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Abstract 28 

The Antarctic Peninsula’s Pacific margin is one of the best studied sectors of the 29 

Antarctic continental margin. Since the 1990s, several research cruises have targeted 30 

large sediment drifts on the continental rise with geophysical surveys, conventional 31 

coring and deep-sea drilling. The previous studies highlighted the potential of the drift 32 

sediments as high-resolution palaeoenvironmental archives. However, these studies 33 

also suffered from chronological difficulties arising from the lack of calcareous 34 

microfossils, with initial results from geomagnetic relative palaeointensity (RPI) dating 35 

promising a possible solution. 36 

This paper presents data from new sediment cores recovered on cruise JR298 from 37 

seven continental rise sites west of the Antarctic Peninsula and in the Bellingshausen 38 

Sea with the objectives to (i) seek calcareous foraminifera at shallow drift sites to 39 

constrain RPI-based age models, and (ii) investigate the depositional history at these 40 

locations. We present the results of chronological and multi-proxy analyses on these 41 

cores and two cores previously collected from the study area. We establish new age 42 

models for the JR298 records and compare them with published RPI-based age 43 

models. In addition, we evaluate the reliability of different palaeoproductivity proxies 44 

and reconstruct depositional processes. 45 

Planktic foraminifera are present in various core intervals. Although their stable oxygen 46 

isotope (δ18O) ratios, tephrochronological constraints and glacial-interglacial changes 47 

in sediment composition provide age models largely consistent with the RPI 48 

chronologies, we also observe distinct differences, predominantly in the 49 

Bellingshausen Sea cores. Enrichments of solid-phase manganese together with 50 

evidence for “burn-down” of organic carbon in late glacial and interglacial sediments 51 

document non-steady-state diagenesis that may have altered magnetic mineralogy 52 

and, thus, RPI proxies. This process may explain discrepancies between age models 53 

based on RPI and derived from δ18O data combined with tephrochronology. The data 54 

also indicate that organic carbon is a much less reliable productivity proxy than 55 

biogenic barium or organically-associated bromine in the investigated sediments. 56 

In agreement with previous studies, sediment facies indicates strong control of drift 57 

deposition by bottom-current activity and supply of glacigenic detritus via gravitational 58 

transport. Bottom-current velocities underwent only minor changes over glacial-59 

interglacial cycles at the drift crests, with down-slope deposition occasionally affecting 60 
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even the shallowest drift locations. Maximum concentrations of coarse iceberg-rafted 61 

debris (IRD) at the seafloor surfaces of the shallow sites result from upward pumping 62 

caused by extensive bioturbation. This process has to be taken into account when 63 

past changes in IRD deposition are inferred from quantifying clasts >1 mm in size. 64 

 65 

Keywords: Antarctic Peninsula; bioturbation; bottom current; carbon burn-down; 66 

contourites; ice-rafted debris; manganese enrichment; non-steady-state diagenesis; 67 

sediment drifts 68 
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1. Introduction 70 

The western continental rise of the Antarctic Peninsula is characterized by eight large 71 

and four smaller mounds rising between several hundred and ≤2000 meters above the 72 

surrounding seafloor (Fig. 1; Rebesco et al. 1998, 2002; Hillenbrand et al. 2008b; 73 

Hernández-Molina et al. 2017). The mounds are separated by deep-sea channels 74 

originating at the base of the continental slope, and most of them have a gentle NE 75 

side and a steep SW flank. They are interpreted as contourite mounded drifts formed 76 

by fine-grained detritus, which initially had been supplied by turbidity currents travelling 77 

through the channels before the fine-grained particles were entrained into a generally 78 

SW-ward flowing bottom current (Rebesco et al. 1996, 1997) [NB: here we use the 79 

term “contourite” sensu lato, i.e., as describing any sediment deposited or reworked 80 

by a bottom current (e.g., Rebesco et al. 2014; Stow & Smillie 2020)]. The bottom 81 

current follows the bathymetric contours and originates as highly modified Weddell 82 

Sea Deep Water (WSDW) or Lower Circumpolar Deep Water (LCDW) from the 83 

Weddell Sea (Camerlenghi et al. 1997; Giorgetti et al. 2003). The drifts were examined 84 

with high-resolution bathymetric surveys (Rebesco et al. 2002, 2007; Dowdeswell et 85 

al. 2004; Larter et al. 2016), reflection seismic investigations (Larter & Cunningham 86 

1993; McGinnis et al. 1997; Rebesco et al. 1997, 2002; Hernández-Molina et al. 2006, 87 

2017; Scheuer et al. 2006) and shallow gravity and piston coring (Pudsey & 88 

Camerlenghi 1998; Pudsey 2000; Lucchi et al. 2002; Vautravers et al. 2013). In 89 

addition, Drifts 7 and 4 were drilled at sites 1095, 1096 and 1101 by Ocean Drilling 90 

Program (ODP) Leg 178 (Barker et al. 1999, 2002). 91 

Further west, the continental margin in the Bellingshausen Sea has been only sparsely 92 

studied by a few high-resolution bathymetric lines and seismic profiles. These surveys 93 

identified the Belgica Trough Mouth Fan (‘Belgica TMF’; Dowdeswell et al. 2008; 94 

Graham et al. 2011; Gales et al. 2018) and one major sediment drift (Nitsche et al. 95 

2000; Cunningham et al. 2002). In contrast to the Antarctic Peninsula rise, data from 96 

only two marine sediment cores have been published from the continental rise in the 97 

Bellingshausen Sea (PS2538, Hillenbrand et al. 2005, 2009; PS2556, Hillenbrand et 98 

al. 2008a) (Fig. 1). 99 

Multi-proxy analyses of the sediment cores from the Antarctic Peninsula margin 100 

revealed that the drift bodies contain records of Late Neogene to Quaternary 101 

palaeoenvironmental changes, including past dynamics of the Antarctic Peninsula Ice 102 
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Sheet (APIS) and oceanographic variability in the Antarctic Zone of the Southern 103 

Ocean (e.g., Pudsey 2000; Lucchi et al. 2002; Barker et al. 2002; Cortese et al. 2004; 104 

Hillenbrand & Ehrmann 2005; Bart et al. 2007; Cowan et al. 2008; Hepp et al. 2006, 105 

2009; Escutia et al. 2009). The rarity of calcareous microfossils in the predominantly 106 

terrigenous drift sediments prevented acquisition of reliable AMS 14C ages and the 107 

application of stable oxygen isotope (18O) stratigraphy; the cores could only be dated 108 

by lower-resolution bio-, magneto- and lithostratigraphy (Pudsey & Camerlenghi 1998; 109 

Pudsey 2000; Barker et al. 2002; Lucchi et al. 2002). This difficulty hampered high-110 

resolution palaeoenvironmental reconstructions and thus exploitation of the full 111 

potential of the drift archives. Nevertheless, establishing age models for the drift cores 112 

by correlating reconstructions of relative palaeointensity (RPI) with independently 113 

dated regional/global RPI records has shown some promise (Guyodo et al. 2001; 114 

Sagnotti et al. 2001; Macrì et al. 2006; Venuti et al. 2011; Vautravers et al. 2013). 115 

International Ocean Discovery Program (IODP) proposal 732-FULL2 (Channell et al. 116 

2008) advocated the recovery of new drill cores spanning the Neogene and 117 

Quaternary from the western Antarctic Peninsula drifts and the Bellingshausen Sea. 118 

Its primary objective is to exploit the full potential of the drifts’ palaeo-archives for 119 

reconstructing Miocene to Holocene oceanographic changes in the eastern Pacific 120 

sector of the Southern Ocean and the dynamics of the APIS and the marine based 121 

West Antarctic Ice Sheet (WAIS). The strategy is to obtain continuous records from 122 

shallow drift crest sites, where both accumulation rates and the preservation potential 123 

of calcareous foraminifera are expected to be high, in order to establish reliable, high-124 

resolution age models using RPI proxies constrained by foraminiferal 18O 125 

stratigraphy. 126 

Here, we present multi-proxy data sets from sediment cores recovered from the West 127 

Antarctic drifts during pre-site survey cruise JR298 in support of IODP proposal 732-128 

FULL2 and two additional cores collected on earlier research cruises. The RPI records 129 

of the JR298 cores together with supporting data for some of those cores, were 130 

recently published by Channell et al (2019). Here, we present the sedimentological 131 

data sets, including the results of proxy analyses, such as measurements of sortable 132 

silt mean size (SS) and X-ray fluorescence (XRF) scanning, which previously had not 133 

- or only to a very limited extent - been carried out on cores from the area. We focus 134 

our discussion on novel findings from these investigations. 135 
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2. Materials and methods 136 

2.1. Materials 137 

Seven piston cores (PC) paired with giant box cores (GBC) were recovered on IODP 138 

pre-site survey investigation cruise JR298 of the RRS James Clark Ross in austral 139 

summer 2015 (Table 1). Six of the PC deployments targeted drill sites of IODP 140 

proposal 732-FULL2 (Channell et al. 2008), i.e. the shallowest parts of Drifts 4, 5, 6 141 

and 7 on the western Antarctic Peninsula rise, the Bellingshausen Sea drift, and the 142 

distal part of Belgica TMF (Fig. 1). In addition, PC734/GBC735 was deployed on the 143 

distal crest of Drift 5 to obtain a more condensed sedimentary sequence, and GBC733 144 

was retrieved from the channel separating Drifts 5 and 5A (Fig. 1). 145 

The PCs were collected using a piston coring system with a short, small-diameter 146 

trigger corer (TC). At most sites it was unclear, whether the TC had over-penetrated 147 

the seabed, so a GBC was deployed at each PC site to obtain undisturbed seafloor 148 

surface sediments. Data from GBC sub-cores and the corresponding PCs were 149 

spliced to compensate for sediment loss and/or possible core-top disturbance in the 150 

PCs. Overall, PC quality was excellent, with only minor core-top disturbance/sediment 151 

loss. However, X-radiographs revealed sediment inflow at the bases of several PCs, 152 

which is a common issue in piston coring (e.g., Skinner & McCave 2003). No data are 153 

presented (or were collected) from the corresponding core intervals. The PCs were 154 

cut into 1.5 m long sections and, together with the GBC sub-cores, split and sampled 155 

on board. All core sections and samples were stored at +4 °C after collection. 156 

We also present data from gravity cores (GCs) PS1565-2 and PS2556-2 [including 157 

multiple core (MUC) PS2556-1], which were recovered during RV Polarstern cruises 158 

ANT-VI/2 (1987) and ANT-XI/3 (1994), respectively (Fig. 1; Table 1). PS1565-2 was 159 

recovered from the seaward, distal flank of Drift 3, and PS2556-2/-1 was collected 160 

from the crest of the Bellingshausen Sea drift, which was later targeted by JR298 core 161 

PC726. Some data from cores PS1565-2 and PS2556-2/-1 were previously published 162 

(Hillenbrand & Ehrmann 2002; Hillenbrand & Fütterer 2002; Hillenbrand et al. 2003, 163 

2008a; Hillenbrand & Cortese 2006; Turney et al. 2020). 164 

2.2. Methods 165 

Whole-core magnetic susceptibility (MS) was measured on the PC sections using a 166 

120-mm diameter Bartington loop sensor (MS2C) connected to a Bartington MS3 167 

susceptibility meter. Afterwards, the PC and GBC sections were split on board using 168 
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a router and a fishing line. Their working and archive halves were photographed before 169 

the lithology and sedimentary structures of the cores were described visually and using 170 

smear slides. After cruise JR298, the core logs were refined/revised using X-171 

radiographs prepared from the PC and GBC archive halves. P-wave velocity, MS and 172 

wet-bulk density (WBD) of the archive halves were analysed with a GEOTEK multi-173 

sensor core logger (MSCL-S). Semi-quantitative elemental data as well as diffuse-174 

reflectance spectrophotometric data were measured on the archive halves of the PCs 175 

and GBCs using a 3rd generation Avaatech XRF scanner. Elemental data are 176 

recalculated and plotted as log-normalized (LN) peak-area ratios following Weltje & 177 

