
Abstract New particle formation in the Arctic atmosphere is an important source of aerosol particles. 
Understanding the processes of Arctic secondary aerosol formation is crucial due to their significant 
impact on cloud properties and therefore Arctic amplification. We observed the molecular formation 
of new particles from low-volatility vapors at two Arctic sites with differing surroundings. In Svalbard, 
sulfuric acid (SA) and methane sulfonic acid (MSA) contribute to the formation of secondary aerosol and 
to some extent to cloud condensation nuclei (CCN). This occurs via ion-induced nucleation of SA and NH3 
and subsequent growth by mainly SA and MSA condensation during springtime and highly oxygenated 
organic molecules during summertime. By contrast, in an ice-covered region around Villum, we observed 
new particle formation driven by iodic acid but its concentration was insufficient to grow nucleated 
particles to CCN sizes. Our results provide new insight about sources and precursors of Arctic secondary 
aerosol particles.

Plain Language Summary Cloud properties are sensitive to the formation of new aerosol 
particles in the Arctic atmosphere, yet little is known about the chemistry and processes controlling this 
phenomenon. Here, based on comprehensive in situ measurements, we identify the very first steps of 
atmospheric new particle formation, that is, formation of small clusters from compounds present in the 
gas phase, and candidates for the subsequent growth of these clusters to larger sizes, at two Arctic sites: 
one surrounded by open waters, the other one by sea ice. We show how environmental differences affect 
secondary aerosol formation via emissions and atmospheric chemistry of aerosol precursor gases. Our 
results provide previously unidentified insight into how future changes in the Polar environment could 
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1. Introduction
The Polar environment is currently undergoing rapid change as manifested in decrease in snow cover 
(Callaghan et al., 2011), thawing of permafrost (AMAP, 2017), greening, and especially sea ice loss (Meier 
et al., 2014). The Arctic Ocean emits a variety of precursor gases for new particle formation (NPF) and par-
ticle growth to the sizes of cloud condensation nuclei (CCN). These gases include dimethylsulfide (DMS; 
Levasseur, 2013), organic compounds (Mungall et al., 2017), and iodine species (Cuevas et al., 2018; Raso 
et al., 2017). Coastal bird colonies form a primary source of ammonia (NH3) in the Arctic (Croft et al., 2016) 
and Arctic tundra is a source of volatile organic compounds (VOC; Lindwall et al., 2016). The NPF fre-
quency in the Arctic atmosphere was found to be correlated with the diminishing sea ice extent (Dall'Osto 
et al., 2017, 2018), probably via increased phytoplankton productivity, but so far the details of NPF and CCN 
production over ice-covered and open Arctic waters have remained largely unknown.

The absence of detailed chemical understanding down to molecular scale observations hinders estimations 
of the emissions of the precursor gases, or their contribution to the initial steps of NPF and subsequent par-
ticle growth (S. H. Lee et al., 2019). More importantly, those will change in response to the changing climate. 
Further decrease of sea ice extent may lead to enhanced open ocean phytoplankton productivity and DMS 
emissions (Galí et al., 2019), while increased terrestrial primary production due to warming has already 
caused enhanced biogenic volatile organic compound emissions (Lindwall et al., 2016) that can undergo 
autoxidation and lead to elevated gas-phase highly oxygenated organic molecule (HOM) concentrations 
(Bianchi et al., 2019; Ehn et al., 2014). Homogeneous nucleation of iodic acid (HIO3, IA) occurs over the 
ice-covered Arctic Ocean (Baccarini et al., 2020; Sipilä et al., 2016), while sulfuric acid (H2SO4, SA, formed 
through oxidation of marine DMS via SO2), NH3, and air ionization by galactic cosmic radiation drive NPF 
in coastal Antarctica (Jokinen et al., 2018).

To bridge the connection between sea ice decline and associated changes in oceanic precursor emissions 
and related effect on aerosol and CCN populations, we conducted a suite of measurements at the two sides 
of the Fram Strait – at Villum Research Station, North Greenland, and at Ny-Ålesund on Svalbard. The 
stations are located at similar latitudes within a distance of about 600 km but they have distinctly different 
environmental conditions. Western Svalbard (Ny-Ålesund) is surrounded by open waters throughout the 
whole year due to advection of warm Atlantic water, whereas the ocean next to the North-Eastern coast of 
North Greenland (Villum) is permanently covered by ice with some larger polynyas occurring in the late 
summer.

Here we use state-of-the-art instrumentation, which enables observation of the NPF mechanism starting 
from molecular level and growing further to CCN sizes. Our study shows significant differences in particle 
formation and growth between these two locations (Figure S1) and over different seasons. We show the 
relevance of low-volatility vapors, such as SA together with NH3, IA, HOM, and methane sulfonic acid 
(CH3HSO3, MSA) in Arctic NPF.

2. Materials and Methods
We conducted a measurement campaign at Villum Research Station in North Greenland (81°36′N, 16°39′W) 
from mid-February 2015 until the end of August 2015. At Villum, the particle number size distribution in 
the diameter range of 10–900 nm has been measured with a Scanning Mobility Particle Sizer (SMPS, Wang 
& Flagan, 1990) since 2010 (Dall'Osto et al., 2018; Nguyen et al., 2016). Additionally, we conducted a second 
campaign in Ny-Ålesund, Svalbard (78°55′N, 11°56′E), from the end of March 2017 until the end of August 
2017. The measurements took place in the atmospheric observatory, Gruvebadet, located 2 km southeast of 
Ny-Ålesund.

During our measurement campaigns, we used a nitrate chemical ionization atmospheric pressure inter-
face Time-Of-Flight mass spectrometer (CI-APi-TOF, Jokinen et  al.,  2012) to measure low-volatility va-
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be reflected in the chain of processes linking the Arctic biosphere and cryosphere to atmospheric aerosol 
particles, clouds, and climate.
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pors, APi-TOF (Junninen et al., 2010) to measure ambient ions and clusters, and Particle Size Magnifiers 
(Vanhanen et al., 2011) to measure the concentration of sub-3 nm particles. At Villum, we used an Air 
Ion Spectrometer (AIS, Mirme & Mirme, 2013) to measure the charged particle number size distribution 
in the diameter range of 0.8–40 nm, and at Ny-Ålesund, we measured with a Neutral cluster and Air Ion 
Spectrometer (Manninen et al., 2009) which is measuring same sized charged particles as well as neutral 
particles (2–42 nm). Additionally, we used SMPS data, which are continuously measured at Gruvebadet. 
Furthermore, we measured marine chlorophyll a and dimethylsulfoniopropionate (DMSP) concentrations 
in nearby waters. The samples were collected between April 12, 2017 and May 26, 2017 at 10 m depth in 
Kongsfjorden, in a midfjord location in front of Ny-Ålesund.

3. Results and Discussion
3.1. Overall Behavior of Aerosol Precursor Gases

Following the end of the Polar night in February at Villum, we found a rise in the IA concentration with 
increasing intensity of solar radiation (Figure 1a). After the IA maximum close to 5 × 107 molecules cm−3 
in early May, the IA concentration started to decay likely due to changes in sea ice properties and extent or 
ice-borne microalgae productivity (Saiz-Lopez et al., 2015). SA and MSA concentrations were rather low, 
and we did not detect gas-phase HOM during our campaign.

