human sources (anthrophony).
Understanding the contexts and relative con-
tributions of these sound sources provides key
insights into how anthropogenic changes to
ocean soundscapes may affect marine life and
the overall health of the ocean.
Weather conditions and geological processes

make important contributions to marine
soundscapes. Wind blowing over the ocean,
waves breaking, rain or hail falling onto the
sea surface, and gas bubbles vibrating, rising,
and bursting at the surface all generate char-
acteristic sound spectra [(11, 12); Fig. 2A]. In
polar regions, seasonal processes like ice melt-
ing, pressure cracking, and iceberg calving do-
minate soundscapes (13), and noise from
earthquakes, undersea volcanoes, and hydro-
thermal vent activity (14) potentially propagate
thousands of kilometers [(15); Fig. 2A]. Each
of these geophonic components produces sound
over different frequencies and spatial and tem-
poral scales (Fig. 2A), which is, therefore, per-
ceived differently by various types of animals
(Fig. 2B).
Marine animals intentionally produce sounds

ranging from infrasonic (<20 Hz) to ultra-
sonic (>20 kHz), although most are emitted
between 10 Hz and 20 kHz and are audible to
a wide range of taxa (Fig. 2B). These sounds
may be frequency and/or amplitude modu-
lated and can be emitted as single pulses or
occur in regular sequences or temporal pat-
terns, such as pulse trains of fish calls and
melodic phrases of whale songs. The contin-
uous singing of single individuals, the gregar-
ious chorusing of a group, or the collective
sounds of some animals foraging or moving
(e.g., urchins or crabs across a reef) can in-
crease sound levels in particular frequency
bands. Biophony may also be modulated by
changes in weather, currents, and other fac-
tors, exemplified by the cessation of fish cho-
rusing due to the passage of a hurricane (16).
Animals produce sounds for a range of rea-

sons, including navigation, foraging, agonistic
displays, territorial defense, mate attraction,
and reproductive courtship (17–19). For example,
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male toadfish guard benthic nests and produce
“hums” to attract females, rendering these
sounds key components of some night-time
soundscapes [e.g., (20, 21)]. Fishes—such as
Atlantic cod (Gadus morhua), croakers (Sci-
aenidae), and groupers (Serranidae)—use
sounds to gather in large aggregations and

coordinate spawning activities (22–24). Marine
mammals use vocal communication to aid in
mating, rearing of young, and group cohesion,
among other social (25) and feeding functions
(26). Pinnipeds produce sounds both in air and
under water that are associated with territorial
and mating behavior, particularly during the

breeding season (27). Bearded seals (Erignathus
barbatus), for example, produce frequency-
modulated trills, which are a major compo-
nent of Arctic soundscapes in spring (28).
Baleen whales produce low-frequency repro-
ductive and social calls that can travel across
ocean basins (29), with humpback whales
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Fig. 1. Evolution of hearing under water and timeline of scientific advances.
Evolution and timeline events are from (129). Hair cells as a mechanosensory
receptor for hearing appeared early in the evolution of animals (10), evolving
from invertebrate statocysts, which detect gravity and vibrations underwater, to
fish ears, which perceive sounds of relatively low frequency (<5 kHz). Some bony
fishes (Osteichthyes) have evolved ancillary hearing structures that connect the
ear with the swim bladder, increasing hearing bandwidth and sensitivity (25).
When marine tetrapods moved onto land, acoustic organs, adapted to hearing
sound as pressure waves (89), evolved to compensate for communication in air,

a lower-density medium, which slowed the movement of sound waves relative
to water. Impedance-matching structures, or tympanic middle ears, appeared
independently in reptiles, birds, and mammals (90), increasing the overall
sensitivity of hearing to exceed, in some mammals, 50 kHz. Further changes in
the pressure-sensing ear occurred as reptiles and mammals returned to the
ocean (130). In toothed whales, the middle ear evolved to receive sound passing
through the fatty tissues in the jaws, an effective means of conduction that
increases the upper hearing limit of these mammals to 200 kHz (131).
Ma, million years ago; y, years.
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A