Tjallingii (2008) but in the following text we refer just to element ratios. Methodological 178 

details for the XRF scanning as well as for magnetic investigations, which were 179 

conducted on U-channels taken from the PC working halves and discrete bulk samples 180 

taken from the PCs and GBCs, are given in Channell et al. (2019). 181 

Discrete 1-cm thick bulk samples (~48 cm3) were taken from the PC and GBC working 182 

halves for post-cruise sedimentological, micropalaeontological, geochemical and 183 

mineralogical studies. The sampling intervals varied depending on the visually 184 

observed changes in core lithology and sedimentary structures. Water content was 185 

determined by weighing the samples before and after oven drying at 30 °C. Grain-size 186 

distribution in terms of weight percentages of gravel (>2000 µm), sand (63-2000 µm) 187 

and mud (<63 µm) was analysed on all cores by wet sieving over 63 µm and 188 

subsequent dry sieving of the retained coarse fraction over 2 mm. Given the limited 189 

sample volume of ~48 cm3, the gravel percentages determined for gravel-rich samples 190 

have to be considered as semi-quantitative contents (e.g., Head 2006). Siliceous and 191 

calcareous biogenic components were removed from the mud fractions of cores 192 

PC727 and PC734 using 2M sodium carbonate and 1M dilute acetic acid, respectively, 193 

before their detailed grain-size distribution was measured with a Coulter Counter 194 

Multisizer-3 (MS3), to determine the mean grain size of terrigenous particles in the 195 

sortable silt fraction 10-63 µm (SS) as a proxy for bottom-current speed (McCave et 196 

al. 1995, 2017; McCave & Hall 2006). The SS  signal in marine sediments from polar 197 

regions can be affected by deposition of ice-rafted debris (IRD) (e.g. Hass 2002; 198 

McCave et al. 2014; McCave & Andrews 2019). In order to evaluate the IRD influence 199 

on SS  of cores PC727 and PC734, percentage of sortable silt (SS%) in the fine fraction 200 

<63 µm was determined on selected samples by conducting a “one shot” pipette 201 
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analysis at 10 µm threshold on the wet-sieved fine fraction. The mineralogical 202 

composition of the clay fraction (<2 µm) of cores PC727 and PC734 was investigated 203 

by X-ray diffraction (XRD), applying procedures outlined in Hillenbrand et al. (2009) 204 

and Ehrmann et al. (2011). 205 

Geochemical analyses on discrete samples included the measurements of total 206 

carbon (TC) and total inorganic carbon (TIC) for determining the contents of CaCO3 207 

and total organic carbon (TOC). TIC content was measured by acidifying the samples 208 

with an Auto-MateFX carbonate preparation system and measuring evolved CO2 with 209 

a UIC Coulometrics TM5011 CO2 coulometer, and TC content was measured via 210 

combustion in a Flash Element Analyser (EA). TC and TOC were analysed on all 211 

samples from cores PC727, PC728 and PC734 and samples from distinct intervals in 212 

cores PC723, PC726, PC732 and PC736, which had been chosen based on the core 213 

descriptions. XRF measurements of major and trace element concentrations were 214 

conducted on selected discrete samples from cores PC723 and PC727 using an XRF 215 

spectrometer. The main purpose of the discrete XRF analyses was to establish, 216 

whether particular elemental ratios commonly used as palaeo-proxies in marine 217 

sediments, such as the productivity proxies barium/aluminium (Ba/Al) and 218 

bromine/aluminium (Br/Al) (e.g., Hillenbrand et al. 2017; Smith et al. 2017), showed 219 

identical down-core trends in the XRF data from discrete samples and scanning. 220 

Stable oxygen (δ18O) and carbon (δ13C) isotope ratios using the VPDB standard on 221 

tests of the planktic foraminifera Neogloboquadrina pachyderma sinistral picked from 222 

the coarse fraction (>63 µm) of all samples containing sufficient tests in cores PC727, 223 

PC728, PC734 and PC736 and selected intervals in cores PC723 and PC727 were 224 

analysed with a Thermo-Finnigan MAT 253 mass spectrometer (2-26 tests per sample 225 

were picked, 10-12 tests were analysed on most samples). Age models for the cores 226 

were established by correlating the δ18O data of a core with the Marine Isotope Stages 227 

(MIS) of the LR04 benthic foraminifera δ18O stack (Lisiecki & Raymo 2005). Marine 228 

Tephra B, a widespread tephra layer, which originates from a Plinian eruption of the 229 

Mt. Berlin volcano in Marie Byrd Land, West Antarctica, identified in both West 230 

Antarctic marine sediment cores and Antarctic ice cores, was used as a marker for the 231 

MIS 5/MIS 6 boundary at ~130 ka (Hillenbrand et al. 2008a). Recently, an age of 232 

130.7±1.8 ka has been assigned to Marine Tephra B based on its identification in the 233 

Dome Fuji ice core in East Antarctica (Turney et al. 2020), which is, within error, 234 
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consistent with age estimates from previously RPI-dated sediment cores from Drift 7 235 

(Macrì et al. 2006; Hillenbrand et al. 2008a; Venuti et al. 2011). 236 

Seabed surface sediments of box cores GBC729 and GBC735 contained enough 237 

planktic foraminifera and other calcareous fossils to apply AMS 14C dating (Table 2). 238 

Four samples from GBC729 and two samples from GB735 were dated at Beta Analytic 239 

Inc., Miami, U.S.A., for testing the hypothesis that the frequent occurrence of 240 

manganese-coated pebbles and cobbles at the surfaces of the JR298 GBCs resulted 241 

from current winnowing/non deposition. 242 

Proxies on GCs PS1565-2 and PS2556-2 (incl. MUC PS2556-1) were investigated 243 

following the methods detailed in Hillenbrand & Ehrmann (2002), Hillenbrand & 244 

Fütterer (2002) and Hillenbrand et al. (2002, 2003, 2005). In addition, we present for 245 

the GCs percentages of microfossils, micro-manganese nodules and volcanic glass 246 

particles determined by identifying and counting 200-400 grains of the sand fraction 247 

(>63 µm) under a microscope (Hillenbrand 1994; Braun 1997). Notable differences 248 

between the investigations on the two GCs and the JR298 cores are that on the former 249 

cores (i) samples were decalcified before grain-size analysis, and (ii) IRD abundance 250 

was determined on X-radiographs by counting gravel-sized clasts (>2 mm) 251 

continuously down-core at 1 cm depth intervals (Grobe 1987). 252 

All data are available under doi:10.1594/PANGAEA.[doi to be assigned after 253 

acceptance]. 254 

3. Results 255 

Down-core data for all records (apart from GBC733) are shown in Figures 2-13 and 256 

(apart from PS1565-2) are plotted versus centimetres composite depth (cmcd). The 257 

splicing of the PCs with the GBCs was conducted by visual correlation of (i) distinct 258 

lithological and structural features, and (ii) characteristic down-core changes and/or 259 

prominent peaks in physical properties, XRF scanner data, water content, TOC and 260 

CaCO3 contents, and grain-size composition. The following splicing depths were 261 

determined: PC723 20 cm =GBC724 28 cm; PC726 20 cm =GBC725 32 cm; PC727 262 

20 cm =GBC730 17 cm; PC728 10 cm =GBC729 7 cm; PC732 17 cm =GBC731 17 263 

cm; PC734 10 cm =GBC735 15 cm; and PC736 9 cm =GBC722 15 cm. The splicing 264 

indicates sediment loss in the PCs of between 0 and 12 cm, with GBC729 and 265 

GBC730 having been affected by some degree of sediment compression during sub-266 

core retrieval. GBC data were used above and PC data below the established splicing 267 
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depths to account for potential core-top disturbance in the PCs. Loss of ~13 cm of 268 

seafloor surface sediment in GC PS2556-2 was compensated for by splicing its data 269 

with those of MUC PS2556-1 (Braun 1997). In the following, only the JR298 PC 270 

numbers and site numbers PS1565 and PS2556 are used for the spliced core records, 271 

if not stated otherwise. 272 

Site GBC733 from the channel between Drifts 5 and 5A was the only site on cruise 273 

JR298, where only a box core was collected. GBC733 recovered a disturbed, only 28 274 

cm long, succession consisting of ~21 cm of bioturbated, diatom-bearing to 275 

diatomaceous mud overlying ~7 cm of laminated coarse silt and fine sand (Suppl. Fig. 276 

1). No data are presented here for this core. 277 

3.1. Lithology and sedimentary structures 278 

The recovered sedimentary sequences in all cores consist predominantly of 279 

terrigenous muds and sandy muds, with low and variable contents of sand and gravel 280 

(Figs. 2-10). Most of the core intervals are laminated to stratified and characterized by 281 

up to several centimetres thick, internally structureless muddy horizons alternating 282 

with horizontal, silty to sandy layers. These coarser layers are often internally 283 

structureless, but occasionally laminated or stratified. Rarely, they are fining upwards 284 

and/or have an erosional base. Sediment intervals containing diatoms and/or 285 

foraminifera (nearly exclusively the planktic foraminifer N. pachyderma sin.) occur in 286 

all cores, and always bear scattered gravel grains. These microfossil-bearing 287 

sediments are usually bioturbated or structureless, with their thicknesses ranging from 288 

just under 10 cm to 45 cm. All cores retrieved such sediments at their tops, with 289 

another microfossil-bearing and bioturbated to homogenous interval occurring further 290 

down-core at sites PC726, PC727, PC734 and PS1565, and two such intervals 291 

occurring further down-core at sites PC723 and PS2556 (Figs. 2-4, 7, 9, 10). 292 

Subordinate sedimentary structures include cross lamination, observed only once, in 293 

a thin interval of core PC734 (305-310 cmcd), and deformation structures, which are 294 

largely restricted to site PC732. The deformation structures comprise inclination, 295 

sloping, faulting and fanning of coarse- and fine-grained layers as well as convolute 296 

bedding. One horizon at site PC732 contained a slab of semi-consolidated sand that 297 

is orientated obliquely to the core axis. The structures are embedded between 298 

horizontally laminated and stratified intervals and are therefore considered to be 299 

primary features rather than coring or splitting artefacts. 300 
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A tephra layer sitting stratigraphically just below the second microfossil-bearing 301 

interval from the surface was found in cores PC727 and PC734 (Figs. 4, 7). In core 302 

PC734 the tephra formed a ~4 cm thick, bioturbated macroscopic bed (1153-1157 303 

cmcd), whereas it was recognizable as a microscopic or “disseminated” tephra layer 304 

in core PC727. Tephra layers invisible to the naked eye, identified by microscopic 305 

investigations of smear slides or extracted grain-size fractions, are nowadays referred 306 

to as “cryptotephra” (e.g. Davies 2015). Notwithstanding the recent claim by Di 307 

Roberto et al. (2019), such microscopic/dispersed tephra layers originating from 308 

distinct individual volcanic eruptions have been identified in Antarctic marine sediment 309 

cores since at least the 1970s (e.g., Huang et al. 1975, Kyle & Seward 1984, Shane 310 