At Ny-Ålesund, the springtime IA concentration was lower and exhibited less pronounced temporal chang-
es compared to Villum. In contrast, the concentrations of SA and MSA started to increase rapidly with an 
increasing radiation intensity, reaching daily average values larger than 106 molecules cm−3 for SA and 
larger than 107 molecules cm−3 for MSA (Figure 1b). This rise coincided with the start of the phytoplankton 
bloom in mid-April, observed as an increase in chlorophyll a concentration in seawater (Figure 1c). During 
the peak of the bloom in early May, highly elevated DMSP concentrations were observed. During the 2017 
bloom, the dominant plankton species was observed to be Phaeocystis pouchetii, a strong DMSP producer 
(Stefels et al., 2007). The species dominance, however, may vary regionally and from year to year (Hegseth 
et al., 2019). The high SA and MSA concentrations prevailed throughout June, which agrees with previous 
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Figure 1. Daily average concentrations of marine phytoplankton indicators, precursor vapors and 6 hour average of 
solar radiation intensity. Measured solar radiation intensity and concentrations of sulfuric acid (SA), methane sulfonic 
acid (MSA), iodic acid (IA), and highly oxygenated organic molecules (HOM) (a) at Villum and (b) at Ny-Ålesund. (c) 
Seawater chlorophyll a and dimethylsulfoniopropionate (DMSP) concentrations (10 m depth) at Ny-Ålesund from April 
12 to May 26, 2017.
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studies of the observed phytoplankton activity in the Arctic Ocean (Assmy et al., 2017). HOM concentra-
tions at Ny-Ålesund were very low during spring but started to increase steeply after the snow melt in the 
end of May (Figure S2). Due to the complexity of the spectrum and the insufficient resolution of the instru-
ment, it was not possible to identify the elemental composition of the HOM.

3.2. Particle Formation at Ny-Ålesund and Villum

Figure 2 shows a zoom-in to five examples of NPF events with distinctly different concentrations of par-
ticle precursor vapors. At Villum, IA was the prominent driver for NPF in springtime as nucleation was 
associated with high concentrations of IA, while SA and MSA remained low (Figure 2a.1, Figure S3). Both 
negative and positive ions seemed to contribute to the particle formation (Figures 2a.3 and 2a.4). The com-
position of negative ion clusters (Figure 3c) could mostly be explained by IA, even though SA was found 
in both iodine clusters and in some of the smallest clusters either alone or together with NH3. The particle 
growth, however, was dominated by IA condensation (Figure 2a.5, see also Figure S3). Particles only grew 
up to 10 nm in diameter or slightly above (Figure 2a.2). In summertime, IA concentrations were lower and 
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Figure 2. Examples representing seasonal behavior of NPF observed at Villum and Ny-Ålesund. The first two columns show data from Villum during spring 
and summer: (a) April 5, 2015, (b) August 20, 2015. Columns c to e show data from Ny-Ålesund: (c) May 4, 2017, (d) May 8, 2017, and (e) August 5–6, 2017. 
(a1)–(e1): SA, MSA, IA, and HOM concentrations in molecules per cm3. (a2)–(e2): Particle size distributions with a diameter >10 nm. The dashed line shows 
20 nm diameter. (a3)–(e3) and (a4)–(e4): negative and positive ion size distributions with a diameter of 0.8–40 nm, respectively. (c5)–(e5): Total, negative ion-
induced and positive ion-induced nucleation rates (J) in cm−3 s−1. Negative ion-induced nucleation drives particle formation with a contribution from positive 
ion-induced nucleation as well as potentially neutral nucleation during summer. The shaded area indicates the uncertainties. (a6) & (c6)–(e6): Total daily 
particle growth, calculated from particle measurements (AIS & SMPS), as well as based on gas concentrations of SA, IA, MSA, and HOM assuming kinetic 
condensation. For SA growth rate (GR), the dipole-dipole enhancement was taken into account (Halonen et al., 2019). Other GR were calculated based on 
Nieminen et al. (2010) due to lack of knowledge about enhancement of their collision rates.
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only a few weak NPF events were observed (Figure 2b.1) while negative ion-induced nucleation seemed to 
initiate the clustering (Figures 2b.3 and 2b.4). The identified nucleating clusters at Villum were composed 
of SA and NH3 (Figure 3d). At Villum, the concentrations of particles larger than 10 nm were higher during 
summertime compared to spring, and according to our AIS measurements, the larger particles detected by 
SMPS were not nucleating in the vicinity of Villum but were advected there and continued to grow on site 
(Figure S4). Previous studies have observed that larger, accumulation mode particles consisted mainly of 
sulfate and some organic material (Lange et al., 2018; Nielsen et al., 2019).

At Ny-Ålesund, the concentrations of SA and MSA were clearly higher (Figure S5). On 4 May, they peaked 
at about 107 molecules cm−3 (Figure 2c.1) while IA concentration showed no clear temporal behavior, and 
the HOM concentration was low. Associated with the high SA concentration, we observed SA-NH3 ion 
clusters (Figure 3a), indicating a clear negative ion-induced nucleation. Simultaneously, we observed the 
appearance of negative ion clusters between about 1 and 3 nm (Figure  2c.3), and the formation rate of 
1.5 nm negative ions (Jnegative, Jneg,max = 0.33 cm−3s−1) was close to that of total 1.5 nm particles (Jtotal, Jtot,-

max = 0.27 cm−3s−1; Figure 2c.5). The overall growth of newly formed particles to larger sizes was modest 
on this day, with particles reaching a maximum size of 20 nm in diameter (Figure 2c.6). During 8 May, we 
observed another example of negative ion-induced nucleation initiating the particle formation on both days 
(Figures 2d.3 and 2d.5, Figure S5), and with positive ion-induced nucleation being absent (Figures 2d.4 and 
2d.5). While SA, IA, and HOM concentrations were similar to those on 4 May, the MSA concentration was 
higher by a factor of 5–6, leading to a higher total particle growth rate (Figure 2d.6). Pronounced growth 
with higher MSA was observed throughout the spring period (Figure S5). On 5 and 6 August, the HOM 
concentrations were two orders of magnitude higher than in the springtime (Figure 2e.1), whereas SA and 
MSA concentrations were low. During summertime, the early growth (1.5–3 nm) was visible similarly in 
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Figure 3. Mass defect plot of identified negative ion clusters during nucleation events. (a) Ny-Ålesund in May 2017 and in July 2017 (b) as well as Villum in 
April 2015 (c), and August 2015 (d) measured with APi-TOF. Each panel shows one event representing the events of that season. The mass defect is presented 
versus the ion/cluster mass/charge ratio depicting the abundance and atomic composition of nucleating ion clusters. The area of the dots is logarithmically 
proportional to the observed signal (counts per second). At Ny-Ålesund, MSA, IA and nitrate/nitric acid are detected in some of the smallest clusters but 
SA-NH3 nucleation is a sole pathway for new particle nucleation. In springtime Ny-Ålesund, the largest detected cluster contained 8 molecules of SA and 
8 molecules of NH3 on bisulfate core ion (HSO4

-) formed via interactions of SA and air ions. During summertime at Ny-Ålesund, SA-NH3 clusters are not 
as abundant anymore as in springtime. At Villum in springtime, some SA-NH3 clusters are seen but the nucleation is dominated by iodic acid clusters. The 
majority of the IA clusters contain also SA and/or sulfur trioxide. The observed I2O5 clusters likely form from restructuring of two IA molecules in the clusters 
and recycling of water (Sipilä et al., 2016). During summertime in Greenland, there are more SA-NH3 clusters abundant in the atmosphere while iodine-
containing clusters are seen to less extent than in springtime.