B

Fig. 2. Sources and animal receivers of sound in the ocean soundscape.
(A) Stommel diagram showing the spatial extent and duration of selected biophony
(rounded gray squares), geophony (rounded blue squares), and anthrophony
(rounded yellow squares) events. Events (rounded squares) reflect the spatial and
temporal period over which signals or bouts of signals typically occur. Although some
sound sources, such as those used in hydrographic surveys, do not propagate
particularly far, survey efforts can cover a large spatial extent (an entire Exclusive
Economic Zone). “Dawn/dusk chorus” refers to the daily sounds produced by a

collection of species (e.g., fish, snapping shrimp). Shipping noise encompasses the
full range of spatial and temporal scales. (B) Approximate sound production and
hearing ranges of marine taxa and frequency ranges of selected anthropogenic sound
sources. These ranges represent the acoustic energy over the dominant frequency
range of the sound source, and color shading roughly corresponds to the dominant
energy band of each source. Dashed lines represent sonars to depict the
multifrequency nature of these sounds. Sources for the data displayed in the
figures are (9, 18, 25, 53, 75, 83, 131–139).
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(Megaptera novaeangliae) singing complex
songs as part ofmale reproductive displays that
have regional dialects and change over time (30).
Marine animals also produce mechanical

sounds, such as those produced by the impact
of different body parts on environmental sub-
strates (e.g., breaching, tail slaps), which often
convey information about body mass and size
(31) and movement and foraging behaviors
(32, 33). Sea urchins and parrotfishes, for ex-
ample, make scraping or crunching sounds as
a by-product of foraging that occur in pre-
dictable peaks associated with tidal or diur-
nal cycles (34, 35). Other animals use sound
to forage. Snapping shrimps produce a “snap”
sound to stun prey, which creates a loud
“crackling” sound that is present in many
coastal habitats that support dense colonies
of these shrimps (36). Odontocetes, such as
sperm whales (Physeter macrocephalus) and
various species of dolphins and porpoises,
also possess sophisticated biosonar systems
that produce sounds to echolocate, select, and
pursue prey under water (26).
The diversity, composition, and density of

the biophonic community are key components
of the soundscape ecology paradigm, which
seeks to identify habitats and assess their
health status using sound. An ecological role

for ocean soundscapes is supported by the
fact that many species use ocean soundscapes
as a cue to find their habitats at key life stages.
For example, larvae and juveniles of some
invertebrate and vertebrate reef species use
soundscapes as a navigational cue to locate
suitable settlement habitats (37). Indeed, the
distinctive sound-producing structures or
organs of marine animals provide, in many
cases, an acoustic fingerprint that aids their
identification within soundscapes, allowing
for inferences on their identity, behavior, and
sometimes relevant life history and physical
traits (38–40).
Advances in acoustic-recording technology

allow ocean soundscapes to be characterized
for longer periods of time and at greater depths
than previously possible (36). In parallel, new
tools for soundscape analysis facilitate both
species-specific call recognition and summa-
tive approaches to resolve the entire acoustic
spectrum. Despite this progress, the paradigm
that soundscapes can be used as proxies for
ecosystem health, developed for terrestrial
ecosystems (41), has been applied to the ma-
rine environment with only limited success
[e.g., (42, 43)]. In some cases, sound-pressure
levels in low frequencies correlate positively
with visual measures of fish diversity, coral

cover, and invertebrate abundance (44, 45).
Efforts to reduce the dimensionality of a com-
plex soundscape to a single number that
reflects the diversity or complexity of a sound-
scape [e.g., (46)] may provide useful biological
information (27, 42) but cannot be readily gen-
eralized, because the results obtained arehighly
sensitive to parameterization (47). Instead,
multiple indices relating to characteristics of
individual sounds can be combined to provide
an indication of the contribution of particular
sound types (48). Overall, assessments of ocean
soundscapes demonstrate a growing contribu-
tion of human activities across the ocean (Fig. 3).