& Froggatt 1992, Moreton & Smellie 1998), with both micro- and macroscopic tephra 311 

layers having been reported from cores from the western Antarctic Peninsula margin 312 

and the Bellingshausen Sea, including cores PS2556 and PS1565 (Figs. 9, 10; 313 

Hillenbrand et al. 2008a and references therein). A series of sand fraction samples 314 

taken from cores PC723 and PC726 at a similar stratigraphic positions, where the 315 

tephra layer in cores PC727 and PC734 had been detected, were investigated under 316 

a microscope for the presence of volcanic particles. However, only in core PC726 were 317 

glass shards detected in low concentrations (<5%) from 532 to 535 cmcd. 318 

3.2. Physical properties and grain size 319 

Pronounced down-core changes in magnetic susceptibility, WBD and water content 320 

reflect predominantly the major lithological changes, i.e. the alternations between 321 

biogenic, bioturbated/homogenous sediments and laminated/stratified terrigenous 322 

sediments. Thereby, magnetic susceptibility and WBD display minima and water 323 

content displays maxima in the biogenic sediment intervals (Figs. 2-10). Individual 324 

magnetic susceptibility and WBD peaks correlate either with individual large (mafic) 325 

gravel grains or, within the terrigenous intervals, with discrete coarse-grained layers. 326 

Overall, sand and gravel concentrations are low in the studied cores, but coarse-327 

grained particles are consistently elevated in the biogenic intervals. Notably, the 328 

seafloor surface sediments at all JR298 sites except PC727 display absolute maxima 329 

in gravel concentrations, associated with elevated sand contents. Even in the core-top 330 

sediments at site PC727 gravel and sand contents are considerably increased. This 331 

finding is corroborated by photographs of the GBC surfaces showing dispersed, 332 

manganese-coated gravel grains and pebbles (Fig. 14; Suppl. Fig. 1). 333 
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SS  in core PC727 varies from 19 to 22 µm within both the biogenic intervals and the 334 

terrigenous interval directly underlying the lower biogenic interval. In the other 335 

terrigenous interval SS  predominantly ranges from 16-19 µm (Fig. 4). In contrast, SS  336 

in core PC734 varies mainly between 16 and 21 µm, without showing a clear difference 337 

between biogenic and terrigenous intervals (Fig. 7). However, similar to the gravel 338 

content, SS  reaches an absolute maximum in the (near-)surface sediments at site 339 

PC734 (>22 µm). Furthermore, the tephra layer in core PC734 is characterized by 340 

relative sand and SS  maxima (Fig. 7). 341 

A positive correlation is recorded between SS  and SS% for samples from cores PC727 342 

and PC734 (Suppl. Fig. 2), with a coefficient R of 0.74 indicating a significant 343 

correlation for PC727. In this core, just a single data point is responsible for reducing 344 

R from 0.93 to 0.74. In contrast, the data for PC734 show more scatter, with R of only 345 

0.53, which is probably caused by the presence of unsorted iceberg-delivered silt and 346 

clay (e.g., McCave & Hall 2006). According to McCave & Andrews (2019), a running 347 

down-core correlation coefficient Rrun of >0.5 is required for interpreting the SS  of IRD-348 

influenced sediments as a record of bottom-current speed. 349 

3.3. Geochemical parameters and clay mineral composition 350 

CaCO3 concentration reaches its maxima at the seafloor surfaces of most sites (Figs. 351 

2-13). Exceptions are PC734 from 3000 m and PS1565 from 3427 m water depth, 352 

which are the deepest sites west of the Antarctic Peninsula. At present, the water 353 

depth of the Calcite Compensation Depth (CCD) has been suggested to drop 354 

westwards from ~2800 m water depth on the Antarctic Peninsula margin to ~3000 m 355 

in the southern Bellingshausen Sea (Hillenbrand et al. 2003). In many cores CaCO3 356 

concentrations decrease to nearly zero immediately below the surface maximum but 357 

in some cores, such as PC728 and PS1565, they remain slightly, but continuously 358 

elevated (≥0.5 wt.%) in the underlying terrigenous interval, thereby showing a minor 359 

down-core increase (Figs. 5, 10). In the sub-surface biogenic intervals of cores PC723, 360 

PC726, PC727, PC734, PS2556 the CaCO3 concentrations are considerably higher 361 

(Figs. 2-4, 7, 9). Similar CaCO3 down-core patterns were previously reported from core 362 

PS1565 (Fig. 10; Hillenbrand & Fütterer 2002) and other sediment cores west of the 363 

Antarctic Peninsula (Pudsey & Camerlenghi 1998; Pudsey 2000). 364 
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Similarly to the CaCO3 content, TOC content decreases immediately down-core 365 

beneath a maximum concentration at the seafloor surface at most sites. However, 366 

TOC remains elevated in the underlying terrigenous intervals of cores PC727, PC728, 367 

PC734 and PS2556 (Figs. 4, 5, 7, 9). In core PC734 the CaCO3 maximum above its 368 

base coincides with a TOC maximum (Fig. 7). This contrasts with cores PC723, 369 

PC726, PC727 and PS2556, in which these down-core CaCO3 maxima coincide with 370 

TOC minima (Figs. 2-4, 9, 11). 371 

Biogenic barium (Babio) is considered the most reliable palaeoproductivity proxy in Late 372 

Quaternary sediments recovered south of the Antarctic Polar Front (e.g., Nürnberg et 373 

al. 1997; Bonn et al. 1998; Pudsey & Camerlenghi 1998; Hillenbrand & Cortese 2006). 374 

Consequently, barium counts measured with an XRF scanner and normalised for 375 

terrigenous input using titanium (e.g., Williams et al. 2019), iron (e.g., Lamy et al. 2014) 376 

or aluminium (e.g., Wu et al. 2017) are widely used as a proxy for Babio in these 377 

sediments. Ba/Al ratios for the investigated cores are higher in the biogenic intervals 378 

but their maxima often lie below CaCO3 maxima, especially near the seabed surface 379 

(Figs. 2-8, 10-13). Because high Ba contents in marine sediments can also result from 380 

an increased supply of detrital barite rather than increased biological productivity, we 381 

also normalised Ba with respect to zirconium (Zr), which is a proxy for zircon and thus 382 

detrital heavy minerals. 383 

Bromine has also been proposed as a proxy for marine organic carbon content in 384 

sediment cores (e.g., Ziegler et al. 2008) and was recently applied to Antarctic marine 385 

sediments (Smith et al. 2017), including most cores studied here (Channell et al. 386 

2019). In general, the down-core trends of the Br/Al data reflect those of the Ba/Al data 387 

at all sites with XRF scanner data (Figs. 2-8). Furthermore, the Br/Al ratios in the 388 

discrete samples from core PC727 match the Br/Al data obtained from XRF scanning 389 

(Fig. 12), indicating that the Br/Al down-core variations are unlikely to reflect changes 390 

in water content only, although water concentrations are known to influence XRF 391 

scanner data for elements dissolved in high concentrations in seawater and/or pore-392 

water (Tjallingii et al. 2007; Ziegler et al. 2008; Hennekam & De Lange 2012). 393 

Normalised manganese (Mn) ratios in marine sediments are commonly used as a 394 

proxy for Mn-oxide concentration, an indicator of the the oxygenation state of the 395 

bottom water at the time of deposition (e.g., Jaccard et al. 2016; Wagner & Hendy 396 

2017; Wu et al. 2018). In most of our investigated cores, Mn/Al ratios exhibit maxima 397 
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in the biogenic intervals (Figs. 2-8, 10), which is also consistent with the Mn-coating 398 

of pebbles and cobbles at the seabed surface (Fig. 14; Suppl. Fig. 1). In general, the 399 

Mn/Al ratios match the down-core patterns of the Ba/Al and Br/Al data, but, notably, 400 

they also show maxima in the terrigenous sediments directly underlying the biogenic 401 

intervals (Figs. 2-8), which is particularly evident from the abundance of micro-Mn 402 

nodules in core PS2556 (Fig. 9). Mn/Al ratios analysed on discrete samples from cores 403 

PC723 and PC727 confirm this observation (Figs. 11, 12). In core PS1565 maxima in 404 

Mn/Al ratios of bulk sediments coincide with maximum abundances of micro-Mn 405 

nodules (Figs. 10, 13). 406 

As in core PS1565 (Fig. 10; Hillenbrand & Ehrmann 2002), clay mineral assemblages 407 

in cores PC727 and PC734 consist mainly of chlorite, illite and smectite, with only very 408 

minor contents of kaolinite (Figs. 4, 7). In the three cores, smectite tends to be higher 409 

in the biogenic intervals, whereas chlorite shows higher concentrations in the 410 

terrigenous sediments (Figs. 4, 7, 10, 15). Along the core transect, smectite generally 411 

decreases at the expense of chlorite and illite in a SW-ward direction (Fig. 15). 412 

3.4. Chronological constraints 413 

The planktic δ18O data exhibit low values in the biogenic sediments and high values 414 

in the terrigenous intervals, with the δ13C data often showing the opposite pattern 415 

(Figs. 2-10). Where resolved, the δ18O shift at the transition between the biogenic 416 

interval at the core top and the underlying terrigenous sediments is ~1.5‰ (Figs. 4, 5, 417 

7-9), corresponding to the typical global δ18O shift of 1.0-1.5‰ caused by the 418 

combined effect of decreasing ice volume and ocean warming at Late Quaternary 419 

glacial terminations, which is recorded by benthic and planktic foraminifera (e.g. Imbrie 420 

et al. 1984; Lisiecki & Raymo 2005; Elderfield et al. 2012). The corresponding planktic 421 

δ13C changes in our cores are on average 0.6‰, ranging from 0.3‰ (PC734) to 0.7‰ 422 

(PC727, PC728), and thus also lie within the range of typical global glacial-interglacial 423 

δ13C shifts recorded by benthic foraminifera, although the entire whole-ocean change 424 

probably did not exceed 0.3±0.2‰ (e.g. Peterson et al. 2014; Gebbie et al. 2015). In 425 

the biogenic intervals of the middle and lower parts of our cores, the δ18O decreases 426 

with respect to under- and overlying terrigenous sediments vary from 0.5‰ to 1.7‰, 427 

but, with an average range of 0.9‰, are generally less prominent than in the upper 428 

core sections. The corresponding δ13C increases, with an average range of 0.5‰, are 429 

only slightly less prominent (Figs. 2-4, 7, 9). 430 
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AMS 14C dates were obtained from calcareous epi-faunal organisms and planktic 431 

foraminifera (N. pachyderma sin.) from the seafloor surface sediments retrieved in 432 

core GBC729 (=PC728) and GBC735 (=PC734) (Fig. 14). For site GBC735, a bivalve 433 

shell and planktic foraminifera provided uncorrected ages of 1100 and 1000 14C yrs 434 

BP, respectively, while for site GBC729 benthic organisms and planktic foraminifera 435 

gave slightly older ages of c. 1360 and 1260 14C yrs BP, respectively (Table 2). Thus, 436 

the ages from site GBC729 match the pre-bomb marine reservoir effect (MRE) of c. 437 

1300 14C yrs BP in the Southern Ocean, whilst those from site GBC735 lie within the 438 

pre-bomb MRE and the post-bomb MRE of c. 700 14C yrs BP (e.g. Berkman & Forman 439 

1996; Berkman et al. 1998; Skinner et al. 2019). The dates from the planktic 440 

foraminifera are slightly younger than those from the calcareous benthos at both sites, 441 

reflecting the slightly lower MRE in Southern Ocean surface waters when compared 442 

to bottom waters (e.g., Sikes et al. 2000). In general, however, the 14C dates document 443 

a recent age for the biogenic sediments at the core tops. No down-core AMS 14C ages 444 

are available. 445 

The stratigraphic positions of the tephra layers detected in cores PC727 and PC734 446 

(Figs. 2, 7) and sand-sized glass shards found in core PC726 (532-535 cmcd) match 447 

that of Marine Tephra B in numerous cores from the study area (Hillenbrand et al. 448 

