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A B S T R A C T   

For the first time for CORDEX-South Asia, a high-resolution regional earth system model (ROM) is adopted to 
assess the impact of horizontal resolution (0.22◦ and 0.11◦) in simulating the Indian summer monsoon rainfall 
(ISMR) and the underlying spatiotemporal variability. ROM at both resolutions bears a close resemblance to 
observations in simulating the mean precipitation climatology compared to other regional climate models 
(RCMs) participated in CORDEX- South Asia. ROM shows substantial improvement relative to the ensemble mean 
of the RCMs included in CORDEX-South Asia. While comparing both simulations with observations, some sys-
tematic wet and dry bias over Central India (CI) and Northern Western Ghats is noticed. In general, the wet/dry 
bias over India is mainly associated with the overestimation/underestimation of the large-scale/convective 
component. Increasing horizontal resolution from 0.22◦ to 0.11◦ significantly adds value in simulating the 
JJAS mean precipitation by reducing the wet bias over western central India (WCI) and southern peninsular India 
and dry bias over eastern CI. The reduction in wet/dry bias is mainly associated with suppression/enhancement 
of the large scale/convective precipitation. This improvement in mean precipitation is partially due to the 
improved representation of the propagation of mesoscale systems such as boreal summer intraseasonal oscilla-
tion (eastward and northward). Despite the above improvements, the wet precipitation bias, particularly over 
WCI, persists. The weaker Findlater Jet associated with weaker land-ocean thermal contrast caused by the warm 
sea surface temperature (SST) bias over the western Arabian Sea (AS) suggests that AS moisture transport does 
not contribute to the wet bias over India. The wet bias is possibly associated with favourable atmospheric 
conditions (atmospheric instability).   

1. Introduction 

The importance of the skilful prediction of the Indian summer 
monsoon rainfall (ISMR) at various timescales has posed a considerable 
challenge for scientific and regional planning managers over the de-
cades. ISMR affects not only the agricultural sector, hydropower, and 
mining but also the various allied sectors, and hence the gross domestic 
product (GDP) of the Indian economy (Goswami, 2005) and the lives of 
its people. The Indian summer monsoon (ISM) is a coupled atmosphere- 
ocean phenomenon (Charney and Shukla, 1981; Sahai et al., 2003), and 
the correct representation of the ocean-atmosphere interaction in 
models is vital for its accurate simulation (Fu et al., 2002; Zheng et al., 

2004; Jiang et al., 2004; Rajendran and Kitoh, 2006; Misra and Dir-
meyer, 2009). 

Various modelling studies show that air-sea coupling improves the 
climate variability in coupled atmosphere-ocean general circulation 
models (AOGCMs) concerning standalone atmospheric general circula-
tion models (AGCMs) (Fu et al., 2002, 2007; Kumar et al., 2014a; Di 
Sante et al., 2019; Zhu et al., 2020; Cabos et al., 2020). Attempts have 
been made in the past to demonstrate the capability of AOGCMs to 
simulate the Indian summer monsoon (Chaudhari et al., 2013) by 
analyzing the available output of the Coupled Model Intercomparison 
Project (CMIP5; Taylor et al., 2012; Eyring et al., 2016). Most of the 
studies reported a significant bias in simulating ISMR over India, 

* Corresponding author at: Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, India. 
E-mail address: kumarp@iiserb.ac.in (P. Kumar).  

Contents lists available at ScienceDirect 

Atmospheric Research 

journal homepage: www.elsevier.com/locate/atmosres 

https://doi.org/10.1016/j.atmosres.2021.105681 
Received 18 February 2021; Received in revised form 11 May 2021; Accepted 12 May 2021   

mailto:kumarp@iiserb.ac.in
www.sciencedirect.com/science/journal/01698095
https://www.elsevier.com/locate/atmosres
https://doi.org/10.1016/j.atmosres.2021.105681
https://doi.org/10.1016/j.atmosres.2021.105681
https://doi.org/10.1016/j.atmosres.2021.105681
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atmosres.2021.105681&domain=pdf


Atmospheric Research 259 (2021) 105681

2

possibly due to their coarse resolution (Chaudhari et al., 2013). Hori-
zontal resolutions of CMIP5 atmospheric models are typically ~ 200 km 
(~ 150 km) or coarser in the atmosphere. Such a coarse resolution 
model is not capable of resolve the orography in complex regions such as 
the steep topography of the Himalayas and the Western Ghats and 
various important climate processes such as atmospheric convection and 
mesoscale boundary currents and eddies and subgrid-scale processes 
(Tiedtke, 1996; Jakob and Klein, 1999; Stephens et al., 2004; Kumar 
et al., 2006: Kumar et al., 2013; Barker et al., 2016; Mishra and Dwivedi, 
2019) and has to be parameterized, which may compromise dynamic 
processes and their interactions (Collins et al., 2018). Increased reso-
lution correctly represents the orography of the region and the local 
features, such as the propagation of mesoscale systems (Vellinga et al., 
2016; Mandke et al., 2020). 