The soundscape of the Anthropocene ocean

Human activity has altered biophony and
geophony and has, either deliberately or as a
by-product, added an increasingly prevalent
third component—anthrophony—across abroad
range of frequencies to ocean soundscapes
(2) (Fig. 2B). Examples of deliberate human
use of marine sound include seismic surveys
that produce high-energy, low-frequency, short-
duration sounds aimed at detecting the pres-
ence of petroleum and gas deposits below the
seafloor, as well as multibeam echosounders
and side-scan sonars that generally produce
high-frequency sounds to map the seabed and
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Fig. 3. Human pressures have altered ocean soundscapes at scales ranging from local to global. (A) Average sound level estimated globally from marine traffic
(at 100 Hz), based on average shipping activity directed from automatic identification system (AIS) data for 2014. (B) Sound-pressure levels pre- and
postdegradation at sites around Lizard Island in the Great Barrier Reef (62). (C) Sound levels in four different frequency bands in the Dutch North Sea, averaged
over 2 years [adapted from (140)]. (D) Boundaries of three-dimensional seismic surveys in northwest Australia (left) and seismic lines of two-dimensional surveys in
all Australian waters (right) since 1973 (data from wapims.dmp.wa.gov.au/wapims and https://nopims.dmp.wa.gov.au/nopims).
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detect organisms and particles in the water
column. These sensing techniques are, at times,
a major component of present ocean sound-
scapes in many areas, especially those holding
oil and gas reservoirs (49, 50), such as the con-
tinental shelf of northwestern Australia and
the North Sea (Fig. 3D). Across the ocean,
scientific surveys use similar tools to map the
seabed and identify geological features, fishers
use “fish finders” to search for schools of fish,
and navies use active sonars across a range
of frequencies to detect submarines and other
targets.
Much of anthrophony is an unintended by-

product of human activities (Figs. 2 and 3),
which are intensifying across the ocean. Over
the past 50 years, increased shipping has con-
tributed an estimated 32-fold increase in the
low-frequency noise present along major ship-
ping routes (51) (Figs. 2 and 3). Vessel noise is
prominent in many ocean regions even away
frommajor shipping lanes, owing to long-range
sound propagation at low frequencies, al-
though some areas display stable or even de-
creasing sound levels in targeted frequency
bands (52). Whereas vessel noise does not pro-
pagate as far in shallow coastal waters, the
higher vessel concentration often increases
noise considerably above ambient levels in
coastal regions.
Further anthrophony comes as an unin-

tended by-product of less frequent, but still
common, human activities associated with
coastal development and resource extraction.
Traffic on structures like bridges and airplanes
flying at low altitude over the ocean produce
low-level, continuous noise that can penetrate
under water (53). Pile-driving during the con-
struction of offshore wind farms can substan-
tially increase local sound levels (54), but the
operational noise of turbines tends to attenu-
ate below ambient levels of natural sound
within a few hundreds of meters of wind
farms (55). Similarly, construction and opera-
tion of oil and gas infrastructure (e.g., plat-
forms, pipelines) increase anthrophony (56).
The dynamic positioning systems (i.e., propel-
lers and thrusters) used to maintain the po-
sition of offshore structures, such as drilling
platforms, produce low-frequency noise (57).
Technology that scrapes the bottom of the
ocean—whether dredging the seafloor, har-
vesting minerals, or trawling for fisheries—
also generates low-frequency noise (58). Dyna-
mite fishing, designed to stun or kill reef fish
for easy collection, remains a major source of
blasting noise in Southeast Asia and coastal
Africa, and controlled detonation of bombs
dropped on the seafloor during World War II
continues, more than 70 years later, to be a
major source of disruptive and destructive
sound in the North Sea (Figs. 2 and 3). Explo-
sions of mines, missiles, and bombs during
naval warfare or military exercises also repre-

sent a source of destructive sound. On a small
scale, even coastal recreational activities—
such as small motorboats, swimming, SCUBA
diving, surfing, paddling, flying unmanned aerial
vehicles (drones), or fireworks—contribute an-
throphony to marine soundscapes (59–61).
Humans have also profoundly altered bio-

phony and geophony in ocean soundscapes.
Hunting of large marine animals, particularly
highly vocal whales and pinnipeds, which
began hundreds of years ago, has led to re-
duced and less diverse biophony in ocean
soundscapes of the present. Sound levels of
natural soundscapes decrease with the deg-
radation of kelp forests, seagrass beds, coral
reefs, and sponge beds, owing to fewer vocal-
izing animals (62–66). Biophony may also be
reduced where soundscapes are heavily pol-
luted by anthrophony as animals cease vocal-
izing or are displaced from ecosystems.
Climate change is increasing the number of