2008a), including cores PS2556 and PS1565 (Figs. 9, 10), which has an age of 449 

130.7±1.8 ka (Turney et al. 2020). Marine Tephra A, detected in both cores PS2556 450 

and PS1565, was assigned an age of ~92 ka, whilst Marine Tephra C in core PS1565 451 

has a likely age of ~136 ka (Hillenbrand et al. 2008a). 452 

In view of these chronological results, together with the observed down-core 453 

fluctuations in palaeoproductivity proxies, especially the Ba/Al ratios which are usually 454 

unaffected by dissolution, the biogenic intervals at the core surfaces are assigned to 455 

interglacial MIS 1, the first sub-surface biogenic intervals in cores PC723, PC726, 456 

PC727, PC734 and PS2556 to interglacial MIS 5, and the lower biogenic intervals in 457 

cores PC734 and PS2556 to interglacial MIS 7. Consequently, the terrigenous 458 

intervals in between are assigned to the glacial periods MIS 2-4, 6 and 8. These 459 

assignments are consistent with previous age assignments for cores from the study 460 

area (Pudsey & Camerlenghi 1998, Pudsey 2000, Sagnotti et al. 2001, Hillenbrand & 461 

Ehrmann 2002, Lucchi et al. 2002, Villa et al. 2003, Macrì et al. 2006, Venuti et al. 462 

2011; Vautravers et al. 2013). We provide the age-depth fix points for our cores, 463 
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including linear sedimentation rates, in Table 3. Importantly, these age models are 464 

predominantly based on a combination of δ18O-, tephro- and lithostratigraphy, 465 

whereas in previous studies only the age model for core PC466 from Drift 4, which 466 

was recovered in close proximity to site PC736, had some chronological constraints 467 

based on planktic δ18O data (Vautravers et al. 2013). Our new age models document 468 

that sedimentation rates during glacial periods were consistently higher than during 469 

the preceding or subsequent interglacial periods (Table 3; Suppl. Fig. 3). Our age 470 

assignments are generally consistent with the RPI-based age models for some of the 471 

JR298 cores published in Channell et al. (2019) (Suppl. Fig. 3a-d), and we discuss the 472 

discrepancies below (see section 4.4.). 473 

4. Interpretation and discussion 474 

4.1. Sediment facies and inferred depositional processes 475 

We distinguish six common Facies A to F and five rare Facies G to K (Table 4; Fig. 476 

16; see Supplementary Text for full facies descriptions and references). Bioturbated 477 

Facies A and structureless Facies B occur at all sites and consist of (sandy) muds 478 

bearing biogenic material and scattered gravel grains interpreted as IRD. These 479 

hemipelagic sediments are assigned to MIS 1, 5 and 7. Facies C, D, E and F, assigned 480 

to glacial MIS 2-4, 6 and 8, lack biogenic components (Figs. 2-13) and bioturbation, 481 

probably as a consequence of (nearly) permanent sea-ice coverage during glacial 482 

periods. Laminated Facies C consists of muds alternating with silty-sandy laminae. Its 483 

sediments are interpreted as contourites derived from detritus transported down the 484 

continental slope by debris flows and slumps that were initiated by the advance of 485 

grounded ice masses across the shelf during glacial periods. At the base of the slope, 486 

the material went into suspension forming turbidity currents. Fine-grained particles in 487 

the upper parts of the suspension clouds were captured by the SW-ward flowing 488 

bottom current and deposited on the drifts. Facies D comprises very finely laminated 489 

muds interpreted as meltwater plume deposits. Facies E and F comprise stratified and 490 

laminated sediments, consisting of terrigenous muds either alternating with sandy-491 

gravelly layers or bearing scattered gravel grains. These sediments are interpreted as 492 

contourites, with the coarse-grained layers being lag deposits resulting from current 493 

winnowing, and hemipelagic deposits, with the gravel grains and coarse layers 494 

resulting from IRD deposition. Facies G consists of occasionally normally graded, 495 

sandy to gravelly sediments with an erosional base interpreted as grain-flow deposits 496 
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and proximal turbidites. Facies H, encountered only once in core PC728 (97-148 497 

cmcd), comprises sand fining upward into sandy mud interpreted as a thick turbidite 498 

bed. Facies I cannot easily be distinguished from coring disturbance as it is 499 

characterised by deformed muds with silty-sandy layers or scattered gravel grains. 500 

These sediments occur frequently at site PC732 on Drift 5 (Suppl. Fig. 4) and are 501 

interpreted as slump and debris-flow deposits. Facies J, only found in a single interval 502 

of core PC734 (305-310 cmcd), comprises cross-laminated mud and silt interpreted 503 

as turbidite. Also Facies K, which comprises a structureless bed of silty-sandy 504 

volcanic glass particles, was only observed at site PC734 (1153-1157 cmcd; Fig. 7). 505 

Based on its stratigraphic position, the tephra bed was identified as Marine Tephra B 506 

previously reported from numerous West Antarctic sediment cores, including PS2556 507 

and PS1565, and also identified as disseminated tephra or “cryptotephra” layer in core 508 

PC727 (Figs. 4, 9, 10). 509 

4.2. Comparison of proxies for productivity 510 

The most complete sets of palaeo-productivity data come from cores PC723, PC727 511 

and PS1565 (Figs. 11-13). Biogenic barium is considered to be the most reliable 512 

palaeoproductivity proxy south of the Antarctic Polar Front as it is resistant to 513 

dissolution under oxic conditions (e.g. Nürnberg et al. 1997; Bonn et al. 1998; Pudsey 514 

& Howe 1998; Pudsey 2000; Hillenbrand & Cortese 2006; Jaccard et al. 2013). Oxic 515 

conditions at the investigated core sites towards the end of glacials and during 516 

interglacials are evident from high Mn/Al ratios and the occurrences of micro-Mn 517 

nodules (Figs. 2-13) as well as the presence of Mn-coated dropstones at the seafloor 518 

surfaces (Fig. 14; Suppl. Fig. 1). Lucchi & Rebesco (2007) concluded from the 519 

absence of bioturbation in glacial-age drift sediments (corresponding to our Facies C 520 

to J) and the presence of the mineral pyrrhotite in these sediments (Sagnotti et al. 521 

2001), that oxygen‐depleted bottom waters had bathed the Antarctic Peninsula 522 

continental rise during Late Quaternary glacial periods. However, a subsequent 523 

comprehensive study of the magnetic mineralogy of these sediments conducted by 524 

Venuti et al. (2011) documented an absence of pyrrhotite, and negligible/trace 525 

amounts of iron (Fe) sulphides. Recently, Channell et al. (2019) concluded for the 526 

JR298 cores that the authigenic mineral maghemite is present throughout the 527 

sediment column recovered by the PCs. Maghemite is formed at (and near) the 528 

seafloor surface by oxidation of (detrital) magnetite. In pelagic sediments maghemite 529 
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is dissolved at the oxic-anoxic boundary, typically just a few decimetres below the 530 

surface. In the drift sediments, however, sub-surface dissolution of maghemite is 531 

significantly reduced, thereby varying between sites, and maghemite is present down 532 

to at least ~10 metres below the seafloor (Channel et al. 2019). This strongly suggests 533 

that our down-core Ba records do not result from dissolution that varies with core depth 534 

(Figs. 2-8, 10). 535 

We consider that, theoretically, the interglacial Ba/Al maxima in our records could 536 

result from a higher supply of terrigenous barite. Like zircon, this detrital heavy mineral 537 

is typically enriched in the sand fraction, which is increased in the interglacial intervals 538 

of our cores (Figs. 2-10), reflecting the higher IRD content that characterises 539 

sediments of Facies A and Facies B (section 4.1., Suppl. Text; Figs. 14, 16; Suppl. 540 

Fig. 1). The Ba/Zr data match the Ba/Al data in all XRF scanned cores indicating that 541 

the Ba/Al maxima result from a high Babio supply during interglacial periods (Figs. 2-542 

8). The Ba/Al and Ba/Zr data available from discrete samples of cores PC723, PC727 543 

and PS1565 corroborate these findings (Figs. 10-13). 544 

The Br/Al data measured with the XRF scanner (Figs. 2-8) reveal a very good 545 

correlation with those measured on discrete samples (core PC727; Fig. 12), with 546 

maxima observed during interglacials. Br has been used as a palaeo-productivity 547 

proxy in marine sediments (e.g., Smith et al. 2017); Ziegler et al. (2008) demonstrated 548 

that high Br contents in sediments reflect higher marine organic carbon content rather 549 

than terrestrial organic material. This assertion is supported by the fact that the Br/Al 550 

data in the JR298 cores mirror the Ba/Al data (Figs. 2-8, 12). 551 

Apart from a positive correlation in the near-surface sediments, we observe no clear 552 

relationship between TOC and Br/Al or TOC and Ba/Al, but at sites PC723, PC726, 553 

PC727, PC734 and PS1565 maxima in Ba/Al and/or Br/Al during MIS 5 and 7 coincide 554 

with very low TOC contents (Figs. 2-4, 7, 10-13). This suggests that organic matter 555 

below the core surface, and especially in glacial sediments (cf. PC728, Fig. 5), 556 

predominantly consists of old refractory carbon, whilst degradable, non-refractory 557 

carbon has been dissolved. In support of this, a close inspection of the sand fraction 558 

from Termination II sediments in core PS1565, which are characterized by a prominent 559 

TOC maximum preceding the MIS 5 maximum in Ba/Al ratios (and other productivity 560 

proxies), revealed the presence of a coal fragment. The coal was probably supplied 561 

as IRD, which is suggested by a sand maximum coinciding with the TOC maximum at 562 
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Termination II (Fig. 10). A similar TOC peak is also observed at Termination I in core 563 

PS1565. In addition, in core PC101 from Drift 1, the record with continuous down-core 564 

TOC data nearest to site PS1565 (Fig. 1), TOC maxima at both Termination I and 565 

Termination II also precede interglacial Ba/Al maxima (Pudsey, pers. comm. 2005). 566 

This hints at a significant source for fossil organic matter on the part of the Antarctic 567 

Peninsula margin adjacent to Drifts 1, 2 and 3. 568 

The interglacial Ba/Al maxima coincide with maxima in biogenic opal, siliceous 569 

microfossils and Si/Al ratios (Figs. 10, 13; note: a minor opal maximum preceding 570 

Termination II in core PS1565 is caused by the presence of Marine Tephra C, 571 

Hillenbrand et al. 2008a), as has been reported previously from Antarctic Peninsula 572 

drift sediments (Pudsey & Camerlenghi 1998; Pudsey 2000). The opal maxima are 573 

caused by maxima in the abundances of diatoms (cf. Pudsey & Camerlenghi 1998; 574 

Pudsey 2000; Villa et al. 2003) and, for the deep cores, also of radiolarians (Fig. 10). 575 

The CaCO3 maxima during interglacials originate predominantly from maxima in the 576 

abundances of planktic foraminifera, with only minor contributions from calcareous 577 

benthic foraminifera (Figs. 9, 13). In addition, rare occurrences of calcareous 578 

nannofossils have been reported from the intervals with the highest CaCO3 contents 579 