In recent decades, high-resolution regional climate models (RCMs) 
are widely employed to dynamically downscale the available output of 
the global general circulation models (GCMs) or reanalysis (Rupa et al., 
2006; Mukhopadhyay et al., 2010; Ratnam et al., 2017; Bhatla et al., 
2020; Mishra et al., 2020a, 2020b). Most of the studies reported an 
improvement in simulating the ISM characteristics due to the better 
representation of the regional forcings, such as the mountain orography, 
physical processes, and interactions (Chan et al., 2013; Jacob et al., 
2014; Mishra et al., 2020b) however, the dry bias over India still per-
sists, partly due to absence of fine-scale regional air-sea interactions 
(Lucas-Picher et al., 2011). The performance of the RCMs is subjected to 
various constraints such as convective parameterization scheme (CPSs), 
land surface interaction, domain size, and resolutions, and the accuracy 
of initial and boundary conditions (ICBC) (Mukhopadhyay et al., 2010; 
Jacob et al., 2012; Giorgi et al., 2012; Dash et al., 2014; Mishra and 
Dwivedi, 2019; Sinha et al., 2019). Various studies reported that 
increasing the horizontal resolution leads to explicitly resolving the 
process (Hack et al., 2006; Kendon et al., 2012) and consequently 
reducing the uncertainty in simulating precipitation over India. How-
ever, some studies observed the negligible influence of increasing res-
olution toward improving the simulated fields (Chan et al., 2013; Li 
et al., 2014). Even diminishing performance was noted in the study of 
Mass et al. (2002). 

The high-resolution coupled earth system model with realistic 
physics is most suitable to improve the predictability of ISMR. Rajendran 
and Kitoh (2008) reported significant improvement in the simulation of 
the spatial distribution of the precipitation over India using a high- 
resolution global GCM at the 20-km horizontal resolution. However, 
such high-resolution global models are computationally costly and de-
mand substantial computational resources and storage requirements. An 
alternative approach is to employ the high-resolution regional earth 
system model (RESM). Various regional coupled models and earth sys-
tem models of different complexity have been developed to study the 
regional climate variability and change over the different parts of the 
globe (Misra and Dirmeyer, 2009; Kumar et al., 2013; Turuncoglu et al., 
2013; Turuncoglu and Sannino, 2017; Sein et al., 2015; Byrne et al., 
2016; Cha et al., 2016; Cabos et al., 2019). In comparison to other parts 
of the globe, very few studies have used regional coupled atmosphere- 
ocean/RESM models to simulate the ISM characteristics (Ratnam 
et al., 2009; Samala et al., 2013; Misra et al., 2017; Di Sante et al., 2019). 
Moreover, the comparative assessment of the added value of these high- 
resolution regional coupled models/RESM or the impact of horizontal 
resolution in the context of the ISMR is not yet explored. Peatman and 
Klingaman (2018) analyzed the impact of horizontal resolution in the 
coupled model and reported that increasing horizontal resolution from 
200 km to 90 km improves the model’s performance in simulating ISM 
characteristics. On the other hand, further increasing resolution from 90 
km to 40 km produces slight improvement. High-resolution simulations 
are computationally expensive; therefore, it is better to access the added 
value (AV) of increasing horizontal resolution before doing production 
simulations. Suppose higher resolution produces insignificant or negli-
gible improvements in reducing the misfit of the model. In that case, 

efforts should be made to deploy the computational resources else-
where, such as increased ensemble size or improved additional model 
physics. 

In this context, there is a great demand to access the potential of a 
high-resolution regional earth system model (RESM) to simulate the 
ISMR over India and associated dynamical and thermodynamical pro-
cesses. One of the objectives of this study is to assess the skill of the high- 
resolution RESM, namely ROM (Sein et al., 2015), to simulate the ISMR. 
Comparatively, fewer attempts have been made to assess the regional 
climate model’s skill, REMO, over SA (Saeed et al., 2009, 2012; Lucas- 
Picher et al., 2011; Kumar et al., 2014a, 2014b, 2014c, 2015). Moreover, 
the REMO coupled with Max-Planck-Institute Ocean Model (MPIOM) 
has also been employed to simulate the atmosphere-ocean properties of 
different regions of the world (Aldrian et al., 2005; Paxian et al., 2016; 
Sein et al., 2015, 2020; Zu et al., 2019; Zhu et al., 2020) including SA 
(Kumar et al., 2013, 2014b, 2014c). However, earlier studies over SA 
using coupled regional model/RESM are restricted to horizontal reso-
lution ~50 km and short periods of less than a decade, which are not 
typically relevant time scales for climate studies, hence lacking confi-
dence in the performance of the model for climate change projection 
over India. 