cyclones and marine heatwaves that degrade
marine habitats, which, in turn, may alter bio-
phony. For example, degradation of coral reefs
associated with these events dramatically
changes ambient soundscapes, with the al-
tered composition of the biotic community
reflected in reduced overall acoustic energy
and the complexity and diversity of reef sound-
scapes (46). Changes in the distributions of
species with ocean warming also shift bio-
phony. For example, reduced sea ice in the
Arctic allows the range expansion of temper-
ate whale species that compete for acoustic
niche space with Arctic species, such as beluga
whales (Delphinapterus leucas) (67). In addi-
tion, climate change directly affects the tem-
perature, heat content, and stratification of
the ocean, with sound traveling faster in a
warmer ocean, to the extent that long-range
acoustic transmissions have been used tomea-
sure large-scale ocean temperature and heat
content—a phenomenon thatW.Munk termed
“the sound of climate change” (68). Ocean
warming also affects geophony in polar areas
through decreasing sea ice cover, with the
soundscape of a progressively ice-free Arctic
Ocean departing from that of the ice-covered
Arctic Ocean of the past (69, 70). High sound
levels occur during periods of ice formation,
whereas polar soundscapes are very quiet in
the high-frequency range during periods of
solid ice coverage (71). Ice-free waters will also
likely lead to increased anthrophony through
greater ease of human access and activity (ship-
ping, fishing, and seismic surveys) in a warm-
ing Arctic Ocean. An increased inflow of
shallow “tongues” of warm, salty Pacific and
Atlantic waters into the Arctic Ocean is also
dramatically altering the acoustic environ-
ment by creating a local maximum in the
sound speed profile at the depths between
100 and 200m. Thiswater layer acts as a strong
acoustic duct, channeling sound across dis-

tances of 80 to 100 km (69), with comparable
effects reported in coastal areas receiving
glacial melt waters. In the tropics, climate
change may increase geophony levels because
of increasedwinds, rainfall on the surface, and
waves as the energy of tropical storms in-
creases. Greenhouse gas emissions also change
sound propagation in the ocean by decreasing
pH as CO2 levels increase, which is expected
to lead to a noisier ocean, owing to substan-
tial decreases in ocean sound absorption for
frequencies lower than about 10 kHz (72, 73).

Impacts of altered soundscapes in the
Anthropocene ocean

Initial awareness of the impacts of the altered
soundscapes of the Anthropocene ocean on
marine life derived from evidence of injuries
fromhigh-intensity noise. This initial evidence
focused on large iconic marine mammals (25)
but has been expanded to include links be-
tween noise frommilitary sonar, air guns, sub-
marine explosions, and seismic surveys and
hearing disabilities, mass strandings, and
mortality of a number of marine animals
(table S2).
Research on the ecological impacts of anthro-

phony has expanded to address the pervasive
and prevalent impacts of chronic exposure to
noise across vast spans of the ocean [table S2;
(74)] and the potential impacts of anthropo-
genic noise on fishes (75–79), invertebrates
(80, 81), and whole marine ecosystems (82).
Anthropogenic noise can interfere with nat-
ural auditory signal processing by marine ani-
mals, an effect termed “masking” (83), which
reduces their communication space [see (84)
for marine mammals, (85) for fishes]. Indeed,
anthropogenic noise overlaps with the fre-
quency band of hearing of marine animals
across increasingly broad areas of the ocean
(86–88) (Fig. 2). Masking of signals from
conspecifics or environmental cues indicating
the presence of prey or predatorsmay result in
loss of social cohesion, missed opportunities
for feeding, or failure to avoid a predator (25).
The frequency content of vessel noise (Fig. 2)