(Villa et al. 2003). 580 

In all of our cores spanning past interglacials, the Ba/Al maxima and (where measured) 581 

the opal maxima lead the CaCO3 maxima, which is most evident in the cores with 582 

expanded MIS 5 intervals (Figs. 2-4, 7, 9-13). This distinctive sequence of maxima in 583 

various palaeoproductivity proxies has been previously reported from records 584 

recovered at water depths below ~2000 m on the East Antarctic continental margin 585 

between 15° W and 44° E (Grobe & Mackensen 1992; Bonn et al. 1998), our study 586 

area (Pudsey & Camerlenghi 1998; Pudsey 2000; Hillenbrand & Fütterer 2002; Villa 587 

et al. 2003) and the continental margin offshore from Prydz Bay (Wu et al. 2017). It 588 

has been attributed to a maximum in primary productivity, evident from the Ba/Al 589 

maximum, during peak interglacial conditions, which resulted in a maximum flux of 590 

fresh degradable, organic carbon to the seafloor. The subsequent remineralisation of 591 

this organic material resulted in a shallowing of the Calcite Compensation Depth 592 

(CCD), so that only siliceous microfossils were preserved (Grobe & Mackensen 1992; 593 

Bonn et al. 1998; Hillenbrand & Fütterer 2002). A decrease in productivity during the 594 

later, cooler, part of an interglacial, and perhaps even during the early part of a glacial, 595 
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caused a deepening of the CCD that led to the preservation of calcareous microfossils 596 

and, thus, dilution of siliceous microfossils in the sediments. Accordingly, CaCO3 597 

maxima coincide with moderate Ba/Al ratios (e.g., Figs. 10, 13). A deepening of the 598 

CCD during throughout interglacials is also reflected in productivity proxies in core 599 

PS2556: increases in opal content during early MIS 7 and early MIS 5 are initially 600 

followed by maxima in calcareous foraminifera fragments, and these peaks are in turn 601 

followed by maxima in whole foraminiferal test concentrations (Fig. 9). 602 

4.3. Diagenetic manganese enrichments and their implications for the 603 

geochemical record 604 

A new finding in our study from the West Antarctic continental margin are distinct Mn-605 

enrichments at the end of glacials and during interglacials. These enrichments are 606 

evident from high Mn/Al ratios and high abundances of sand-sized micro-Mn nodules 607 

within the cores (Figs. 2-13) and Mn-coated dropstones at the seafloor surface (Fig. 608 

14; Suppl. Fig. 1). In cores PC723, PC726 and PC727, high Mn/Al ratios during MIS 609 

5 and MIS 7 coincide with high Ba/Al ratios and CaCO3 maxima that are also 610 

characterized by a complete absence of TOC, i.e., TOC =0 wt.% (Figs. 2-4). In 611 

addition, some subordinate Mn/Al spikes occur in late MIS 6 and late MIS 8 (and, to a 612 

lesser extent, late MIS 2) sediments at these core sites. At sites PC734, PS1565 and 613 

especially PS2556, high Mn/Al ratios and maxima in micro-Mn nodules, respectively, 614 

coincide with TOC minima that precede productivity peaks during MIS 1, 5 and 7 615 

(evident from maxima in Ba/Al and Br/Al ratios and/or opal contents). 616 

In previous work, Pudsey and Camerlenghi (1998) reported micro-Mn nodules from 617 

MIS 6 sediments in cores from Drift 7 and explained their occurrence with condensed 618 

deposition, whilst Pudsey (2000) described micro-Mn nodules associated with 619 

Chondrites burrows from MIS 1 sediments at sites PC107 (Drift 5), PC109, PC110 620 

(both Drift 4A), PC111 (Drift 4) and PC113 (Drift 3). Furthermore, XRF data from 621 

discrete samples of core PC106 (Drift 6) presented by Pudsey (2000; see their Fig. 622 

6b) showed an MnO-peak in sediments of late MIS 6 age. However, the Al-normalised 623 

Mn data of this core reveal two, more prominent and broad, maxima which bracket 624 

Marine Tephra B (Hillenbrand et al. 2008a) and comprise Termination I to MIS 1, 625 

respectively (Pudsey, pers. comm. 2005). As in our cores with XRF data from discrete 626 

samples (Figs. 11-13), the Mn/Al ratios at sites PC106 and PC111 reached their 627 

highest ratios around glacial terminations (Pudsey, pers. comm. 2005). 628 
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Manganese enrichments at the end of glacial periods and during interglacials were 629 

previously reported from other parts of the deep Southern Ocean, including the 630 

Antarctic continental margin (e.g., Mangini et al. 1990, 2001; Presti et al. 2011; 631 

Jaccard et al. 2016; Wagner & Hendy 2017; Wu et al. 2018; Jimenez-Espejo et al. 632 

2019). Often these Mn-enrichments are explained by the presence of well-oxygenated 633 

Antarctic Bottom Water (AABW), whose production restarted or intensified at the end 634 

of glacial periods, when grounded ice began to retreat from the continental shelf and 635 

allowed the formation of AABW precursor water masses in sub-ice shelf cavities and 636 

coastal polynyas (Wu et al. 2018; Jimenez-Espejo et al. 2019). However, as in other 637 

ocean basins (e.g., Mangini et al. 1990, 2001; Kasten et al. 2004; Funk et al. 2004a, 638 

2004b; Löwemark et al. 2014), it needs to be kept in mind that Mn in marine sediments 639 

is dissolved in pore-water under sub- and anoxic conditions and precipitated at the 640 

redoxcline, which forms the base of the oxic zone and usually is situated just a few 641 

decimetres (or even a few centimetres) below the seafloor surface. Under steady-state 642 

diagenetic conditions, the oxic-suboxic boundary, and thus also the horizon of solid-643 

phase Mn-enrichment, will remain at a constant depth with respect to the sediment 644 

surface over time (Kasten et al. 2004). This implies that under continued sediment 645 

deposition Mn is constantly dissolved below and, after transport in pore-water towards 646 

the seafloor surface, precipitated at an upward migrating Mn-redox front (e.g., Kasten 647 

et al. 2004; Presti et al. 2011). 648 

Relict redox fronts, such as those manifest in Mn-enrichments, can be preserved in 649 

down-core sediments when a front shifts rapidly upwards (e.g., Kasten et al. 2004), 650 

the depositional environment is characterised by low supply of labile organic carbon 651 

(De Lange et al. 1994), or the grain size of the precipitated Mn-concretions and 652 

coatings (such as the micro-manganese nodules in our cores) is larger than that of the 653 

host sediments (e.g., Mangini et al. 1990). Furthermore, the pore-water oxygen 654 

content at the depth of the relict front has to remain sufficiently high to prevent 655 

complete dissolution of the precipitated element oxide/hydroxide. In most instances, 656 

relict redox fronts indicate non-steady-state diagenetic conditions that could have been 657 

initiated by: (1) changes in organic carbon burial induced by variations in 658 

sedimentation rate, organic carbon supply to the seafloor and/or oxygen content of 659 

bottom water, (2) rapid sediment burial associated with deposition of turbidites, debris 660 

flows, slumps, etc., (3) variable upward diffusive flux of reduced components (such as 661 
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methane) from deeper in the sediment column, and (4) changes in pore water/fluid 662 

flow from greater sediment depths or across the seawater-seabed interface (e.g., De 663 

Lange et al. 1994; Kasten et al. 2004). For the cyclic deposition of Mn-rich layers in 664 

the Arctic Ocean, a dramatically increased supply of dissolved Mn from the 665 

surrounding continental shelves via recycling from shelf sediments and landmasses 666 

derived from fluvial input has been identified as an additional, crucial factor (Löwemark 667 

et al. 2012, 2014). The processes summarised under (1) change particularly rapidly 668 

during the transition from a glacial to an interglacial period, so that relict redox fronts 669 

are frequently preserved across glacial terminations (e.g. Mangini et al. 2001; Funk et 670 

al. 2004a, 2004b; Kasten et al. 2004; Reitz et al. 2004; Jimenez-Espejo et al. 2019). 671 

However, the geochemical mobility of Mn in the sediments before an Mn-enriched 672 

layer is eventually “fixed” in the sedimentary record reduces the usefulness of such 673 

layers for core correlations, which is apparent from their sometimes variable 674 

stratigraphic position on an ocean-basin wide or even regional scale (e.g., Löwemark 675 

et al. 2014; Meinhardt et al. 2016; Jimenez-Espejo et al. 2019). This also should be 676 

taken into account when using Mn-enrichments in sediment cores for identifying and 677 

interpreting the exact timing of bottom water oxygenation during a glacial-interglacial 678 

cycle. 679 

Well oxygenated bottom-water conditions at our core sites during the present 680 

interglacial MIS 1 are documented by the Mn-enrichments in the surface sediments 681 

(Figs. 2-13), and especially the Mn-coating of the dropstones on the seafloor (Fig. 14, 682 

Suppl. Fig. 1). The bottom water flooding the drifts is derived from oxygen-rich deep-683 

water masses originating in the Weddell Sea (Camerlenghi et al. 1997; Giorgetti et al. 684 

2003; Hillenbrand et al. 2008b; Hernández-Molina et al. 2017). Mn-enrichments are 685 

also observed across Terminations I, II and III and during MIS 5 and MIS 7 but their 686 

exact stratigraphic positions slightly vary between the core sites (Figs. 2-13). We 687 

consider that the onset of well oxygenated bottom-water conditions at our cores sites 688 

during glacial terminations, which may not necessarily be expressed in a change in 689 

bottom-current vigour (section 4.5.), caused a down-ward progression of the Mn-redox 690 

front (e.g., Kasten et al. 2004), thereby causing Mn-precipitation within sediments 691 

deposited at the end of glacial periods (Table 5). 692 

The reliable palaeoproductivity proxies Ba/Al and Br/Al often document a sharp 693 

increase of biological productivity at the beginning of interglacials, with the productivity 694 
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remaining high throughout peak interglacials. In case of MIS 1, this increase is also 695 

evident from the high TOC contents in the surface sediments (Figs. 2-13). The 696 

associated increased input and burial of degradable marine organic carbon should 697 

have shifted the redox fronts upwards toward the seafloor surface, but it has been 698 

shown that metastable element enrichments, such as the Mn-spikes in the late glacial 699 

sediments of our cores, can be preserved when this shift happens suddenly (De Lange 700 

et al. 1994; Kasten et al. 2004). Alternatively, no such upward shift might have 701 

happened because the increase in degradable carbon supply was insufficient to 702 

overcome the supply of well oxygenated bottom water (Table 5). The continued 703 

bathing of the drifts with this water mass during an interglacial would have caused very 704 

efficient remineralisation of the non-refractory, degradable organic matter at the 705 

seafloor and within the uppermost part of the seabed. This is evident from the TOC 706 

minima observed at the end of glacial MIS 6 and MIS 8, as well as during interglacial 707 

MIS 5 and MIS 7 in the cores spanning these time periods (Figs. 2-4, 7, 9-13). We 708 

note that most of our records with continuous down-core TOC data, especially PC728, 709 

PC734 and PS2556 (Figs. 5, 7, 9), also show this process to affect organic matter 710 

across Termination I, but the corresponding TOC minima are often less pronounced, 711 

probably because the remineralisation of marine organic carbon is still ongoing. 712 

Notably, TOC minima of 0 wt.% or just above 0 wt.% from late MIS 8 into MIS 7 and 713 

from late MIS 6 into MIS 5, respectively, are observed in the westernmost cores 714 

PC723, PC726, PC727 and PS2556 as well as in core PC734, which was collected 715 

further east but also from relatively deep water (3000 m). These TOC minima reveal 716 

considerable “burn-down” of organic carbon, i.e. post-depositional oxidation of non-717 

refractory organic matter (Figs. 2-4, 7, 11), implying that (i) sedimentation rates during 718 

the corresponding times did not exceed 1-2 cm/kyr (Jung et al. 1997; Mangini et al. 719 

2001; Kasten et al. 2004), and (ii) the input of fossil, refractory organic material was at 720 

a minimum. We argue that both the burn-down of organic carbon at a glacial 721 

termination and during the early part of an interglacial caused by the availability of well 722 

oxygenated bottom water and the decrease in the input of degradable, marine organic 723 

matter during the latter part of an interglacial evident from the decreases in Ba/Al and 724 