In this study, we attempted to rigorously assess ROM’s comparative 
performance at different horizontal resolutions in simulating the ISM 
characteristics over the CORDEX-South Asia domain over the past 38 
years. This is the first comparative assessment study of the characteris-
tics of ISM using ROM over India for such a long integration period (38 
years) at a resolution of 0.22◦ (~25 km)/0.11◦ (~12 km). This study 
investigates the impact of increasing horizontal resolution in simulating 
the ISM characteristics over SA and the associated dynamical and 
thermodynamical processes. The regional spatiotemporal variability of 
precipitation reveals significant heterogeneity. Therefore we also assess 
the skill of the model in terms of different statistics such as the area- 
averaged mean, root mean square error (RMSE), standard deviation 
(std), and correlation coefficient (cc), over India as a whole as well as 
over six Indian homogeneous monsoon rainfall regions (IHMRR) (Par-
thasarathy et al., 1996), such as Northwest India (NWI), Northeast India 
(NEI), West Central India (WCI), Central Northeast India (CNI), Penin-
sular India (PI), and Hilly Region (HR). 

The previous studies based on RCMs or RESMs have attempted to 
investigate the bias in total seasonal precipitation. However, it is 
commendable to gain further insights into how the bias is contributed to 
by the partitioning of the convective scale (CS) precipitation and large- 
scale (LS) precipitation to identify the strength/weakness of the physics 
in the model. Therefore, another objective of this study is to investigate 
the contribution of CS and LS precipitation bias of the total seasonal 
rainfall to help in identifying the weaknesses (if any) in the formulation 
precipitation of individual types of precipitation. The identification of 
sources of biases is in great demand to gain sufficient insight for further 
improving the physics of the existing model toward reducing the un-
certainties, which is the last objective of this study. We organize the 
manuscript as follows. Section 2 briefly discusses the experimental 
design of the RESM along with its components. The results are presented 
in Section 3. Conclusions are drawn in Section 4. 

2. Model components and experimental design 

The RESM used in the study comprises a set of three models (i) 
REgional atmosphere MOdel REMO (Jacob, 2001) is atmospheric 
component, (ii) Max-Planck Institute Ocean Model (MPIOM) (Marsland 
et al., 2002; Jungclaus et al., 2013) is ocean component, and (iii) Hy-
drological Discharge model (HD) (Hagemann and Dümenil, 1997) is 
terrestrial hydrology component. REMO is a regional atmospheric 
model, while MPIOM and HD are global models. They are coupled using 
an OASIS coupler (Valcke et al., 2003). This coupled system is hereafter 
referred to as ROM. A detailed description of this coupled system is 
provided in Sein et al., 2015. The MPIOM and HD models are simulated 
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globally and are coupled with REMO over the CORDEX-South Asia re-
gion (Fig. 1). In MPIOM, relatively high resolution over the Indian 
Ocean (IO) ~20 km has been used. The HD model is simulated globally 
at a resolution of 0.5◦. Over the coupled domain, the ocean and atmo-
sphere exchange fields every three hours while the HD model receives 
surface runoff and drainage from REMO and delivers river runoff to 
MPIOM once per day. Lateral atmospheric and upper oceanic boundary 
conditions outside the REMO domain were prescribed using ECMWF 
ERA-Interim (EIN) reanalysis (Dee et al., 2011). After ca. 100 years of 
model spinup with the same MPIOM but 0.44◦ REMO resolution, two 
sensitivity experiments of horizontal resolution are performed with 
ROM. REMO is integrated at 0.11◦ and 0.22◦, while MPIOM and the HD 
model grids are the same in both simulations. 

3. Results 

Both ROM simulations are compared to demonstrate the usefulness 
of increasing the horizontal resolution in simulating the mean charac-
teristics of the ISM and associated dynamical and thermodynamical 
processes over South Asia. 

3.1. Mean monsoonal characteristics and the added value 

The comparative rationality of the model’s performance at two 
different horizontal resolutions regarding the intensity and distribution 
of JJAS mean precipitation is assessed. Fig. 2a presents the JJAS mean 
precipitation for the IMD observation (Unnikrishnan et al., 2013), 
ROM0.22 (Fig. 2b), and ROM0.11 (Fig. 2c) for the study period 
1980–2017. The figure depicts that the spatial distribution of simulated 
precipitation over India is reasonably close to the observations. The 
ROM clearly distinguishes the regions of low and high-intensity pre-
cipitation at both resolutions. For example, the Western Ghats, North-
east India (NEI), and Central India show a high precipitation value. 
These features are captured reasonably well by the ROM at both reso-
lutions. The ROM (at both resolutions) overestimates the rainfall over 
the central Indian and southern peninsular region. Overall, the simu-
lated precipitation distribution agrees with the observations for ROM0.22 

and ROM0.11 with varying degrees of accuracy. The root mean square 
error (RMSE) of 2.7 (2.5) mm/day between the ROM0.22 (ROM0.11) and 
IMD rainfall is much smaller than the standard deviation (4.5 mm/day) 
of IMD JJAS rainfall. This demonstrates the quality of the ROM simu-
lated precipitation. Comparatively lesser RMSE in ROM0.11 compared to 
ROM0.22 confirms the advantage of increasing resolution. 