overlaps considerably with the hearing ranges
of marine fauna (20), particularly those with
sensitivity in relatively low-frequency ranges
[e.g., fishes, some marine mammals, and rep-
tiles (20, 25, 89–91)], where most of the noise
energy lies. Shipping noise has been reported
to disrupt traveling, foraging, socializing, com-
municating, resting, and other behaviors in
marinemammals (84); attenuate antipredator
behavior of young fishes, leading to increased
mortality and reduced ability to learn to avoid
predators in future encounters (79); and impact
the settlement and development of inverteb-
rates (85). A concurrent increase in anthro-
phony and decrease in biophony with habitat
degradation and declines in populations of
marine species also likely affects onshore
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larval movement patterns, and hence settle-
ment success, across a range of species.
Given the potential for anthropogenic noise to

detrimentally affect marine animals (82, 92, 93),
we examined the robustness and consistency
of the evidence for impacts of anthrophony
and other human alterations to ocean sound-
scapes on marine animals through a system-
atic assessment of the results on this topic
presented in the published literature (94). This
generated a total of 538 studies that attempted
to quantify the effects of anthropogenic noise
and perturbations of soundscapes onmarine
animals. We adopted the confidence scale of
the Intergovernmental Panel onClimateChange
(IPCC) (95) to reflect the robustness of the
evidence supporting various statements on
the extent of the impacts.
There was high confidence that anthropo-

genic noise negatively affectedmarine animals
(Fig. 4 and table S4). The evidence was strong-
est for marine mammals, for which 85 to 94%
of quantitative studies found significant ef-
fects, with 82 and 81% of studies finding
significant impacts on fishes and invertebrates,
respectively, and the two studies available for
reptiles and one of the two studies on marine
birds reporting significant impacts on these
animals (Fig. 4 and table S4). Noise from
vessels (94.9% report significant impacts),
sonars (90%), and acoustic deterrent devices
(91%) negatively affects marine animals, as
does noise from energy (8.23% of studies)
and construction infrastructure (82.3%) and
seismic surveys (74.4%) (Fig. 4 and table S4).
Available data provide ample evidence that
noise pollution compromises hearing ability
(90.6% of studies report significant impacts),
induces physiological changes (91.2%), and
elicits evasive actions and displaces marine
animals (83.9%) (Fig. 4 and table S4). By con-
trast, evidence for impacts of anthropogenic
noise on mortality and fitness of marine ani-
mals is weaker, with 35.2 and 50% of studies
reporting significant impacts, respectively
(Fig. 4 and table S4). All quantitative studies
conducted thus far provide evidence that
changes in biophony reduce the settlement of
marine larvae, but the number of quantitative
studies testing impacts on settlement remains
limited (n =7; table S4).
Our assessment revealed that despite the

large volume of literature on the impacts of
anthropogenic noise onmarine animals, there
is a paucity of quantitative assessments for
diving marine reptiles and seabirds and only
a limited number of studies on pinnipeds and
sirenians (Fig. 4). Likewise, the evidence sup-
porting that changes in biophony resulting
from habitat degradation reduce the settle-
ment of marine larvae on preferred habitats
was weakened by the few studies available.
The evidence for impacts on animals exposed
to multiple sources of anthropogenic noise was

also small, limiting the assessment for cumu-
lative impacts. In addition, we found a very
limited number of studies testing the effec-
tiveness of mitigation measures, which makes
it difficult to provide confidence on their per-
formance. This may preclude these mitigation
measures from being adopted by national and
international policies aimed at reducing the
impacts of anthropogenic noise onmarine life.
The gaps identified in our systematic review
underscore areas where research efforts should
focus to provide a comprehensive understand-
ing of the impact of anthropogenic noise on
marine animals, integrate these impacts to

assess population-level consequences from
chronic exposure to anthropogenic noise, and
deliver effective mitigation measures.
In addition to controlled experiments, glo-

bal disruptions offer an opportunity for se-
rendipitous observations of the effect of
anthropogenic noise on marine life at scale.
For instance, reduced ship traffic in the Bay of
Fundy, Canada, after the events of 11 September
2001 resulted in a 6-dB decrease in under-
water noise, particularly at frequencies less
than 150Hz,with some evidence suggesting that
this reduced stress in right whales (Eubalaena
glacialis) (96). Likewise, strategies to combat
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COVID-19 infections, which involved confine-
ment of about 58% of the global human pop-
ulation, have also provided ample evidence of
an unusual expansion of the movements of
marine mammals and sharks to what were
previously busy, noisy waterways, such as
harbors and coastal urban areas, where they
are not regularly seen (97). This unusual be-
havior has been linked to reduced anthro-
pogenic noise during human confinement
(98, 99).
Marine animals may recover from and cope