Br/Al resulted in the oxic-suboxic boundary remaining stationary at a similar level in 725 

the seabed over thousands to tens of thousands of years, even under continued 726 

sediment deposition, leading to the recorded Mn-enrichments (cf. Kasten et al. 2004) 727 
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(Table 5). The apparently lower stratigraphic positions of the TOC minima and Mn-728 

enrichments across Terminations II and III in core PS2556 when compared to cores 729 

PC723 and PC726, where the most prominent Mn-enrichments and coinciding TOC 730 

minima are observed in the MIS 5 and MIS 7 sediments, respectively, may hint at a 731 

deeper downward progression of the oxidation front or its longer persistence in the 732 

late glacial sediments at site PS2556 (Table 5), probably as a result of a lower 733 

sedimentation rate at this site (Figs. 2, 3, 9; Table 3). We highlight the joint occurrence 734 

of TOC minima and peaks in micro-Mn nodule abundance at site PS2556. 735 

Sedimentation rates <1-2 cm/kyr, required for major burn-down of organic carbon, are 736 

also a prerequisite for growth of Mn-nodules (e.g., Löwemark et al. 2012; Dutkiewicz 737 

et al. 2019). The ages of 130 ka for Marine Tephra B and 92 ka for Marine Tephra A 738 

(Hillenbrand et al. 2008a) yield a linear sedimentation rate of 0.9 cm/kyr for the 739 

corresponding MIS 5 sediment interval at site PS2556 (Fig. 9). Such low sedimentation 740 

rates, which may have persisted across glacial terminations at site PS2556, are 741 

consistent with organic carbon burn-down and Mn-nodule growth. 742 

We assume that during glacial periods, when the bottom waters bathing the Antarctic 743 

margin and the deep Southern Ocean became less ventilated in response to 744 

drastically reduced AABW production (e.g., Jaccard et al. 2016; Wu et al. 2018; 745 

Jimenez-Espejo et al. 2019), a new Mn-redox front rapidly established itself below the 746 

seafloor surface. Afterwards, this new Mn-redox front migrated constantly upwards 747 

under continuous sediment deposition until the next glacial termination (Table 5). 748 

In line with our observations and interpretations, interstitial water profiles from ODP 749 

sites 1095, 1096 and 1101 (Fig. 1) reveal maximum pore-water Mn-concentrations at 750 

sub-seafloor depths ranging from 12 m to 25 m (Barker et al. 1999). Above this depth, 751 

which was interpreted to correspond to the boundary between oxidising and reducing 752 

conditions (Barker et al. 1999), but more likely still lies within the suboxic zone (Kasten 753 

et al. 2004), solid-phase Mn-enrichments marking fossil Mn-redox fronts, such as 754 

those recorded in our cores, can readily be preserved. 755 

4.4. Impact of non-steady-state diagenesis on the palaeomagnetic record 756 

The evidence for non-steady-state diagenetic conditions affecting our cores, 757 

especially the sediments deposited around glacial terminations (section 4.3.), has 758 

implications for the palaeomagnetic records reconstructed from the sediments. 759 

Channell et al. (2019) already noted that the sediments of the JR298 cores appear 760 
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unusually oxic and attributed this to low concentrations of degradable marine organic 761 

carbon. The unusually oxic conditions promoted authigenic growth of maghemite 762 

through oxidation of detrital magnetite at the seafloor surface. The maghemite formed 763 

in the oxic zone is usually dissolved in the reducing environment, typically a few 764 

decimetres below the seabed surface in pelagic sediments, but is preserved down-765 

core at numerous depth intervals in the majority of the JR298 cores (Channell et al. 766 

2019). This down-core prevalence of maghemite has also been reported from 767 

sediment records in the Arctic Ocean, and the chemical remnant magnetisation (CRM) 768 

acquired during the maghematisation process is thought to have altered 769 

palaeomagnetic recording in some of the cores (Channell & Xuan 2009; Xuan & 770 

Channell 2010; Xuan et al. 2012). The maghematisation process appears to have a 771 

debilitating effect on RPI reconstructions for JR298 cores PC723, PC727 and PC734 772 

(Channell et al. 2019). Nevertheless, a “trial” RPI age model was proposed for core 773 

PC723, but was considered to be of poor quality. Investigations of sedimentary records 774 

from other ocean basins, including the equatorial Atlantic (e.g., Funk et al. 2004a, 775 

2004b; Kasten et al. 2004; Reitz et al. 2004), the NW Pacific (e.g., Korff et al. 2016) 776 

and the Arctic Ocean (e.g., Wiers et al. 2019, 2020), have also shown that non-steady-777 

state diagenesis can modify the palaeomagnetic intensity and directional records 778 

through post-depositional alteration and dissolution of magnetic minerals. 779 

We propose that (partial) alteration of the palaeomagnetic records due to non-steady 780 

state diagenesis could have led to the (predominantly minor) discrepancies between 781 

the RPI-based age models for cores PC723, PC726, PC728, PC732 and PC736 782 

(Channell et al. 2019) and the new age models reported here (Figs. 2, 3, 5, 6, 8; Table 783 

3; Suppl. Fig. 3a-d). There are very limited chronological constraints from the 784 

foraminiferal δ18O data and the palaeoproductivity proxies for Termination I and the 785 

MIS 5/4 boundary, and positions of Termination I in the cores are largely consistent 786 

with the RPI-based age models of Channell et al. (2019) (see Suppl. Fig. 3a, 3b, 3d). 787 

However, positions of Termination II in Bellingshausen Sea cores PC726 with a high 788 

quality RPI-based age model and PC723 with a poor quality RPI-based age model lie 789 

apparently deeper (by 124 and 137 cm, respectively) according to the RPI-based age 790 

models (Figs. 2, 3; Suppl. Fig. 3a). The foraminiferal δ18O record of core PC726 shows 791 

a typical glacial-interglacial shift at the depth of our preferred MIS 6/5 boundary, and 792 

a similar shift is suggested by the down-core trend of the oldest δ18O data available 793 



26 

from MIS 5 sediments in core PC723. Moreover, core PS2556, in which Marine Tephra 794 

B was clearly identified (Fig. 9; Hillenbrand et al. 2008a), can be unambiguously 795 

correlated both with core PC726 using whole-core magnetic susceptibility (Suppl. Fig. 796 

5) and with core PC723 using palaeoproductivity proxies (Figs. 2, 9). Marine Tephra 797 

B provides a clear stratigraphic marker for Termination II, even if bioturbation and/or 798 

initial settling of the tephra on sea ice or glacial ice before its final deposition on the 799 

seabed could have resulted in a slightly time-transgressive occurrence at different core 800 

sites (Hillenbrand et al. 2008a). In addition, the RPI-based age model for core PC726 801 

suggests the presence of MIS 7 between 945 cmcd and the core base (Channell et al. 802 

2019). However, both the sediment composition and the palaeoproductivity proxies in 803 

core PC726 do not support the presence of interglacial sediments in the corresponding 804 

core interval (Fig. 3). According to the correlation between cores PC726 and PS2556 805 

(Suppl. Fig. 5), MIS 7 sediments were not recovered in core PC726 because they lie 806 

deeper in the seabed, below the maximum corer penetration depth at this site. Finally, 807 

the burn-down of organic carbon during MIS 5 and MIS 7 at sites PC723 and PC726 808 

(Figs. 2, 3) requires sedimentation rates of <1-2 cm/kyr (Jung et al. 1997; section 4.4.). 809 

Such low sedimentation rates are in agreement with the age models proposed here 810 

but in contrast with the RPI-based age models, which yielded sedimentation rates in 811 

the order of 5-7 cm/kyr for the corresponding core intervals (Channel et al. 2019). 812 

We attribute the age model discrepancies for the JR298 cores, i.e. mainly for the two 813 

cores from the Bellingshausen Sea, to the overprinting of the palaeomagnetic records 814 

by post-depositional diagenesis, which is clearly expressed in all three cores from the 815 

Bellingshausen Sea by major burn-down of organic carbon during interglacials MIS 5 816 

and 7 and across Terminations II and III, respectively (Figs. 2, 3, 9). The potential 817 

impact of non-steady-state diagenesis on RPI records may also explain the 818 

discrepancies between the original lithostratigraphy- and biostratigraphy-based age 819 

models for sediment cores from Drift 7 developed by Pudsey & Camerlenghi (1998) 820 

and Lucchi et al. (2002) and the RPI-based age models published by Sagnotti et al. 821 

(2001) and Macrì et al. (2006). Possible diagenetic overprint of the RPI record should 822 

be taken into account, when the timing of sedimentary Mn-enrichments in cores with 823 

RPI-based age models are interpreted in terms of bottom-water ventilation processes 824 

(Jimenez-Espejo et al. 2019). 825 
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Additional detailed geochemical and palaeomagnetic investigations are required to 826 

characterize the precise diagenetic overprint of the magnetic record. In the JR298 827 

cores from the Bellingshausen Sea the stratigraphic positions of Termination II 828 

according to the RPI-based age models seem to be too deep (by ~124 and 137 cm). 829 

In the Drift 7 cores analysed by Sagnotti et al. (2001) and Macrì et al. (2006) the MIS 830 

6/5 boundaries reconstructed from their RPI age models either match, or are also 831 

deeper than, those proposed by Pudsey & Camerlenghi (1998) and Lucchi et al. 832 

(2002), when the same sedimentological criteria are used to determine the position of 833 

this boundary (Hillenbrand et al. 2008a). It is possible that the post-depositional 834 

magnetisation lock-in process and non-steady-state diagenesis have led to delayed 835 

and (partially) altered recording of the palaeomagnetic signal. The Fe-redox front 836 

usually lies just below the Mn-redox front (e.g., Tarduno & Wilkison 1996, Kasten et 837 

al. 2004; Reitz et al. 2004; Roberts 2015). If, for example, at site PC726 the onset of 838 

highly-oxygenated bottom water flow at Termination II led to a down-ward oxygen 839 

diffusion and migration of the redox fronts, which may be indicated by the Mn-840 

enrichments in the late MIS 6 sediments (Fig. 3), magnetic grains newly formed at the 841 

top of the Fe-redox front within the late MIS 6 sediments could carry a delayed 842 

chemical remanence similar to that reported in sediments from the equatorial Pacific 843 

Ocean by Tarduno & Wilkison (1996). A sudden subsequent upward shift of redox 844 

fronts in response to the interglacial productivity increase (De Lange et al. 1994; 845 

Kasten et al. 2004) or the fact, that even when the biological productivity reached its 846 

maximum, the availability of labile organic carbon was still too low to counteract the 847 

oxygen supply through the bottom water, could have allowed the preservation of the 848 

metastable element enrichments in the records. 849 

Finally, we emphasize that below the oxic zone (i.e., below ~12-25 m sub-bottom 850 

depth in our study area; Barker et al. 1999) the effect of non-steady-state diagenesis 851 

on the palaeomagnetic record should be negligible. This is confirmed by the good 852 

match between the Mid-Pleistocene (~1.6 to 0.7 Ma) RPI record from ODP Site 1101 853 

(Fig. 1) and global palaeointensity stacks (see Guyodo et al. 2001; Channell et al. 854 

2019). At larger seafloor depths, however, Fe-oxide dissolution in the anoxic zone may 855 

overprint the palaeomagnetic signal, which is evident from the occurrence of magnetic 856 

susceptibility minimum zones in the Late Miocene to Late Pliocene sedimentary 857 

sequence from below ~80 m core depth at ODP Site 1095 (Hepp et al. 2009). 858 
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4.5. Variability of bottom current flow 859 