It is interesting to note that despite performing reasonably well, 
ROM’s JJAS precipitation bias pattern demonstrates strong heteroge-
neity, for example, the wet bias over CI, southern peninsular India (SPI), 
some part of NEI and Indo Gangetic Plains (IGP), and dry bias over the 
northern part of WG and central part of the NEI. This mean precipitation 
bias pattern, both wet and dry, of ROM0.11, is more or less in resem-
blance with the ROM0.22 Fig. 2; however, the magnitude of wet bias over 
CI, SPI, parts of NEI, and IGP, as well as the dry bias over northern WG is 
noticeably reduced in ROM0.11. This shows a clear advantage of 
increasing horizontal resolution over SA. However, the ROM0.11 shows 
an increase of dry bias over the central part of the NEI, probably due to 
the limitation of using the hydrostatic version at a higher resolution over 
the region with a complex interaction between the convective system 
and large-scale dynamics (Maurya et al., 2018). The magnitude of bias 
reported in this study is considerably less than that of the bias reported 
in earlier studies using RCM (Lucas-Picher et al., 2011; Kumar et al., 
2014a, 2014b, 2014c, Bhatla et al., 2020; Kumar and Dimri, 2020) and 
coupled regional atmosphere-ocean model/RESM (Misra et al., 2017, 
2018; Di Sante et al., 2019; Mishra et al., 2021). 

Furthermore, the performance of our model is compared with dy-
namic downscaling simulations using the regional climate model 
(RegCM version 4; Giorgi et al., 2012), the Rossby Centre regional 
climate model version 4 (RCA4; Kupiainen et al., 2011), and the Cana-
dian Centre for Climate Modelling (CCMA; Flato et al., 2000) for 
CORDEX-South Asia in which the same forcing of EIN has been used. 
These dynamically downscaled data sets were obtained from the Climate 
Data Portal hosted at the Centre for Climate Change Research (CCCR), 
Indian Institute of Tropical Meteorology (IITM), http://cccr.tropmet.res. 
in/home/cordexsa_datasets. The details of these RCMs are given in 
Table 1. Fig. 3 illustrates the comparison of JJAS mean bias of ROM and 
CORDEX-South Asia RCMs. The figure suggests a substantially greater 

Fig. 1. Model domain along with the topography (meter) of the South Asia Coordinated Regional Climate Downscaling Experiment (CORDEX) domain around 10 E- 
130 E, 22 S-50 N. The six Indian homogeneous rainfall zones, namely 1: HI, 2: NWI, 3: WCI, 4:CNI, 5: NEI, and 6: SPI, are also shown. The red box shows the region of 
air-sea coupling in ROM. The left and right panel of is the topography used in simulation at 0.22◦ and 0.11◦. 
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ROM skill at both resolutions in comparison to RCMs of CORDEX-South 
Aisa. However, the performance improves in higher resolution 
(ROM0.11). This boosted the confidence in employing our high- 
resolution RESM setup for the future projection of summer monsoon 
precipitation over India. 

In this study, the added value (AV) is defined as the ability to 
improve (or not) among the two ROM simulations: high-resolution 
relative to low resolution, as discussed in Karmacharya et al. (2017). 
Their study justified the direct linkage of added value with the reduction 
in the magnitude of bias. However, the limitation is sensitivity to the 
observational data used as reference. This demands high-quality data at 
fine resolution as a reference as we use high-resolution 25 km IMD data. 
It is computed using the following equation: 

AV = Absolute bias in ROM0.22–Absolute bias in ROM0.11 (1)  

where Absolute bias in ROM0.22 and ROM0.11 is computed as | ROM0.22 
– observation| and | ROM0.11 – observation|. 

The differences between the ROM0.22 and ROM0.11 simulated 

precipitation and added value (following Eq. (1)) are computed to 
highlight the influence of increasing resolution on simulated precipita-
tion. The total impact of shifting from ROM0.22 to ROM0.11 is represented 
by ROM0.22 – ROM0.11 (Fig. 2f). The figure depicts the decrease in 
simulated precipitation over CI, WG, and NEI due to increasing resolu-
tion. Some patches of increased precipitation are also noticed. In 
contrast to some previous studies using RCM to investigate the impact of 
horizontal resolution, which reported either increase (Giorgi and Mar-
inucci, 1996; Bhaskaran et al., 2012) or decrease in precipitation (Kar-
macharya et al., 2017) or even negligible change (similar bias) (Ashfaq 
et al., 2009), our study demonstrated mixed nature (increase/decrease) 
of impact in response to the increasing resolution. Consequently, it 
resulted in reduced wet and dry bias over the respective regions. 
Moreover, more value is added over the regions of considerable uncer-
tainty (west-central India and SPI) by reducing the wet bias. Apart from 
this, we noticed the added value (Fig. S1) of increasing resolution over 
most Indian land regions except a few small patches where performance 
is degraded toward increasing resolution. The Positive skill is noticed 