with intense anthropogenic noise through
avoidance behavior or habituation (100, 101).
The former behavior is a common response of
marine animals to potentially damaging or
disruptive levels of anthrophony but may dis-
place species from important foraging grounds
(100) and is not always possible for species
that have high site fidelity and small biogeo-
graphical ranges, such as the critically endan-
gered Maui dolphin (Cephalorhynchus hectori
maui) (102), or slow-moving species, like ben-
thic invertebrates, which have a limited scope
to avoid noise. When hearing damage occurs
from loud noises, fish may recover better than
marine mammals because hair cells regrow in
fish but are unlikely to regenerate in mam-
mals (103). Avoidance behavior by fish in re-
sponse to the approaching sound of fishing
vessels is well documented (103). However,
this may also be induced by sounds from re-
creational boats, resulting in flight responses
and interruption of foraging, reproductive,
or vocalizing activities (104). Conversely, it is
possible that some predatory marine mam-
mals and large fishes may use the sound of
vessels as a “dinner bell” alerting of oppor-
tunities to depredate catch from fishing boats
(105, 106). These examples provide evidence
for behavioral plasticity or acclimation but do
not provide evidence for evolutionary adapt-
ation, which requires observational time scales
that have not yet been achieved in sound-
scape ecology.
Marine mammals may adapt to anthro-

phony, but the long life span and large home
ranges of many marine mammals render as-
sessment of adaptations to noise challenging.
For instance, some mammals—such as killer
whales (Orcinus orca), rightwhales (Eubalaena
spp.), andGuiana dolphins (Sotalia guianensis)—
and fishes have been shown to alter the source
level or frequency of vocalizations in order to be
heard, a phenomenon known as the Lombard
or cocktail party effect (107–110). Habituation,
in the form of increasing tolerance, has been
demonstrated for some species ofmarinemam-
mals and fishes (101, 111). In some situations,
habituation may be considered a reduced re-
sponse to stimuli that have no biological im-
portance on the individual being observed
(112), although disturbance involving a sen-
sory modality that is so fundamental to most

marine animals would not often be consi-
dered inconsequential.
Although our assessment shows that anth-

ropogenic noise detrimentally affects marine
animals, a lack of global syntheses of data has
resulted in it being typically ignored in reviews
of cumulative and/or global impacts of anthro-
pogenic stressors on marine life (3, 5, 6, 113)
and consequently by the high-level policy ini-
tiatives (e.g., UNCBD, UNCLOS, UN SDGs)
that these analyses inform. For instance, the
draft of the UN Law of the Sea “BBNJ” Agree-
ment on Biodiversity in Areas Beyond Nation-
al Jurisdiction (114) does not mention noise
among cumulative impacts, despite mandat-
ing an environmental impact assessment of
activities in the high seas and the fact that
anthropogenic noise was discussed at its 19th
session of the process in June 2018. The last
assessments of climate change impacts by the
IPCC (115) have yet to acknowledge the im-
pacts that climate change has on ocean sound-
scapes, whereas the recent IPCC report on
oceans and the cryosphere acknowledges noise
only in the context of increased human ope-
rations in the Arctic Ocean (116). Our review of
existing evidence (Fig. 4) shows that anthro-
pogenic noise should be included in assess-
ments of cumulative pressures on marine
ecosystems. Encouragingly, the Intergovern-
mental Science-Policy Platform on Biodiver-
sity and Ecosystem Services (IPBES) assessment
acknowledges the role of shipping noise as a
pollutant affecting marine life (117), but it
makes no attempt to rank its contribution
compared with other human impacts in the
context of multiple stressors in the marine
environment.