We analysed SS  together with SS% on cores PC727 from 2681 m water depth on Drift 860 

7 and PC734 from 3000 m water depth on Drift 5 with the intention of reconstructing 861 

changes in bottom-current speed (Figs. 4, 7). Whilst the correlation coefficient R 862 

between SS  and SS% of samples from both cores exceeds 0.5 (section 3.2.), we do 863 

not have SS% data for all our SS  data (Suppl. Fig. 2). Consequently, we cannot 864 

determine the running down-core correlation Rrun and thereby rule out poor sorting for 865 

many of our samples. This, however, is a prerequisite, if the SS  data of an IRD-866 

influenced sedimentary record are to be interpreted as a reliable proxy for bottom-867 

current speed (McCave & Andrews 2019). Nevertheless, our SS  data, which 868 

predominantly vary in a relatively narrow range between 16 and 22 µm in both cores 869 

seem to indicate only minor glacial-interglacial changes in bottom-current velocity 870 

(Figs. 4, 7), perhaps with a slightly higher speed during interglacials and at the end of 871 

the penultimate glacial period recorded at site PC727. This result is largely in 872 

agreement with detailed grain-size data published by Pudsey & Camerlenghi (1998) 873 

from other Drift 7 cores, although these authors did not remove biosiliceous 874 

components from their samples before they analysed grain size. In general, our 875 

findings are also in line with the results of measurements on core PC466 from the 876 

crest of Drift 4 (Vautravers et al. 2013). In core PC466 SS  fluctuates between 15 and 877 

27 µm (average 18 µm). According to the RPI-based age model for this core, higher 878 

SS  is recorded at the very end of MIS 5, which spans the lowermost part of the core 879 

(NB: only two samples from MIS 1 were analysed, which may not be representative). 880 

Also, Vautravers et al. (2013) used a Coulter Counter MS3 and thus did not determine 881 

SS%. However, the authors concluded, based on an anti-correlation between SS  and 882 

coarse fraction content (>63 µm), a significant impact of IRD deposition on the SS  883 

record at site PC466. 884 

Conversion of the SS  data from the two JR298 cores, which were analysed with a 885 

Coulter Counter MS3, into the corresponding SediGraph grain size using the 886 

procedure proposed by McCave et al. (2017) provides full ranges of 14-19 µm for site 887 

PC727 and 13-24 µm for site PC734. According to the relation between current-meter 888 

mooring data and SS  of surface sediments from various locations in the Atlantic Ocean 889 

and Atlantic sector of the Southern Ocean obtained by McCave et al. (2017), bottom-890 
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current speed varied by 6.8 cm/s at site PC727 and 14.9 cm/s at site PC734. 891 

Translating the SS  values into current speeds using a regional relation found by these 892 

authors for the Weddell and Scotia seas, yields a bottom-current speed range from 2 893 

to 20 cm/s (Suppl. Fig. 6), with a long-term average speed of 7.0 cm/s at site PC727 894 

and 6.8 cm/s at site PC734. Such speeds are in agreement with the range of modern 895 

bottom-current velocities measured around Drift 7 (Suppl. Fig. 6; Camerlenghi et al. 896 

1997; Giorgetti et al. 2003). Bottom-current speeds exceeding ~13 cm/s are capable 897 

of winnowing some fine silt and clay particles, while erosional winnowing requires 898 

current speeds ≥20 cm/s (McCave & Hall 2006). 899 

Bottom-current advection of clay-sized particles is evident from clay mineral 900 

assemblages in surface sediments. These assemblages show SW-ward transport of 901 

smectite-enriched detritus supplied from the South Shetland Islands along the 902 

continental rise offshore from the northern Antarctic Peninsula, and of chlorite- and 903 

illite-enriched detritus supplied from the central spine of the Antarctic Peninsula and 904 

Alexander Island along the rise offshore from the southern Antarctic Peninsula and 905 

further into the Bellingshausen Sea (Hillenbrand et al. 2003, 2005, 2009; Hillenbrand 906 

& Ehrmann 2002, 2005; Park et al. 2019). In interglacial sediments the far-travelled, 907 

distal clay mineral component is enriched with respect to the proximal component 908 

supplied from the adjacent shelf (Pudsey 2000; Hillenbrand & Ehrmann 2002; Lucchi 909 

et al. 2002), which is consistent with the clay mineral data presented here (Figs. 4, 7, 910 

10, 15; Table 5). Based on the indications of only weak glacial-interglacial changes in 911 

bottom-current speed on the drift crests provided by detailed grain-size data (Figs. 4, 912 

7; cf. Pudsey & Camerlenghi 1998), we attribute the chlorite increase in glacial-age 913 

sediments of our cores (Figs. 4, 7, 10, 15) and other cores from the study area to a 914 

“dilution” of bottom-current transported smectite-enriched detritus (cf. Pudsey 2000; 915 

Lucchi et al. 2002; Hillenbrand & Ehrmann, 2005). This dilution was caused by an 916 

enhanced supply of glacigenic, chlorite-enriched debris from the adjacent shelf regions 917 

in response to grounded ice sheet advance during glacial periods (Ó Cofaigh et al. 918 

2014). This hypothesis is corroborated by the sedimentation rates for our cores, which 919 

are consistently higher during a glacial period than during the preceding and 920 

subsequent interglacial period (Table 3). 921 

  922 
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4.6. Deposition of iceberg-rafted debris and the role of bioturbation 923 

As it is evident from both X-radiograph observations and the down-core gravel and 924 

sand records (Figs. 2-10), IRD in the sediments is mainly enriched during interglacials 925 

and at the end of glacials. In the JR298 cores, some of the sand content increase in 926 

interglacial sediments with high CaCO3 content can be explained by increased planktic 927 

foraminifera abundance, because no carbonate was removed from the samples before 928 

grain-size analysis (section 2.). However, elevated sand contents at the end of glacials 929 

and during interglacials are also recorded in cores PS1565 and PS2556 (Figs. 9, 10), 930 

from which samples were decalcified before sieving. In core PS1565 sand-sized 931 

radiolarians probably contribute somewhat to the elevated sand content in the MIS 1 932 

and early MIS 5 sediments (Fig. 13), but we can rule this out for core PS2556 because 933 

the radiolarian content in its sand fraction is <1.2% throughout (Braun 1997). In all 934 

cores, the sand content, and to a lesser extent the gravel content, exhibits occasionally 935 

discrete enrichments in glacial-age intervals (Figs. 2-10), a characteristic caused by 936 

the deposition of turbidites/slumps and bottom-current winnowing (see Facies E to 937 

Facies I, section 4.1. and Suppl. Text). The pattern of glacial-interglacial IRD 938 

deposition in our cores is consistent with previous IRD studies on the Antarctic 939 

Peninsula drifts (Pudsey & Camerlenghi 1998; Ó Cofaigh et al. 2001; Pudsey 2002; 940 

Cowan et al. 2008; Vautravers et al. 2013). High IRD supply was caused by the break-941 

up of grounded ice masses on the adjacent West Antarctic shelf at the end of glacial 942 

periods (Hillenbrand et al. 2010; Ó Cofaigh et al. 2014) and seasonal open-water 943 

conditions during interglacial periods that allowed free drift of icebergs (Pudsey & 944 

Camerlenghi 1998; Pudsey 2000; Ó Cofaigh et al. 2001). 945 

A surprising result of our investigation is the enrichment of gravel-sized IRD at the 946 

seafloor surfaces of the JR298 sites. With the exception of core PC727, these gravel 947 

maxima appear unprecedented when compared to the total time periods spanned by 948 

the cores, even if only those PCs which recovered sediments from previous 949 

interglacials are considered (Figs. 2-8; 14; Suppl. Fig. 1). Continuous down-core 950 

gravel clast counts by Ó Cofaigh et al. (2001) and detailed grain-size analyses by 951 

Pudsey & Camerlenghi (1998) on Antarctic Peninsula drift cores that also retrieved 952 

sediments deposited during interglacial MIS 5 and MIS 7, did not reveal absolute 953 

maxima of coarse grains at the core-tops. However, it is unclear whether the cores 954 

analysed by these authors retrieved (undisturbed) seafloor surface sediments. On the 955 
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other hand, we cannot rule out a sampling bias for our JR298 cores because our down-956 

core samples may have missed by chance gravel-rich horizons in glacial intervals 957 

(within Facies E, F, G) and interglacial intervals (within Facies A and Facies B) that 958 

are often only visible in the X-radiographs (Fig. 16; cf. Ó Cofaigh et al. 2001). 959 

Continuous down-core gravel counts were carried out on X-radiographs from cores 960 

PS1565 and PS2556, which do not show an unprecedented maximum at the core top 961 

either (Figs. 9, 10). However, GC PS2556-2 did not recover the modern seafloor 962 

surface (Braun 1997), and no X-radiographs are available for MUC PS2556-1. Equally, 963 

it is unclear for GC PS1565-2, whether it recovered the modern seabed surface. 964 

Nevertheless, the gravel-sized IRD maximum detected at the surfaces of nearly all 965 

JR298 cores is such an outstanding feature that it requires further investigation. In the 966 

following discussion, we consider four different explanations. First, the IRD maximum 967 

could result from unprecedented ice loss and associated iceberg calving from the 968 

Pacific sector of the APIS and the Bellingshausen Sea sector of the WAIS. Although 969 

major ice loss has affected both sectors over recent decades (e.g., Wouters et al. 970 

2015; Cook et al. 2016; Christie et al. 2016; Rignot et al. 2019), we would not expect 971 

IRD supply to our sites to be higher than across glacial terminations or during MIS 5e, 972 

when marine-based parts of the WAIS are assumed to have collapsed and the APIS 973 

is assumed to have been smaller (e.g., DeConto & Pollard 2016). 974 

Second, enhanced IRD deposition at present could be caused by warming of Southern 975 

Ocean surface waters that both increased iceberg melting and reduced seasonal sea-976 

ice cover, allowing icebergs to drift more freely. Despite overall Southern Ocean 977 

warming recorded over recent decades, near-surface water temperatures south of the 978 

Antarctic Polar Front have hardly warmed or have actually slightly cooled (Armour et 979 

al. 2016; Swart et al. 2018), whereas sea-ice cover in our study area has decreased 980 

(e.g., Parkinson 2019). Again, however, we would not expect that current IRD 981 

deposition is higher than during MIS 5e, when surface water temperatures south of 982 

the Antarctic Polar Front were higher than today and seasonal sea-cover was reduced 983 

(e.g., Chadwick et al. 2020). 984 

Third, the bottom current affecting the JR298 core sites could be stronger today than 985 

in the past and, thus have enriched coarse-grained IRD by winnowing. Support for this 986 

scenario may come from the SS  data in core PC734/GBC735, which reveal an 987 

absolute maximum at the seafloor surface (Fig. 7). However, we cannot rule out that 988 
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this SS  maximum is actually related to the high IRD content in the seafloor surface 989 

sediments itself (sections 3.2. and 4.5.; Suppl. Fig. 2). The only other available SS  990 

data from site PC727/GBC730 seem to be less impacted by IRD deposition (sections 991 

3.2. and 4.5.; Suppl. Fig. 2), but at this site neither SS  nor the gravel and sand content 992 

display absolute maxima at the surface (Fig. 4). Nevertheless, if we ignore the 993 

potential IRD caveats in our SS  data (section 4.5.), the calculated maximum bottom-994 

current speed of 20 cm/s is reached at the surface of site PC734/GBC735 (Suppl. Fig. 995 

6). This velocity matches the maximum current speed measured in the 1990s 996 

(Giorgetti et al. 2003) and would allow some winnowing of clay and fine silt particles 997 