Fig. 2. Seasonal (JJAS) mean rainfall (mm/day) from (a) IMD (b) ROM0.11 and (c) ROM0.22 and biases in percent (model-IMD) (d) ROM0.11 – IMD and (e) ROM0.22 – 
IMD and impact of resolution (f) (ROM0.11 - ROM0.22). 
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over the region of wet and dry bias in the ROM0.11. The highest skill is 
noticed over CI and western coast of southern Peninsular India, the re-
gion of the more considerable wet bias, and moderate positive skill over 
the dry bias region of NWI. In contrast to this, some negative skill areas 
are also noticed, however, the area and magnitude of the negative skill 
are minimal compared to the regions of positive skill. The patchy pattern 
in the AV is probably due to the different mechanisms driving the pre-
cipitation formation during the summer monsoon. Various studies have 
reported the different sources of moisture for different subregions of 
India and different months. A study by Pathak et al. (2017) proposed a 
more considerable contribution of ocean moisture transport during the 
first half of the monsoon season, while atmospheric moisture transport 
contributed mainly in the latter half of the monsoon season. Thus, it will 
be worthwhile to investigate the temporal evolution of precipitation 
bias. Fig. 4 depicts the large mean spatiotemporal variability in bias 
during the monsoon months. The least bias is observed during the initial 
phase of the monsoon (June), while the maximum is during the with-
drawal period (September). The biases are found to be reduced in all 
months in the ROM0.11 simulation. Lowest/highest bias during the 
onset/withdrawal phase suggests the possibility of lower/higher un-
certainty in ocean/atmospheric moisture transport. 

3.2. Spatiotemporal variability of ISMR 

To assess the advantage of increasing horizontal resolution of ROM 
in simulating temporal evolution of ISMR, its daily annual cycle over the 
homogeneous regions of IHMRR is computed with statistical analysis 

Table 1 
Detail description of CORDEX RCMs.  

CORDEX 
RCMs 

RegCM RCA4 CCMA 

RCM 
description 

The Abdus Salam 
International Centre 
for Theoretical 
Physics (ICTP) 
Regional Climatic 
Model version 4 

Rossby Centre 
regional atmospheric 
model version 4 

Canadian 
Centre for 
Climate 
Modelling 

Contributing 
Modelling 
Centre 

Centre for Climate 
Change Research 
(CCCR), Indian 
Institute of Tropical 
Meteorology 
(IITM), India 

Rossby Centre, 
Swedish 
Meteorological and 
Hydrological 
Institute (SMHI), 
Sweden 

Canadian 
Centre for 
Climate 
Modelling and 
Analysis, 
Canada 

Forcings ERA-Interim ERA-Interim ERA-Interim 
Horizontal 

Resolution 
0.44ox0.44o 0.44ox0.44o 0.44ox0.44o 

Convective 
Scheme 

Grell over land and 
the Emanuel over 
the ocean 

Kain and Fritsch mass-flux 
closure 

Land surface 
scheme 

Community Land 
Model version 3.5 

Samuelsson et al. 
(2006), Dynamic 
vegetation model, 
LPJ-GUESS 

Kowalczyk et al. 
(1994) 

Ensemble- 
member 

r1i1p1 r1i1p1 r1i1p1 

References Giorgi et al., 2012 Kupiainen et al., 
2011 

Flato et al., 
2000  

Fig. 3. Seasonal (JJAS) mean rainfall biases (model-IMD): (a) ROM0.11 – IMD (b) ROM0.22 – IMD (c) RegCM – IMD (d) RCA– IMD (e) CCAM– IMD (f) ENS-IMD. ENS 
refers to the ensemble mean of RegCM, RCA, and CCAM. 
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and is summarized in Table 2. ROM simulated values closely agree with 
observations over the homogeneous rainfall zones. We notice that the 
root mean square error (RMSE) between the model and observation is 
relatively less than the observed rainfall standard deviation for all zone 
except SPI, thus demonstrating our simulation’s quality as a lesser RMSE 
of the model than observed variability (standard deviation) is good skill 
score to measure the quality of the model (Srivastava et al., 2016, 2018; 
Dwivedi et al., 2018, 2019; Mishra et al., 2020a) Noticeably, the 
increasing resolution results in improving the model’s performance over 
most of the study regions except SPI where performance is found to 
degrade with increasing resolution. 