Geophysical Research Letters

both polarities (Figures 2e.3 and 2e.4), suggesting that the dominant particle formation mechanism was 
different from that in spring.

Direct measurements of ion cluster composition in springtime Ny-Ålesund showed the abundance of SA 
and NH3 in small negative clusters (Figure 3a), in line with the observed nucleation rates. A comparison of 
observed (total) formation rates of 1.5 nm particles to the parameterizations based on experimental results 
(Dunne et al., 2016) suggests regional springtime NH3 concentrations of 108–109 cm−3 (Figure S6a) in line 
with a recent modeling study (Croft et al., 2016), meaning that the nucleation rate is sensitive to both SA 
and NH3. Those observations align with a recent study by Giamarelou et al. (2016), indicating that 12-nm 
particles consist mainly of ammonium sulfate at Zeppelin Observatory in Ny-Ålesund. Furthermore, the 
nucleation rate is also sensitive to ion concentration and thus to the level of ionizing radiation due to the 
dominance of ion-induced pathway in the SA + NH3 + H2O system with nucleation rates below ion-pair 
production rate (∼2 ion pairs per second) (Dunne et al., 2016; Kirkby et al., 2011). MSA and IA appeared 
to have only a small role in the initial stages of particle formation. However, any change in the SA, MSA, 
and IA concentration distribution could lead to a more complex nucleation mechanism, already reflected 
here as the smallest clusters containing MSA or IA (Figures 3a and 3b). The identified negative clusters 
during summertime events with high neutral HOM concentrations showed a similar composition, with 
clearly detectable SA-NH3 clusters (Figure 3b), but unlike in springtime, malonic acid was present. Since 
HOM concentrations were high during summertime, it is highly probable that besides SA-NH3 ion-induced 
nucleation, also (ion-induced) SA-HOM nucleation (Riccobono et al., 2014), pure biogenic (ion-induced) 
nucleation of HOM (Kirkby et  al.,  2016), and/or multicomponent SA-NH3-HOM nucleation (Lehtipalo 
et al., 2018) contributed to the total particle formation rate (Figure 2e.5). HOM concentrations of just a few 
106 molecules cm−3 are sufficient to promote nucleation together with SA (Riccobono et al., 2014), whereas 
HOM concentrations of a few 107 molecules cm−3 can initiate NPF in the absence of SA, and nucleation can 
be seen equally effectively with both polarities (Kirkby et al., 2016).

3.3. Particle Growth and Subsequent CCN Production

Our observations at Ny-Ålesund suggest that MSA frequently had a significant contribution to the growth of 
newly-formed particles (Figures 2b and S6b). This is quite a surprising result, considering that MSA is more 
volatile than SA (Berresheim et al., 2002), and that the observed methane sulfonate-to-non-sea-salt-sulfate 
ratios (MSA−/nss-SO4

2−) in the bulk summer Arctic aerosol are usually (also in our case) well below unity 
(L. Chen et al., 2012; Figure S7). The reason for low MSA−/nss-SO4

2− in bulk aerosol samples is most prob-
ably associated with heterogeneous reactions producing sulfate in wet aerosol particles or cloud droplets 
(Pozzoli et al., 2008) more efficiently than methane sulfonate (Q. Chen et al., 2018; Hodshire et al., 2019), or 
with long-range transportation of anthropogenic sulfate (L. Chen et al., 2012). Thus, bulk aerosol measure-
ments clearly do not reflect the growth mechanisms or chemical composition of the smallest particles. In 
chamber studies, MSA has been shown to form particles in mixtures (Dawson et al., 2012) and our observa-
tions suggest that MSA is an important component of the Arctic secondary aerosol.

During summer, the particle growth was obviously dominated by HOM condensation at Ny-Ålesund (Fig-
ure 2c.6), as the particles grew up to 40 nm in spite of low concentrations of SA, MSA, and IA. The high con-
centration and predominant role of HOM in the particle growth is also an unexpected result, considering 
that the terrestrial biomass in the Ny-Ålesund area is scarce. HOM concentrations in excess of 108 molecules 
cm−3 are typical for forests (Ehn et al., 2014), and therefore finding similar concentrations in Svalbard was 
a surprise. An explanation for this could be the very low condensation sink of ∼4 × 10−4 s−1 at Ny-Ålesund 
(∼3 × 10−4 s−1 at Villum), which allows a more efficient buildup of the gas-phase HOM concentration tied 
to the slower scavenging rate of HOM by pre-existing aerosol particles.

The climatic effects of atmospheric NPF are tied closely with two issues: the growth of newly-formed par-
ticles to sizes large enough to be able to act as CCN (Gordon et al., 2017; Kerminen et al., 2012), and the 
susceptibility of cloud properties to additional CCN (e.g., Moore et al., 2013; Zhao et al., 2018). The suscep-
tibility of clouds to CCN tends to be highest under clean atmospheric conditions, such as those typically 
observed over the Arctic outside the Arctic haze period. Cleaner conditions also tend to cause higher water 
vapor supersaturations inside liquid clouds (Hudson & Noble, 2014), reducing the minimum size at which 
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newly formed particles are able to act as CCN. At the Zeppelin Observatory (480 m a.s.l. above Ny-Ålesund), 
activation of nucleated particles into droplets of low-level liquid clouds was observed once these particles 
had grown to sizes larger than about 20 nm (Figure S8). Activation of Aitken mode aerosol particles as small 
as 20 nm into cloud elements was shown to occur on a regular basis at Zeppelin, especially in the absence 
of accumulation mode particles and when the particle number size distribution was dominated by recent 
NPF (Karlsson et al., 2020). Based on these analyses, we speculate that atmospheric NPF observed at Ny-
Ålesund, despite a rather slow consequent growth to Aitken mode size aerosol, may also contribute to the 
regional CCN budget.

At Villum, the lower concentration of SA and MSA compared to Ny-Ålesund can be explained by the ex-
tensive presence of sea ice in the region around Villum, limiting the formation of DMSP producing phy-
toplankton blooms and preventing gas exchange between the ocean and atmosphere (Figure S9). In our 
study, at Villum, IA alone seems insufficient to grow particles effectively into CCN size regimes. However, 
in other parts of ice-covered oceans with stronger iodine sources growth to CCN sizes can occur as recently 
shown by Baccarini et al. (2020). IA-containing particles might also serve as seeds for SA, MSA or organic 
matter condensation if advected over areas with stronger DMS or VOC emissions. Thus, iodine emissions 
from sea ice might still be important for Arctic CCN budgets close to the sea ice edge and in regions with 
non-consolidated ice. Furthermore, in other parts of ice-covered oceans, where iodine emissions and thus 
IA concentrations are higher, the iodine-mediated formation and aerosol growth to CCN size particles will 
be more effective. Iodine-containing CCN-sized particles have been detected in measurements done in the 
Greenland Sea (Allan et al., 2015).