Pathways to healthy ocean soundscapes

Most anthrophony is “noise” in a biological
sense, because it is an unnatural and un-
wanted signal. The evidence reviewed here
shows that the impacts of human alterations
to ocean soundscapes are pervasive across all
ocean areas and detrimentally affect marine
life (Fig. 4 and table S4). Anthropogenic noise
is thus a pollutant that cannot be ignored and
must be addressed in policies to mitigate
human impacts on the oceans. This is partic-
ularly urgent given the growing focus on the
ocean-based economy, which is forecasted to
double its contribution to global gross domes-
tic product by 2030 (118). This economy in-
cludes many new industries, such as deep-sea
mining, that may be major sources of under-
water noise. A “business-as-usual” development
of the ocean-based economy will inevitably
lead to ever-increasing noise from more ship-
ping, coastal development, seismic surveys, mi-
litary operations, dredging, pile driving, and
deep-sea mining, likely contributing to in-
creasing impacts on marine biota (Fig. 4). Yet,
the High Level Panel for a Sustainable Ocean

Economy (www.oceanpanel.org) has not con-
sidered anthropogenic noise in either of the
Blue Papers addressing different dimensions
of actions required to achieve SDG14 (www.
oceanpanel.org/blue-papers), including that
on integrated ocean management (119). The
postponement, owing to COVID-19, of the
UN Oceans Conference to 2021 provides an
opportunity to consider the evidence sum-
marized here, showing that the contribution
of noise pollution to the declining status and
health of ocean ecosystems is likely substan-
tial [Fig. 4; (120)]. This is particularly timely,
given that 2020—and now, because of COVID-
19, 2021—is the International Year of Sound
(sound2020.org). There are, however, solutions
that can lead to healthier ocean soundscapes
in the context of a sustainable ocean economy.
Improvedhuman stewardship of ocean sound-

scapes requires regulatory frameworks de-
signed to manage sound within exclusive
economic zones and the high seas and pro-
mote the deployment of available techno-
logical solutions to reduce noise introduced
by human operations in the marine environ-
ment. Because species-sensitivity distribu-
tionmodels (120) have not yet been generated,
alternative approaches for the regulation
of anthropogenic noise must be developed.
However, unlike other sources of pollution,
anthropogenic noise is not persistent in the
environment once sources are removed. Con-
sequently, legislative actions to reduce anthro-
pogenic noise and incentivize the deployment
of existing technological solutions can have
near-immediate, positive effects.
It may be easier to instigate noise reduc-

tion of activities that produce sound as a by-
product (e.g., shipping, construction), rather
than intentionally (e.g., seismic surveys, mili-
tary activities), through technological and/or
regulatory measures, as demonstrated by re-
cent progress in the shipping industry. In 2014,
the International Maritime Organization ap-
proved voluntary guidelines for reducingunder-
water noise from commercial ships (www.imo.
org/en/MediaCentre/HotTopics/Pages/Noise.
aspx). These guidelines focused on design fea-
tures that could reduce the primary sources
of underwater noise, namely the propellers,
hull form, and on-boardmachinery. Following
these guidelines, in 2015, Maersk underwent a
retrofit of five large container ships and found
that reducing propeller cavitation decreased
low-frequency sound pressure levels by 6 to
8 dB while improving fuel efficiency (121). In
addition, the growing use of advanced mate-
rials, such as fiber-reinforced polymer compo-
sites, which have good dampening properties
and are also lighter—thereby requiring less
energy for propulsion—can also help to reduce
ship noise. Another potential noise-reduction
method is the use of electric motors which,
with the development of solar power and
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battery storage, are increasingly installed on
larger vessels (122). Although such technolog-
ical improvements are promising, it is the
ship-building companies, not necessarily the
shipping companies, that need to adopt them,
and there is currently no regulatory mecha-
nism to incentivize a transition (123).
The cross-boundary nature of marine eco-

systems and some sound sources (e.g., ship-
ping) means that international cooperation
is key. Yet, a review of 10major international
agreements that address noise (124) showed
that all but one are voluntary in nature or offer
both binding andnonbinding options formem-
ber nations; the exception is the European
Union’s Marine Strategy Framework Directive
(MSFD), which explicitly includes noise as a
stressor and mandates that European Union
member states monitor and mitigate noise
pollution as part of their efforts to obtain “good
environmental status.” A likely reason for the
noncommittal nature of international agree-
ments that address marine noise is the absence
of a compelling assessment of the evidence of
impacts, whichwe nowprovide (Fig. 4). There-
fore, we hope that the strong evidence sum-
marized here will increase the ambition of
national and international policies that regu-
late marine noise to achieve soundscapes
conducive to healthy oceans across exclusive
economic zones and the high seas.
Meanwhile, regulating the speed and routes