The ISM undergoes enhanced and suppressed rainfall activity over 
India on an intraseasonal time scale (Goswami and Ajaya Mohan, 2001; 
Dwivedi et al., 2006; Shahi et al., 2018). Past studies using RCM have 
reported the advantage of high resolution in simulating the intra-
seasonal variability (ISV) (Dash et al., 2014; Mishra et al., 2020b); 
however, limited studies have employed a regional coupled atmosphere- 
ocean model or RESM to understand mechanisms associated with ISV 
(Misra et al., 2017; Di Sante et al., 2019). Therefore, it would be inter-
esting to demonstrate the ROM simulation’s fidelity in reproducing the 
ISV. The convective bands of eastward and northward propagation over 

the equatorial Indian Ocean (EIO) and Indian Ocean (IO) significantly 
modulate the ISV of ISMR (Sperber and Annamalai, 2008; Yasunari, 
1980; Webster et al., 1998; Sabeerali et al., 2013). It will be noteworthy 
to illustrate the effect of horizontal resolution in simulating the eastward 
and northward propagation. We employed the methodology of Sabeerali 
et al. (2013) to compute these propagating bands. The propagation of 
eastward and northward convection is computed by regressing the 
20–100 day bandpass filtered precipitation for both propagation modes 
at each grid against a reference time series. The reference time series is 
computed as the averaged 20–100 day filtered precipitation over the 
region 12◦N–22◦N and 70◦E–90◦E for the northward propagation and 
over 10◦S–5◦N and 75◦E–100◦E for the eastward propagation. Fig. S2 
shows the lag-longitude map averaged over 5◦S–5◦N concerning the 
eastward propagation. Similarly, a lag-latitude map averaged over 
70◦E–95◦E for the northward propagation is shown in Fig. 5. It is 
observed that ROM has the potential to reproduce these eastward and 
northward propagation bands realistically when compared to observa-
tions. Further, ROM performs much better compared to other CORDEX- 
South Asia RCMs (Fig. 5). The figure also depicts a clear improvement in 
the representation of the eastward and northward propagation of waves 
over the equatorial IO toward increasing resolution. This improved 
representation of the eastward and northward propagating bands to-
ward increasing resolution may be one of the possible causes of reduced 
uncertainty in JJAS mean precipitation in ROM0.11. 

3.3. Identification of source of bias in seasonal mean precipitation 

Earlier studies have shown the relative contribution of convective 
scale (CS) and large scale (LS) precipitation during JJSA season on 
convective events have a stochastic nature (Ahmed et al., 2015). The 
result of CS and LS precipitation and their partitioning are governed by 
the parameterization schemes available in the model (He and Alapaty, 
2018). Therefore, it is worthwhile to investigate the potential of ROM 
simulations at the different horizontal resolutions to produce CS and LS 

Fig. 4. Monthly rainfall bias (mm/day) ROM0.22 – IMD (upper panel) and ROM 0.11 – IMD (lower panel) during June–July–August–September.  

Table 2 
Root mean square (RMSE) and standard deviation are shown as performance 
evaluation of ROM0.22 and ROM0.11 over the six Indian homogeneous rainfall 
zones for daily climatological precipitation.  

Zone ROM0.22/ROM0.11 Observation (standard deviation) 

RMSE 

CNI 1.73/1.71 2.25 
NWI 1.38/1.31 2.23 
NEI 2.25/2.09 2.07 
WCI 1.57/155 2.56 
SPI 1.24/1.8 0.83 
HI 1.58/1.46 1.48  

A.K. Mishra et al.                                                                                                                                                                                                                               



Atmospheric Research 259 (2021) 105681

7

precipitation and quantify their dominance toward total precipitation 
biases. Fig. 6 indicates the JJAS season mean CS and LS precipitation. 
The total precipitation mean bias in both simulations (ROM0.22 and 
ROM0.11) closely resembles LS mean precipitation. Especially, the re-
gions of sizeable wet precipitation bias over WCI are co-located with the 
regions of LS precipitation, suggesting that the wet bias in total pre-
cipitation is mainly from the uncertainty in the LS precipitation. It is 
interesting to note that the LS shows greater sensitivity to horizontal 
resolution in comparison to CS. 

The strength of the Indian monsoon is significantly affected by the 
sea surface temperature (SST) of the IO (Srivastava et al., 2018; Mishra 
et al., 2020a). Therefore, the comparative skill of the ROM in repre-
senting the IO SST is worth mentioning. However, in both ROM setups, 
the ocean model has the same horizontal resolution; the only changes, 

0.22o to 011o, are in RCM REMO. So whatever effect we see here is the 
impact of atmosphere-ocean coupling feedbacks. ROM is able to 
distinguish the regions of low and high SST when compared to obser-
vations (Fig. 7). However, the ROM at both resolutions shows a sys-
tematic warm/cold bias affecting the monsoon precipitation simulation. 
For example, a strong warm bias (~1–2 ◦C) is noticed along with the 
Somalia-Oman upwelling region. This unrealistic warming over the 
western AS may be possibly associated with reduced upwelling. This 
anomalous warming is attributed to the weaker zonal SST gradient over 
the AS, leading to weaker southwesterly winds, which should scientifi-
cally diminish the moisture supply toward India (Roxy et al., 2015). 
Increasing horizontal resolution has minimal impact on reducing 
uncertainty. 