4. Conclusions and Implications for the Changing Arctic Environment
Our novel measurement techniques enabled the observation of the very first steps of nucleation and growth 
at a molecular level, complementing the current understanding of NPF in the Arctic (Baccarini et al., 2020; 
Dall'Osto et al., 2017, 2018, 2019). Our observations show great disparity in particle precursor vapor concen-
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Figure 4. Observed mechanisms of Arctic secondary aerosol formation involving iodine compounds (especially iodic acid, IA), methane sulfonic acid (MSA), 
sulfuric acid (SA), ammonia (NH3), and highly oxygenated organic molecules (HOM). Nucleation and growth mechanisms vary spatially and temporally. The 
main mechanisms observed at two sites are shown in the figure.
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trations and NPF events between the two Arctic locations with divergent environmental settings (Figure 4, 
Figure S1). Over the open water surrounding Ny-Ålesund, we observed that ion-induced nucleation of SA 
and NH3 is an important pathway for secondary aerosol formation during the Arctic spring, with nucleation 
rates being sensitive to both, SA and NH3 concentration. These observations are in good agreement with the 
study of H. Lee et al. (2020), showing that NPF is associated with enhanced DMS and NH3 concentrations 
at the Zeppelin station, Svalbard. According to our observations, MSA and SA were critical for the particle 
growth in springtime. With high HOM concentrations during summertime, this compound class was likely 
to be involved in nucleation (Lehtipalo et al., 2018) and probably gave the dominant contribution to subse-
quent particle growth, especially because all the other low-volatility vapors had rather low concentrations. 
The region of sea ice-covered ocean surrounding Villum showed a much weaker particle growth through-
out the measurement period. In springtime, we observed pure iodic acid nucleation at Villum, whereas in 
summertime, we observed weak SA-NH3 nucleation.

Enhanced DMS emissions associated with sea ice loss and higher surface water temperatures have already 
been reported over the summertime Arctic Ocean (Galí et al., 2019; Li et al., 2019). Further sea ice loss 
might increase the productivity of pelagic phytoplankton (Ardyna et al., 2014; Renaut et al., 2018), and/
or seawater-atmosphere exchange, which could lead to even higher atmospheric DMS concentrations in 
the future. In the regions dominated by sea ice, IA seems to be an important contributor to the nucleation 
and growth processes, although the newly formed particles seldom grow to CCN sizes where they become 
relevant for cloud formation, unless the air mass is transported over regions with strong emissions of DMS 
or gaseous precursors to SA. Thinning sea ice will likely lead to enhanced emissions of iodine due to more 
efficient transpassing of radiation and gases through the ice layer (Cuevas et al., 2018), causing elevated 
atmospheric IA concentrations. Those enhanced emissions will likely be a transient effect while the sea ice 
continues diminishing. Emissions of VOC are expected to increase with warming climate and lesser snow 
coverage, at least from peat and tundra vegetation (Lindwall et al., 2016) but possibly also from the Arctic 
Ocean (Mungall et al., 2017), which would be reflected in higher concentrations of HOM and accelerated 
secondary aerosol formation. Based on our results on mechanisms of aerosol formation, all these changes 
would lead to an increased production of new aerosol particles and their potential growth to CCN, thus 
affecting cloud microphysical properties in the summer Arctic atmosphere (Mahmood et al., 2019; Ridley 
et al., 2016). It remains, however, uncertain how, for example, phytoplankton will respond to other compo-
nents of Arctic change (Hoppe et al., 2018) or how bird populations respond to global change and concom-
itant changes in the marine food web (Howard et al., 2018).

We have shown the process chain from the phytoplankton metabolite production to CCN-size aerosol for-
mation, and confirmed the importance of oceanic DMS and NH3 emissions as well as galactic cosmic radi-
ation in Arctic secondary aerosol formation (Figure 4). Furthermore, we have illustrated the role of iodine 
and HOM emissions in this process. Definite predictions on how CCN concentrations and radiative forcing 
will respond to Arctic change cannot yet be made. Still our findings are critical for assessing the relevance 
of the famous, yet debated CLAW-hypothesis (Charlson et al., 1987; Quinn & Bates, 2011), which suggests 
a negative feedback of climate warming via enhanced phytoplankton productivity. The mechanistic under-
standing obtained here will help to improve large-scale models to shed more light on the pre-industrial, 
present and future aerosol state and on the magnitude of total radiative forcing associated with the inevita-
ble Arctic warming and evanescence of sea ice.

Data Availability Statement
The data are available at Zenodo (https://doi.org/10.5281/zenodo.4292239).

References
Allan, J. D., Williams, P. I., Najera, J., Whitehead, J. D., Flynn, M. J., Taylor, J. W., et al. (2015). Iodine observed in new particle forma-

tion events in the Arctic atmosphere during ACCACIA. Atmospheric Chemistry and Physics, 15, 5599–5609. https://doi.org/10.5194/
acp-15-5599-2015

AMAP. (2017). AMAP, 2017. Snow, water, ice and permafrost in the Arctic (SWIPA): Climate change and the cryosphere. Arctic Monitoring 
and Assessment Programme (AMAP), 269.

BECK ET AL.

10.1029/2020GL091334

8 of 11

Acknowledgments
The authors thank logistic support by 
AWIPEV and the staff of the Arctic 
Station "Dirigibile Italia" during the 
field campaigns at Ny-Ålesund. The 
authors thank the staff at Station Nord 
and VRS for the help during the field 
campaign in Greenland. The authors 
would like to thank NPI for substantial 
long term support in maintaining the 
measurements at Zeppelin Observatory. 
The authors thank Dennis Booge and 
Christa Marandino for assistance with 
DMSP measurements. Pasi Aalto, Frans 
Korhonen, and Laura Wischnewski are 
acknowledged for technical assistance. 
SIOS is acknowledged for support in 
integrating observations at Ny-Ålesund. 
The authors thank the tofTools team for 
providing tools for mass spectrometry 
analysis. The authors acknowledge 
European Research Council (GASPAR-
CON, Grant no. 714621 and COALA, 
Grant no. 638703), Academy of Finland 
(Project nos. 296628, 306853, 317380, 
316114, and 320094), INTERACT, 
European Regional Development Fund 
(project MOBTT42), Austrian Science 
Fund (FWF, Project J3951-N36), 
the European Union's Horizon 2020 
Research and Innovation Program 
(Grant no. 689443) via project iCUPE 
(Integrative and Comprehensive 
Understanding on Polar Environments) 
and Project ERC-2016- COG 726349 
CLIMAHAL, National Research 
Foundation (NRF) of the Ministry 
of Science, ICT and Future Planning 
(NRF-2018R1A2A1A19019281), 
Knut-and-Alice-Wallenberg Foundation 
within the Arctic Climate Across Scales 
(Project No. \,2016.0024), the Swedish 
EPA's (Naturvårdsverket) Environmen-
tal monitoring program (Miljöövervak-
ning), the Swedish Research Council 
FORMAS (Project "Interplay between 
water, clouds and Aerosols in the Arc-
tic," \# 2016-01427), Climate Change 
Tower – Integrated Project of the Na-
tional Research Council of Italy and the 
National Interest Project by the Italian 
Minister of Education, University and 
Research (PRIN2007 and PRIN2009). 
The authors thank Department of Earth 
System Sciences and Technologies 
for the Environment, Department of 
Earth Sciences and Technology of the 
Environment of CNR and the doctoral 
program in atmospheric sciences at the 
University of Helsinki for financial sup-
port. Aarhus University acknowledge 
financial support from Danish Ministry 
of Environment and food and Ministry 
of Climate, Energy and Utilities by 
means of DANCEA.