of ships can help reduce noise and/or divert
impacts away frombiologically sensitive areas.
For example, reducing steaming speeds for
noisy vessels in the major shipping route(s)
in the eastern Mediterranean from 15.6 to
13.8 knots led to an estimated 50% reduction
in the broadband noise from these vessels be-
tween 2007 and 2013 (125). A recent assess-
ment estimated that half of the total noise
radiated by the shipping fleet comes from
just 15% of the ships, particularly those with
source levels above 179 dB re 1 mPa at 1 m [i.e.,
relative to the reference pressure of 1 mPa root
mean square (126)]. Thus, a targeted approach
with focused incentives could substantially re-
duce shipping noise.Marine construction, par-
ticularly for offshore wind farms, is achieving
rapid advancements in noise-dampening tech-
nology. Acoustic barriers like bubble curtains
andnoise-abating sleeves have been introduced
in some European wind farms and can reduce
sound from pile driving by up to 15 dB (127).
Indeed, both the European Union’s MSFD and
the U.S. National Marine Fisheries Service en-
courage the use of such technologies. Finally,
the E&P Sound and Marine Life Programme,
funded by a number of oil and gas companies,
has invested in developing alternative techn-
ologies to seismic air guns (www.soundand-
marinelife.org/).Marine vibrators (“vibroseis”)
produce sounds that are nonimpulsive and
more narrow band in frequency than typical

seismic air guns, potentially removing some of
the more harmful acoustic attributes. Several
companies are developing prototype vibroseis
technology to be mounted on submarine ve-
hicles that would roam the seafloor. These ve-
hicles will use hydraulic systems to generate
force waves that penetrate the sediments and
deliver the required data while avoiding im-
pacts on animals in the water column (128).
As environmental constraints and impacts of
deep-sea mining are discussed, there is an op-
portunity to design instruments and proce-
dures that avoid impacts from noise before
commercial operations begin (128).
Mitigating climate change in accordance

with the most ambitious goals set by the Paris
Agreement (https://unfccc.int/process-and-
meetings/the-paris-agreement/the-paris-
agreement) will also help reduce further
impacts from climate change on geophony
and biophony. However, the recent IPCC
assessment of climate change impacts on
oceans and the cryosphere indicates that sea
ice will continue to decline, affecting sound-
scape features, and coral reefs will continue to
degrade even if those climate goals are met
(116), affecting biophonic components.
Sound is a fundamental component of the

sensory environment of marine ecosystems,
with animals across a broad range of taxa—
from jellyfish to marine mammals—perceiving
and using sound throughout their life history.
Global industrialization of the ocean has led
to the rise of anthrophony, whereas human
impacts on marine species and ecosystems
and the climate system have led to a decline in
biophony and alterations to geophony. Sub-
stantially modified ocean soundscapes, in
turn, have widespread impacts on the ecology
of the Anthropocene ocean. These impacts are
pervasive, affecting animals at all taxonomic
and trophic levels, and compounded with im-
pacts from other stressors, such as ocean
warming, acidification, habitat loss, and over-
fishing. Changing ocean soundscapes have be-
come the neglected “elephant in the room” of
global ocean change. In an era when societies
increasingly look to the “blue economy” as a
source of resources and wealth, it is essential
that ocean soundscapes be responsibly man-
aged to ensure the sustainable use of the ocean.
Solutions tomitigate anthropogenic noise, both
in terms of policy and technological measures,
are becoming available but remain challenging
(123, 124). Incorporation of these solutions in
internationally binding conventions would
pave the way for ocean soundscapes that
support healthier ecosystems under a sustain-
able ocean economy.
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anthropogenically produced sounds are affecting the marine soundscape.
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Sound travels faster and farther in water than in air. Over evolutionary time, many marine organisms have come
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