The lower and upper-level circulations are one of the large-scale 

Fig. 5. Northward propagation: Lag-latitudes regressed anomalies of 20–100 days bandpass filtered precipitation (shaded; mm/day) band with reference time series 
averaged for a box over the Tropical Indian Ocean (10◦S–5◦N to 75◦E–100◦E). 
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dynamic features that significantly control the strength of ISMR over 
India (Joseph and Raman, 1996; Findlater, 1969). Therefore, it is crucial 
to investigate the impact of horizontal resolution in simulating the low- 

level circulation. The location of the core of the low-level jet (LLJ), 
Tropical Easterly Jet, and Subtropical Westerly Jet is found to be well 
simulated by ROM at both resolutions (Figure not shown). Fig. 8 

Fig. 6. JJAS averaged convective precipitation (a) ROM 0.11 and (b) ROM 0.22. Similarly (c) and (d) for large-scale precipitation.  

Fig. 7. Seasonal (JJAS) mean SST (◦C) from (a) HadSST (b) ROM0.11 and (c) ROM0.22 and biases (model-Had SST) (d) ROM0.11 – HadSST and (e) ROM0.22 – HadSST 
and impact of resolution (f) ROM0.11 – ROM0.22. 
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represents the bias map depicting the underestimation of the strength of 
LLJ across the location of the core of LLJ in both simulations (ROM0.22 
and ROM0.11), which is consistent with warm SST bias over the 
Somalia-Oman upwelling region. This is in conformity with the study by 
Mishra et al. (2020a) reporting the weakening of the LLJ due to AS 
warming. The overestimation of southwesterly over northern AS is also 
observed, which may be due to the somewhat northward shifting of the 
LLJ. Apart from this, we noticed the stronger southerly wind from the 
equatorial Indian ocean entering to southern Indian, facilitating the 
anomalous moisture supply over southern India and enhanced the 
precipitation. 

A similar spatial pattern of bias persists in ROM0.11 (Fig. 8b), how-
ever, it shows a slight reduction in the wind speed over southern AS, Bay 
of Bengal (BoB), and India. The reduction of wind speed over the Indian 
land region reduces evapotranspiration and hence local moisture, 
leading to reduced wet bias. Apart from this, the weakening of the 
southerly from the equatorial region along the southernmost tip of India 
toward southern India and south-westerly over AS compared to ROM0.22 
is consistent with the reduction in the wet bias in ROM0.11. The weak 
monsoon circulation may contribute to the suppression of moisture 
transport from AS to the Indian land region, which is also noted in the 
vertically integrated moisture flux map (Fig. 9). This suggests that the 
contribution of moisture from oceanic sources is not attributed to the 
land wet bias in the ROM at both resolutions. This persistent wet bias 
may be related to the local recycling moisture, demanding a further 
investigation to diagnose the source of excess moisture for precipitation, 
particularly in LS. This is in conformity with the previous study by 
Pathak et al. (2019), who observed a greater contribution of LS pre-
cipitation uncertainty arising from the atmospheric component, espe-
cially in August and September and when the ocean moisture 
contributes the maximum during the initial phase of ISMR, i.e., 
June–July. This uneven contribution of moisture transport from 
different sources is also apparent in the monthly bias maps (Fig. 4). 

A study by Goswami and Xavier (2005) indicates that the land-ocean 
thermal contrast is the basic initial driver of the ISMR while tropospheric 
temperature (TT) (vertically averaged between 200 and 600 hPa) is an 
important thermodynamic driver for sustaining the monsoon strength 
and controlling the onset, withdrawal, and length of the ISM season. 
Both ROM model simulations reproduce the mean features of the TT 
reasonably well (Fig. S3). However, the values are overestimated, 
particularly over the Tibetan plateau, leading to a stronger TT gradient 
resulting in the convergence of the moist static energy facilitating the 
favourable condition for the occurrence of convective events due to 
enhanced atmospheric instability (Pandey et al., 2020). Therefore, this 
warm bias may be attributed to the wet bias in ROM. The relative 
reduction in the warm bias with increasing horizontal resolution is also 
consistent with the reduction of wet bias. 