https://doi.org/10.5281/zenodo.4292239
https://doi.org/10.5194/acp-15-5599-2015
https://doi.org/10.5194/acp-15-5599-2015


Geophysical Research Letters

Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L., & Tremblay, J.-É. (2014). Recent Arctic Ocean sea ice loss triggers novel fall 
phytoplankton blooms. Geophysical Research Letters, 41, 6207–6212. https://doi.org/10.1002/2014GL061047

Assmy, P., Fernández-Méndez, M., Duarte, P., Meyer, A., Randelhoff, A., Mundy, C. J., et al. (2017). Leads in Arctic pack ice enable early 
phytoplankton blooms below snow-covered sea ice. Scientific Reports, 7, 40850. https://doi.org/10.1038/srep40850

Baccarini, A., Karlsson, L., Dommen, J., Duplessis, P., Vüllers, J., Brooks, I. M., et al. (2020). Frequent new particle formation over the high 
Arctic pack ice by enhanced iodine emissions. Nature Communications, 11, 4924. https://doi.org/10.1038/s41467-020-18551-0

Berresheim, H., Elste, T., Tremmel, H. G., Allen, A. G., Hansson, H.-C., Rosman, K., et al. (2002). Gas-aerosol relationships of H2SO4, 
MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland. Journal of Geophysical Research, 107(D19), 
PAR 5-1-PAR 5-12. https://doi.org/10.1029/2000JD000229

Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., et al. (2019). Highly oxygenated organic molecules (HOM) from 
gas-phase autoxidation involving peroxy radicals: A key contributor to atmospheric aerosol. Chemical Reviews, 119, 3472–3509. https://
doi.org/10.1021/acs.chemrev.8b00395

Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Ya., Labba, N., Radionov, V., et al. (2011). The changing face of Arctic snow 
cover: A synthesis of observed and projected changes. Ambio, 40, 17–31. https://doi.org/10.1007/s13280-011-0212-y

Charlson, R. J., Lovelock, J. E., Andreae, M. O., & Warren, S. G. (1987). Oceanic phytoplankton, atmospheric sulfur, cloud albedo and 
climate. Nature, 326(6114), 655–661. https://doi.org/10.1038/326655a0

Chen, Q., Sherwen, T., Evans, M., & Alexander, B. (2018). DMS oxidation and sulfur aerosol formation in the marine troposphere: A 
focus on reactive halogen and multiphase chemistry. Atmospheric Chemistry and Physics, 18, 13617–13637. https://doi.org/10.5194/
acp-18-13617-2018

Chen, L., Wang, J., Gao, Y., Xu, G., Yang, X., Lin, Q., & Zhang, Y. (2012). Latitudinal distributions of atmospheric MSA and MSA/nss-
SO42− Ratios in summer over the high latitude regions of the Southern and Northern Hemispheres. Journal of Geophysical Research, 
117, D10306. https://doi.org/10.1029/2011JD016559

Croft, B., Wentworth, G. R., Martin, R. V., Leaitch, W. R., Murphy, J. G., Murphy, B. N., et al. (2016). Contribution of Arctic seabird-col-
ony ammonia to atmospheric particles and cloud-albedo radiative effect. Nature Communications, 7, 1–10. https://doi.org/10.1038/
ncomms13444

Cuevas, C. A., Maffezzoli, N., Corella, J. P., Spolaor, A., Vallelonga, P., Kjær, H. A., et al. (2018). Rapid increase in atmospheric iodine levels 
in the North Atlantic since the mid-20th century. Nature Communications, 9, 1–6. https://doi.org/10.1038/s41467-018-03756-1

Dall'Osto, M., Beddows, D. C. S., Tunved, P., Harrison, R. M., Lupi, A., Vitale, V., et al. (2019). Simultaneous measurements of aerosol size 
distributions at three sites in the European high Arctic. Atmospheric Chemistry and Physics, 19, 7377–7395. https://doi.org/10.5194/
acp-19-7377-2019

Dall'Osto, M., Beddows, D. C. S., Tunved, P., Krejci, R., Ström, J., Hansson, H. C., et al. (2017). Arctic sea ice melt leads to atmospheric new 
particle formation. Scientific Reports, 7, 1–10. https://doi.org/10.1038/s41598-017-03328-1

Dall'Osto, M., Geels, C., Beddows, D. C. S., Boertmann, D., Lange, R., Nøjgaard, J. K., et al. (2018). Regions of open water and melting 
sea ice drive new particle formation in North East Greenland. Scientific Reports, 8, 1–10. https://doi.org/10.1038/s41598-018-24426-8

Dawson, M. L., Varner, M. E., Perraud, V., Ezell, M. J., Gerber, R. B., & Finlayson-Pitts, B. J. (2012). Simplified mechanism for new particle 
formation from methane sulfonic acid, amines, and water via experiments and ab initio calculations. Proceedings of the National Acad-
emy of Sciences, 109(46), 18719–18724. https://doi.org/10.1073/pnas.1211878109

Dunne, E. M., Gordon, H., Kürten, A., Almeida, J., Duplissy, J., Williamson, C., et al. (2016). Global atmospheric particle formation from 
CERN CLOUD measurements. Science, 354, 1119–1124. https://doi.org/10.1126/science.aaf2649

Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., et al. (2014). A large source of low-volatility secondary organic 
aerosol. Nature, 506, 476–479. https://doi.org/10.1038/nature13032

Galí, M., Devred, E., Babin, M., & Levasseur, M. (2019). Decadal increase in Arctic dimethylsulfide emission. Proceedings of the National 
Academy of Sciences, 116, 19311–19317. https://doi.org/10.1073/pnas.1904378116

Giamarelou, M., Eleftheriadis, K., Nyeki, S., Tunved, P., Torseth, K., & Biskos, G. (2016). Indirect evidence of the composition of nu-
cleation mode atmospheric particles in the high Arctic. Journal of Geophysical Research: Atmospheres, 121, 965–975. https://doi.
org/10.1002/2015JD023646

Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M., Curtius, J., et al. (2017). Causes and importance of new particle 
formation in the present-day and preindustrial atmospheres. Journal of Geophysical Research: Atmosphere, 122, 8739–8760. https://doi.
org/10.1002/2017JD026844

Halonen, R., Zapadinsky, E., Kurtén, T., Vehkamäki, H., & Reischl, B. (2019). Rate enhancement in collisions of sulfuric acid molecules due 
to long-range intermolecular forces. Atmospheric Chemistry and Physics, 19, 13355–13366. https://doi.org/10.5194/acp-19-13355-2019

Hegseth, E. N., Assmy, P., Wiktor, J. M., Wiktor, J., Kristiansen, S., Leu, E., et al. (2019). Phytoplankton seasonal dynamics in Kongsfjorden, 
Svalbard and the adjacent shelf. Svalbard: The Ecosystem of Kongsfjorden. https://doi.org/10.1007/978-3-319-46425-1_6173227

Hodshire, A. L., Campuzano-Jost, P., Kodros, J. K., Croft, B., Nault, B. A., Schroder, J. C., et al. (2019). The potential role of methane sulfon-
ic acid (MSA) in aerosol formation and growth and the associated radiative forcings. Atmospheric Chemistry and Physics, 19, 3137–3160. 
https://doi.org/10.5194/acp-19-3137-2019

Hoppe, C. J. M., Wolf, K. K. E., Schuback, N., Tortell, P. D., & Rost, B. (2018). Compensation of ocean acidification effects in Arctic phyto-
plankton assemblages. Nature Climate Change, 8, 529–533. https://doi.org/10.1038/s41558-018-0142-9

Howard, C., Stephens, P. A., Tobias, J. A., Sheard, C., Butchart, S. H. M., & Willis, S. G. (2018). Flight range, fuel load and the impact of 
climate change on the journeys of migrant birds. Proceedings of the Royal Society B: Biological Sciences, 285, 20172329. https://doi.
org/10.1098/rspb.2017.2329

Hudson, J. G., & Noble, S. (2014). CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and pollut-
ed stratus clouds. Journal of the Atmospheric Sciences, 71, 312–331. https://doi.org/10.1175/JAS-D-13-086.1

Jokinen, T., Sipilä, M., Junninen, H., Ehn, M., Lönn, G., Hakala, J., et al. (2012). Atmospheric sulfuric acid and neutral cluster measure-
ments using CI-APi-TOF. Atmospheric Chemistry and Physics, 12, 4117–4125. https://doi.org/10.5194/acp-12-4117-2012

Jokinen, T., Sipilä, M., Kontkanen, J., Vakkari, V., Tisler, P., Duplissy, E. M., et al. (2018). Ion-induced sulfuric acid–ammonia nucleation 
drives particle formation in coastal Antarctica. Science Advances, 4, eaat9744. https://doi.org/10.1126/sciadv.aat9744

Junninen, H., Ehn, M., Petäjä, T., Luosujärvi, L., Kotiaho, T., Kostiainen, R., et al. (2010). A high-resolution mass spectrometer to measure 
atmospheric ion composition. Atmospheric Measurement Techniques, 3, 1039–1053. https://doi.org/10.5194/amt-3-1039-2010

Karlsson, L., Krejci, R., Koike, M., Ebell, K., & Zieger, P. (2020). The role of nanoparticles in Arctic cloud formation. Atmospheric Chemistry 
and Physics Discussions, 1–30. https://doi.org/10.5194/acp-2020-417

BECK ET AL.

10.1029/2020GL091334

9 of 11

https://doi.org/10.1002/2014GL061047
https://doi.org/10.1038/srep40850
https://doi.org/10.1038/s41467-020-18551-0
https://doi.org/10.1029/2000JD000229
https://doi.org/10.1021/acs.chemrev.8b00395
https://doi.org/10.1021/acs.chemrev.8b00395
https://doi.org/10.1007/s13280-011-0212-y
https://doi.org/10.1038/326655a0
https://doi.org/10.5194/acp-18-13617-2018
https://doi.org/10.5194/acp-18-13617-2018
https://doi.org/10.1029/2011JD016559
https://doi.org/10.1038/ncomms13444
https://doi.org/10.1038/ncomms13444
https://doi.org/10.1038/s41467-018-03756-1
https://doi.org/10.5194/acp-19-7377-2019
https://doi.org/10.5194/acp-19-7377-2019
https://doi.org/10.1038/s41598-017-03328-1
https://doi.org/10.1038/s41598-018-24426-8
https://doi.org/10.1073/pnas.1211878109
https://doi.org/10.1126/science.aaf2649
https://doi.org/10.1038/nature13032
https://doi.org/10.1073/pnas.1904378116
https://doi.org/10.1002/2015JD023646
https://doi.org/10.1002/2015JD023646
https://doi.org/10.1002/2017JD026844
https://doi.org/10.1002/2017JD026844
https://doi.org/10.5194/acp-19-13355-2019
https://doi.org/10.1007/978-3-319-46425-1_6173227
https://doi.org/10.5194/acp-19-3137-2019
https://doi.org/10.1038/s41558-018-0142-9
https://doi.org/10.1098/rspb.2017.2329
https://doi.org/10.1098/rspb.2017.2329
https://doi.org/10.1175/JAS-D-13-086.1
https://doi.org/10.5194/acp-12-4117-2012
https://doi.org/10.1126/sciadv.aat9744
https://doi.org/10.5194/amt-3-1039-2010
https://doi.org/10.5194/acp-2020-417


Geophysical Research Letters

Kerminen, V. M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., et al. (2012). Cloud condensation nuclei pro-
duction associated with atmospheric nucleation: A synthesis based on existing literature and new results. Atmospheric Chemistry and 
Physics, 12, 12037–12059. https://doi.org/10.5194/acp-12-12037-2012

Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., et al. (2011). Role of sulfuric acid, ammonia and galactic cosmic rays 
in atmospheric aerosol nucleation. Nature, 476, 429–433. https://doi.org/10.1038/nature10343

Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C., et al. (2016). Ion-induced nucleation of pure biogenic particles. 
Nature, 533, 521–526. https://doi.org/10.1038/nature17953

Lange, R., Dall'Osto, M., Skov, H., Nøjgaard, J. K., Nielsen, I. E., Beddows, D. C. S., et al. (2018). Characterization of distinct Arctic aerosol 
accumulation modes and their sources. Atmospheric Environment, 183, 1–10. https://doi.org/10.1016/j.atmosenv.2018.03.060

Lee, S.-H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., & Zhang, R. (2019). New particle formation in the atmosphere: From mo-
lecular clusters to global climate. Journal of Geophysical Research: Atmosphere, 124, 7098–7146. https://doi.org/10.1029/2018JD029356

Lee, H., Lee, K., Lunder, C. R., Krejci, R., Aas, W., Park, J., et al. (2020). Atmospheric new particle formation characteristics in the Arc-
tic as measured at Mount Zeppelin, Svalbard, from 2016 to 2018. Atmospheric Chemistry and Physics Discussions, 1–28. https://doi.
org/10.5194/acp-2020-390

Lehtipalo, K., Yan, C., Dada, L., Bianchi, F., Xiao, M., Wagner, R., et al. (2018). Multicomponent new particle formation from sulfuric acid, 
ammonia, and biogenic vapors. Science Advances, 4, eaau5363. https://doi.org/10.1126/sciadv.aau5363

Levasseur, M. (2013). Impact of Arctic meltdown on the microbial cycling of sulfur. Nature Geoscience, 6, 691–700. https://doi.org/10.1038/
ngeo1910

Li, C. X., Wang, B. D., Wang, Z. C., Li, J., Yang, G. P., Chen, J. F., et al. (2019). Spatial and interannual variability in distributions and cy-
cling of summer biogenic sulfur in the Bering Sea. Geophysical Research Letters, 46, 4816–4825. https://doi.org/10.1029/2018GL080446

Lindwall, F., Schollert, M., Michelsen, A., Blok, D., & Rinnan, R. (2016). Fourfold higher tundra volatile emissions due to arctic summer 
warming. Journal of Geophysical Research: Biogeosciences, 121, 895–902. https://doi.org/10.1002/2015JG003295

Mahmood, R., Salzen, K. von, Norman, A. L., Galí, M., & Levasseur, M. (2019). Sensitivity of Arctic sulfate aerosol and clouds to changes 
in future surface seawater dimethylsulfide concentrations. Atmospheric Chemistry and Physics, 19, 6419–6435. https://doi.org/10.5194/
acp-19-6419-2019

Manninen, H. E., Petäjä, T., Asmi, E., Riipinen, I., Mikkilä, J., Hõrrak, U., et al. (2009). Long-term field measurements of charged and 
neutral clusters using Neutral cluster and Air Ion Spectrometer (NAIS). Boreal Environment Research, 14, 591–605.

Meier, W. N., Hovelsrud, G. K., Oort, B. E. H. van, Key, J. R., Kovacs, K. M., Michel, C., et al. (2014). Arctic sea ice in transformation: 
A review of recent observed changes and impacts on biology and human activity. Reviews of Geophysics, 52, 185–217. https://doi.
org/10.1002/2013RG000431

Mirme, S., & Mirme, A. (2013). The mathematical principles and design of the NAIS – A spectrometer for the measurement of cluster ion 
and nanometer aerosol size distributions. Atmospheric Measurement Techniques, 6, 1061–1071. https://doi.org/10.5194/amt-6-1061-2013

Moore, R. H., Karydis, V. A., Capps, S. L., Lathem, T. L., & Nenes, A. (2013). Droplet number uncertainties associated with CCN: An as-
sessment using observations and a global model adjoint. Atmospheric Chemistry and Physics, 13, 4235–4251. https://doi.org/10.5194/
acp-13-4235-2013

Mungall, E. L., Abbatt, J. P. D., Wentzell, J. J. B., Lee, A. K. Y., Thomas, J. L., Blais, M., et al. (2017). Microlayer source of oxygenated volatile 
organic compounds in the summertime marine Arctic boundary layer. Proceedings of the National Academy of Sciences, 114, 6203–6208. 
https://doi.org/10.1073/pnas.1620571114

Nguyen, Q. T., Glasius, M., Sørensen, L. L., Jensen, B., Skov, H., Birmili, W., et al. (2016). Seasonal variation of atmospheric particle num-
ber concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station 
Nord. Atmospheric Chemistry and Physics, 16, 11319–11336. https://doi.org/10.5194/acp-16-11319-2016

Nielsen, I. E., Skov, H., Massling, A., Eriksson, A. C., Dall'Osto, M., Junninen, H., et al. (2019). Biogenic and anthropogenic sources of 
aerosols at the High Arctic site Villum Research Station. Atmospheric Chemistry and Physics, 19, 10239–10256. https://doi.org/10.5194/
acp-19-10239-2019

Nieminen, T., Lehtinen, K. E. J., & Kulmala, M. (2010). Sub-10 nm particle growth by vapor condensation – Effects of vapor molecule size 
and particle thermal speed. Atmospheric Chemistry and Physics, 10, 9773–9779. https://doi.org/10.5194/acp-10-9773-2010

Pozzoli, L., Bey, I., Rast, S., Schultz, M. G., Stier, P., & Feichter, J. (2008). Trace gas and aerosol interactions in the fully coupled model of 
aerosol-chemistry-climate ECHAM5-HAMMOZ: 2. Impact of heterogeneous chemistry on the global aerosol distributions. Journal of 
Geophysical Research, 113. https://doi.org/10.1029/2007JD009008

Quinn, P. K., & Bates, T. S. (2011). The case against climate regulation via oceanic phytoplankton sulfur emissions. Nature, 480, 51–56. 
https://doi.org/10.1038/nature10580

Raso, A. R. W., Custard, K. D., May, N. W., Tanner, D., Newburn, M. K., Walker, L., et al. (2017). Active molecular iodine photochemistry in 
the Arctic. Proceedings of the National Academy of Sciences, 114, 10053–10058. https://doi.org/10.1073/pnas.1702803114

Renaut, S., Devred, E., & Babin, M. (2018). Northward expansion and intensification of phytoplankton growth during the early ice-free 
season in Arctic. Geophysical Research Letters, 45, 10590–10598. https://doi.org/10.1029/2018GL078995

Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo, L., et al. (2014). Oxidation products of biogenic emissions 
contribute to nucleation of atmospheric particles. Science, 344, 717–721. https://doi.org/10.1126/science.1243527

Ridley, J. K., Ringer, M. A., & Sheward, R. M. (2016). The transformation of Arctic clouds with warming. Climatic Change, 139, 325–337. 
https://doi.org/10.1007/s10584-016-1772-4

Saiz-Lopez, A., Blaszczak-Boxe, C. S., & Carpenter, L. J. (2015). A mechanism for biologically induced iodine emissions from sea ice. At-
mospheric Chemistry and Physics, 15, 9731–9746. https://doi.org/10.5194/acp-15-9731-2015

Sipilä, M., Sarnela, N., Jokinen, T., Henschel, H., Junninen, H., Kontkanen, J., et al. (2016). Molecular-scale evidence of aerosol particle 
formation via sequential addition of HIO3. Nature, 537, 532–534. https://doi.org/10.1038/nature19314

Stefels, J., Steinke, M., Turner, S., Malin, G., & Belviso, S. (2007). Environmental constraints on the production and removal of the cli-
matically active gas dimethyl sulphoxide (DMS) and implications for ecosystem modeling. Biogeochemistry, 83, 245–275. https://doi.
org/10.1007/s10533-007-9091-5

Vanhanen, J., Mikkilä, J., Lehtipalo, K., Sipilä, M., Manninen, H. E., Siivola, E., et al. (2011). Particle size magnifier for Nano-CN detection. 
Aerosol Science and Technology, 45, 533–542. https://doi.org/10.1080/02786826.2010.547889

Wang, S. C., & Flagan, R. C. (1990). Scanning electrical mobility spectrometer. Aerosol Science and Technology, 13(2), 230–240. 
https://doi.org/10.1080/02786829008959441

BECK ET AL.