The vertical heating profile significantly governs the precipitation 
over the region by affecting atmospheric stability. For example, the 
slower/faster rate of warming of the mid-troposphere than that of the 
lower levels decreases/increases atmospheric stability and hence 
strengthens/weakens precipitation (Cao et al., 2012). We diagnose at-
mospheric stability by computing a metric based on the difference of air 
temperature (Δ AT) in the mid-troposphere (700 hPa) and lower at-
mosphere (925 hPa), which has been used previously by Pandey et al. 
(2020). The Δ AT of both simulations is subtracted from the corre-
sponding reanalysis for determining the relative difference between the 
model and the observations. Fig. 10a and b depict that the ROM at both 
resolutions tends to produce higher (lower) atmospheric stability than 
that produced by EIN over WCI, WG (SPI, eastern central India, and 
northern India). The increasing/decreasing atmospheric stability results 
in weakening/strengthening of convective activity over these regions, 
leading to weaker/stronger availability of moisture supply for sup-
pressed/enhanced precipitation over the region. Thus, the observed 
wet/dry bias in ROM can be attributed to the lower/higher atmospheric 
stability in the model. It is also seen that ROM0.11 produces relatively 
higher stability than that produced by ROM0.22 over WCI, which is 
consistent with the reduction of wet bias. 

We also observe stronger specific humidity in ROM’s simulations 
than in that of observation, particularly over regions having wet bias 
(Fig. 10c, d), which could be associated with the overestimation of wind 
speed over the same region along with warmer temperature bias that 
further enhances the moisture-holding capacity of air. The warm bias is 
partially associated with the incorrect partitioning of the radiative en-
ergy: an imbalanced Bowen ratio (Figure not shown). The larger part of 
the received radiative energy at the surface is used to increase the 
temperature. Similarly, weaker specific humidity than that in observa-
tion is also noticed over the regions having underestimation of precip-
itation. Barring few places, the higher/lower specific humidity is co- 
located with wet/dry bias regions. 

4. Conclusions 

For the first time over the CORDEX-South Asia region, ROM is 
applied to investigate the influence of the horizontal resolution on the 
simulation of the Indian summer monsoon rainfall and associated 
dynamical and thermodynamical processes. After the model spinup, 
simulations were performed with ROM with the same oceanic but at two 
different horizontal atmospheric resolutions: ROM0.22 (~ 25 km) and 
ROM0.11 (~ 12 km) for 38 years. The skill of both simulations is assessed 
against available observations. It is observed that ROM at both resolu-
tions performs remarkably well in simulating the mean precipitation and 
variability. The improved mean simulation of precipitation enhances the 
confidence for future advancement toward the improved simulation of 

Fig. 8. Seasonal (JJAS) mean wind bias at 850 hPa (a) ROM0.11 – EIN and (b) ROM0.22 – EIN and impact of air-sea coupling, (c) ROM0.11 – ROM0.22.  
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Fig. 9. Seasonal (JJAS) mean vertically integrated moisture flux (kg m-1 s-1) from (a) EIN (b) ROM0.11 and (c) ROM0.22.  

Fig. 10. Seasonal (JJAS) mean atmospheric instability (air temperature at 700 hPa (AT700) -air temperature at 925 hPa (AT925) bias at 850 hPa (a) ROM0.11 – EIN 
and (b) ROM0.22 – EIN and impact of air-sea coupling (c) ROM0.11 – ROM0.22. The lower panel is similar to the upper panel but for specific humidity. 
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ISMR. In general, the wet/dry bias over India is mostly associated with 
the overestimation/underestimation of the LS/CS component of pre-
cipitation. Increasing horizontal resolution from 25 km to 12 km im-
proves the simulation of JJAS mean precipitation by reducing the wet/ 
dry bias over WCI and southern peninsular India (eastern CI). The 
reduction in wet bias is mostly associated with suppression/enhance-
ment of the LS/CS precipitation. This improvement in mean precipita-
tion is partially due to the improved representation of the eastward and 
northward propagation of convective bands. Despite the above im-
provements, the wet precipitation bias, particularly over western CI, is 
persistent. It is interesting to note that the bias exhibits strong spatio-
temporal heterogeneity, which may be contributed to by the different 
moisture transport sources. It has been reported that the ocean serves as 
the primary contributor of moisture for precipitation during the initial 
phase of the monsoon season, while atmospheric moisture largely con-
tributes after the peak monsoon month (July) (Pathak et al., 2019). 
Therefore, the source of bias is suspected to originate from the ocean and 
atmosphere. The weaker Findlater jet associated with weaker land- 
ocean thermal contrast caused by the warm SST bias over the western 
AS may contribute to the suppression of moisture transport from AS to 
the Indian land region. The wet bias is associated with the favourable 
atmospheric condition (instability) and enhanced moisture availability 
due to increased specific humidity over India that could be associated 
with the overestimation of wind speed over the same region along with 
warmer temperature bias, which further enhances the moisture-holding 
capacity of air. 

The poor representation of recycling rate due to weak interactive 
land-atmosphere coupling in ROM’s setup may also lead to limited en-
ergy and moisture exchange from land to the atmosphere or vice-versa. 
Further in-depth mechanisms needed to investigate the different oceanic 
and terrestrial contributors of sources of moisture transport associated 
with the wet bias lie beyond the scope of the present paper. Our future 
study will be focused on identifying oceanic and terrestrial contributors 
to sources of moisture transport and their relationship to the rainfall 
over different homogeneous regions of India. 
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