10.1029/2020GL091334

10 of 11

https://doi.org/10.5194/acp-12-12037-2012
https://doi.org/10.1038/nature10343
https://doi.org/10.1038/nature17953
https://doi.org/10.1016/j.atmosenv.2018.03.060
https://doi.org/10.1029/2018JD029356
https://doi.org/10.5194/acp-2020-390
https://doi.org/10.5194/acp-2020-390
https://doi.org/10.1126/sciadv.aau5363
https://doi.org/10.1038/ngeo1910
https://doi.org/10.1038/ngeo1910
https://doi.org/10.1029/2018GL080446
https://doi.org/10.1002/2015JG003295
https://doi.org/10.5194/acp-19-6419-2019
https://doi.org/10.5194/acp-19-6419-2019
https://doi.org/10.1002/2013RG000431
https://doi.org/10.1002/2013RG000431
https://doi.org/10.5194/amt-6-1061-2013
https://doi.org/10.5194/acp-13-4235-2013
https://doi.org/10.5194/acp-13-4235-2013
https://doi.org/10.1073/pnas.1620571114
https://doi.org/10.5194/acp-16-11319-2016
https://doi.org/10.5194/acp-19-10239-2019
https://doi.org/10.5194/acp-19-10239-2019
https://doi.org/10.5194/acp-10-9773-2010
https://doi.org/10.1029/2007JD009008
https://doi.org/10.1038/nature10580
https://doi.org/10.1073/pnas.1702803114
https://doi.org/10.1029/2018GL078995
https://doi.org/10.1126/science.1243527
https://doi.org/10.1007/s10584-016-1772-4
https://doi.org/10.5194/acp-15-9731-2015
https://doi.org/10.1038/nature19314
https://doi.org/10.1007/s10533-007-9091-5
https://doi.org/10.1007/s10533-007-9091-5
https://doi.org/10.1080/02786826.2010.547889
https://doi.org/10.1080/02786829008959441


Geophysical Research Letters

Zhao, X., Liu, Y., Yu, F., & Heidinger, A. K. (2018). Using long-term satellite observations to identify sensitive regimes and active regions 
of aerosol indirect effects for liquid clouds over global oceans. Journal of Geophysical Research: Atmosphere, 123, 457–472. https://doi.
org/10.1002/2017JD027187

References From the Supporting Information
Buenrostro Mazon, S., Riipinen, I., Schultz, D. M., Valtanen, M., Maso, M. D., Sogacheva, L., et al. (2009). Classifying previously undefined 

days from eleven years of aerosol-particle-size distribution data from the SMEAR II station, Hyytiälä, Finland. Atmospheric Chemistry 
and Physics, 9, 667–676. https://doi.org/10.5194/acp-9-667-2009

Dada, L., Chellapermal, R., Buenrostro Mazon, S., Paasonen, P., Lampilahti, J., Manninen, H. E., et al. (2018). Refined classification and 
characterization of atmospheric new-particle formation events using air ions. Atmospheric Chemistry and Physics, 18, 17883–17893. 
https://doi.org/10.5194/acp-18-17883-2018

Eisele, F. L., & Tanner, D. J. (1993). Measurement of the gas phase concentration of H2SO4 and methane sulfonic acid and estimates of 
H2SO4 production and loss in the atmosphere. Journal of Geophysical Research, 98(D5), 9001–9010. https://doi.org/10.1029/93JD00031

Hyttinen, N., Kupiainen-Määttä, O., Rissanen, M. P., Muuronen, M., Ehn, M., & Kurtén, T. (2015). Modeling the charging of highly oxi-
dized cyclohexene ozonolysis products using nitrate-based chemical ionization. The Journal of Physical Chemistry A, 119, 6339–6345. 
https://doi.org/10.1021/acs.jpca.5b01818

Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H. E., Lehtipalo, K., et al. (2012). Measurement of the nucleation of atmos-
pheric aerosol particles. Nature Protocols, 7, 1651–1667. https://doi.org/10.1038/nprot.2012.091

Kürten, A., Rondo, L., Ehrhart, S., & Curtius, J. (2012). Calibration of a chemical ionization mass spectrometer for the measurement of 
gaseous sulfuric acid. The Journal of Physical Chemistry A, 116, 6375–6386. https://doi.org/10.1021/jp212123n

Manninen, H. E., Nieminen, T., Asmi, E., Gagné, S., Häkkinen, S., Lehtipalo, K., et  al. (2010). EUCAARI ion spectrometer measure-
ments at 12 European sites – Analysis of new particle formation events. Atmospheric Chemistry and Physics, 10, 7907–7927. https://doi.
org/10.5194/acp-10-7907-2010

Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of 
data values. Environmetrics, 5(2), 111–126. https://doi.org/10.1002/env.3170050203

Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change. John Wiley & Sons.
Stolzenburg, D., Simon, M., Ranjithkumar, A., Kürten, A., Lehtipalo, K., Gordon, H., et al. (2019). Enhanced growth rate of atmospheric 

particles from sulfuric acid. Atmospheric Chemistry and Physics Discussions, 1–17. https://doi.org/10.5194/acp-2019-755
Tammet, H. (1998). Reduction of air ion mobility to standard conditions. Journal of Geophysical Research, 103(D12), 13933–13937. https://

doi.org/10.1029/97JD01429
Virkkula, A., Hirsikko, A., Vana, M., Aalto, P. P., Hillamo, R., & Kulmala, M. (2007). Charged particle size distributions and analysis of 

particle formation events at the Finnish Antarctic research station Aboa. Boreal Environment Research, 12, 397–408.
Zhang, Y., Peräkylä, O., Yan, C., Heikkinen, L., Äijälä, M., Daellenbach, K. R., et al. (2019). A novel approach for simple statistical analysis 

of high-resolution mass spectra. Atmospheric Measurement Techniques, 12, 3761–3776. https://doi.org/10.5194/amt-12-3761-2019

BECK ET AL.

10.1029/2020GL091334

11 of 11

https://doi.org/10.1002/2017JD027187
https://doi.org/10.1002/2017JD027187
https://doi.org/10.5194/acp-9-667-2009
https://doi.org/10.5194/acp-18-17883-2018
https://doi.org/10.1029/93JD00031
https://doi.org/10.1021/acs.jpca.5b01818
https://doi.org/10.1038/nprot.2012.091
https://doi.org/10.1021/jp212123n
https://doi.org/10.5194/acp-10-7907-2010
https://doi.org/10.5194/acp-10-7907-2010
https://doi.org/10.1002/env.3170050203
https://doi.org/10.5194/acp-2019-755
https://doi.org/10.1029/97JD01429
https://doi.org/10.1029/97JD01429
https://doi.org/10.5194/amt-12-3761-2019

	Differing Mechanisms of New Particle Formation at Two Arctic Sites
	Abstract
	Plain Language Summary
	1. Introduction
	2. Materials and Methods
	3. Results and Discussion
	3.1. Overall Behavior of Aerosol Precursor Gases
	3.2. Particle Formation at Ny-Ålesund and Villum
	3.3. Particle Growth and Subsequent CCN Production

	4. Conclusions and Implications for the Changing Arctic Environment
	Data Availability Statement
	References
	References From the Supporting Information