(McCave & Hall 2006). Strong support for the hypothesis of bottom-current winnowing 998 

comes from the presence of Mn-coated dropstones at the seabed surfaces of all 999 

JR298 sites (Fig. 14; Suppl. Fig. 1) because the growth of Mn-coatings requires 1000 

sedimentation rates ≤1-2 cm/kyr (e.g., Löwemark et al. 2012; Dutkiewicz et al. 2019). 1001 

However, we do not favour this explanation because the available AMS 14C dates from 1002 

seafloor surface sediments provided uncorrected average ages of 1050 14C yrs BP at 1003 

site GBC735/PC734 and 1338 14C yrs BP at site GBC729/PC728 (Table 2). These 1004 

ages, which also include dates on planktic foraminifera and thus cannot be explained 1005 

with recent colonisation of an old seafloor substrate by benthic fauna, lie within the 1006 

range of the Southern Ocean MRE and thus confirm recent deposition at both core 1007 

sites (section 3.4.). Independently, a more recent age for the seafloor surface 1008 

sediments at the studied sites is also consistent with the high TOC contents (Figs. 2-1009 

13). According to the coinciding high Ba/Al and Br/Al ratios, most of this TOC should 1010 

consist of degradable, non-refractory organic material, which would have been 1011 

remineralised at sedimentation rates ≤1-2 cm/kyr (Jung et al. 1997; Kasten et al. 1012 

2004). The AMS 14C ages from the surface sediments at site GBC729/PC728 are 1013 

slightly older than at site GBC735/PC734 (section 3.4.; Table 2), suggesting that some 1014 

winnowing influenced the former site. This conclusion is corroborated by the seafloor 1015 

surface photos from the two locations as they display a higher concentration of coarse-1016 

grained debris at site GBC729/PC728 than at site GBC735/PC734 (Fig. 14). 1017 

The apparent conflict between the recent AMS 14C dates for the seafloor surface 1018 

sediments and the presence of Mn-coated dropstones leads us to a fourth explanation, 1019 

i.e. the “biological upward pumping” of IRD. This process has been proposed by 1020 

McCave (1988), who investigated a large number of box cores collected outside of the 1021 
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modern zone of IRD deposition on the Nova Scotia continental margin. The author 1022 

observed terrigenous clasts >1-2 mm near the surface of strongly bioturbated muds in 1023 

several cores, but only at sites, where the mud was underlain by a diamicton (below 1024 

~40 cm. sub-bottom depth). McCave (1988) attributed this finding to constant upward 1025 

pumping of terrigenous particles >1-2 mm from the diamicton source layer during the 1026 

deposition of the overlying mud, facilitated by extensive burrowing of the sediments by 1027 

detritus-feeding, infaunal organisms that were unable to ingest particles larger than 1028 

sand. The author furthermore suggested that in other ocean basins biological pumping 1029 

maintains Mn-nodules at the seafloor surface over (tens of) thousands of years. Piper 1030 

& Fowler (1980) and Sanderson (1985) had previously highlighted the role of 1031 

bioturbation in maintaining Mn-nodules at seabed surfaces. 1032 

Biological pumping also would explain the enrichment of Mn-coated, gravel-sized IRD 1033 

at the surfaces of the JR298 cores (Figs. 2-8, 14; Suppl. Fig. 1). As in the study of 1034 

McCave (1988) the sediments near the seafloor consist of extensively bioturbated to 1035 

homogenised muds (Facies A and Facies B; section 4.1.) and were deposited at 1036 

sedimentation rates ranging from 1-10 cm/kyr (Table 3). According to the gravel 1037 

percentage data, IRD contents within or at the base of the bioturbated MIS 1 sediments 1038 

of the JR298 cores are very low (Figs. 2-8), but both gravel clasts observed in the X-1039 

radiographs and sand contents reveal scattered IRD in these muds (Fig. 16). The lack 1040 

of a potential distinct gravel source layer implies that the IRD has been maintained at 1041 

the seabed surface since its deposition. Gravel-grain counts on X-radiographs of cores 1042 

PS1565 and PS2556 (Figs. 9, 10) and other drift cores (Ó Cofaigh et al. 2001) reveal 1043 

high concentrations of gravel-sized IRD in sediments deposited from the end of MIS 2 1044 

throughout MIS 1. Such IRD-enriched sediments may provide a feasible gravel source. 1045 

We speculate that the process of biological pumping may have been more active at 1046 

the JR298 sites than at sites PS1565 and PS2556 and at the locations of cores 1047 

analysed by Ó Cofaigh et al. (2001) because most of the JR298 cores were recovered 1048 

from water depths ≤3000 m. Sotaert et al. (1996) and Middelburg et al. (1997) showed 1049 

that the biological mixing coefficient, i.e. the degree of burrowing, is ≤1 below 3000 m, 1050 

but increases exponentially with decreasing water depth. In the JR298 cores, IRD 1051 

enrichments resembling those observed at the modern surface do not occur in the 1052 

sediments deposited during MIS 5 or MIS 7; but with benthic activity decreasing 1053 
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towards the end of a (peak) interglacial in response to decreasing biological 1054 

productivity, we would expect any pre-existing sharp IRD peaks to be “smeared out”. 1055 

Biological pumping may even be able to move (micro-)fossils and fossil fragments 1056 

>150 µm to the seafloor surface or maintain them there over a considerable time 1057 

period (McCave 1988; Thomson et al. 1995). Whilst relative maxima in sand content 1058 

at the surfaces of the JR298 sites may lend some support to the hypothesis that grains 1059 

<1 mm may also be affected by biological pumping, the good match between the 1060 

modern Southern Ocean MRE and our AMS 14C ages (section 3.4.; Table 2), which 1061 

were obtained from various benthic and planktic (micro-)fossils of different sizes, do 1062 

not support the hypothesis of (micro-)fossils having been “pumped upwards”. In 1063 

summary, however, our results indicate potential stratigraphic displacement of gravel-1064 

sized IRD over at least 10s of centimetres (cf. McCave 1988). This finding highlights 1065 

that at core sites from water depths ≤3000 m and with low to medium sedimentation 1066 

rates (~1-10 cm/kyr) caution is required in interpreting IRD records that are based on 1067 

contents and/or abundances of relatively large grains (>1 mm) only. 1068 

5. Summary and conclusions 1069 

New sediment records from the West Antarctic continental margin in the eastern 1070 

Pacific sector of the Southern Ocean targeted predominantly drift crests at ≤3000 m 1071 

water depth. Most cores retrieved sediment intervals containing calcareous 1072 

foraminifera (almost exclusively planktic foraminifera), allowing AMS 14C dating of 1073 

surface sediments and obtaining down-core δ18O data. In combination with 1074 

tephrochronological constraints and lithostratigraphical down-core changes in 1075 

response to glacial-interglacial cycles, the δ18O data were used to establish age 1076 

models for the cores. Accordingly, Late Quaternary sedimentation rates varied from 1077 

≤1 to ~20 cm/kyr and were higher during glacials. 1078 

Facies analysis confirmed previous interpretations in showing that bottom-current 1079 

activity with glacigenic detritus being supplied from the adjacent shelf by down-slope 1080 

transport processes exerted the main control on sediment deposition on the drifts. SS  1081 

data from the drift crests suggest only minor changes in bottom-current speeds over 1082 

glacial- interglacial cycles and that the current velocity changed over these timescales 1083 

within the same range as over recent annual timescales. Sediment facies furthermore 1084 
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revealed that gravitational down-slope transport can occasionally affect deposition at 1085 

shallow drift sites. 1086 

A comparison of palaeoproductivity proxies emphasizes that biogenic barium and 1087 

bromine are the most reliable proxies for the supply and deposition of marine organic 1088 

matter. In contrast, TOC content is affected by considerable post-depositional 1089 

remineralisation and input of fossil, refractory organic matter, whilst CaCO3 content 1090 

can occasionally be overprinted by dissolution. Biogenic opal content can be 1091 

influenced by dilution with calcareous microfossils. Enrichments of solid-phase 1092 

manganese at the end of glacials and during interglacials provide not only evidence 1093 

for the onset of well oxygenated bottom-water conditions at glacial terminations, but 1094 

also for non-steady-state diagenetic processes. “Pinning” of the redox front below the 1095 

seafloor surface over prolonged time periods and possible vertical shifts of the redox 1096 

front within the sediment column in response to changes in bottom-water oxygenation, 1097 

biological productivity and sedimentation rates led to major burn-down of organic 1098 

carbon across glacial terminations and during interglacials. This type of diagenesis 1099 

probably also altered the magnetic mineralogy of the sediments and led to their 1100 

delayed remanence acquisition, which may explain the differences between our new 1101 

age models for the cores and previously published, RPI-based age models. Pore-1102 

water and RPI data from ODP Leg 178 cores, however, suggest that non-steady-state 1103 

diagenesis mainly affects the oxic part of the sediment column. At ODP sites 1096 and 1104 

1101 from the crests of Drift 7 and Drift 4 (Fig. 1) the base of the oxic zone was 1105 

observed at sub-bottom depths of ~12-25 m, respectively (Barker et al. 1999). Given 1106 

the sedimentation rates for the JR298 cores recovered from drift crests (Table 3), we 1107 

can assume that at these locations sediments deposited between ~70 and 770 ka may 1108 

have been affected by non-steady-state diagenesis. 1109 

Nearly all seafloor surface sediments recovered from ≤3000 m water depth on the 1110 

drifts are characterised by unprecedented IRD maxima and Mn-coating of large 1111 

dropstones. The required Mn-growth rates are in conflict with modern AMS 14C ages 1112 

on calcareous (micro-)fossils from the surface sediments. The most likely explanation 1113 

for this discrepancy is upward pumping of gravel grains and larger clasts through 1114 

extensive bioturbation, which ensured the maintenance of IRD at the seabed surface 1115 

throughout interglacial periods. The resulting stratigraphic displacement needs to be 1116 

taken into account in interpretations of IRD-records. 1117 
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8. Table and figure captions 1593 

Tables 1594 

Table 1: Cruise, core ID, gear (GBC: giant box core, GC: gravity core, MUC: multiple 1595 

core, PC: piston core), location (BS: Bellingshausen Sea), latitude (Lat), longitude 1596 

(Long), water depth (WD), and recovery (Rec) for the sediment cores investigated in 1597 

this study. Where applicable, the IDs for sites of IODP proposal 732-FULL-2 (Channell 1598 

et al. 2008) are given under “Location”. 1599 

Table 2: AMS 14C dates on calcareous (micro-)fossils from seafloor surface sediments 1600 

at sites GBC729/PC728 and GBC735/PC734. 1601 

Table 3: Age-depth fix points and linear sedimentation rates (LSR) for the investigated 1602 

sediment cores. Ages for Marine Isotope Stage (MIS) boundaries are from Lisiecki & 1603 

Raymo (2005). The LSR given for the lowermost part of a core is an estimated 1604 

minimum based on the assumption that the next older interglacial sediments at the 1605 

site lie just below the maximum penetration depth of the core. 1606 

Table 4: Facies identified in the JR298 sediment cores. 1607 

Table 5: Reconstructed changes in the investigated sedimentary records throughout 1608 

Late Quaternary glacial-interglacial cycles. 1609 

Figures 1610 

Figure 1: Bathymetric map of the study area with locations of sediment cores analysed 1611 

for this study (black symbols) and other core sites mentioned in the text (white dots). 1612 

Numbering of the drifts west of the Antarctic Peninsula (D1 to D8) follows Rebesco et 1613 

al. (2002). Bathymetry is from IBCSO (Arndt et al. 2013). Belgica TMF: Belgica Trough 1614 

Mouth Fan; BSD: Bellingshausen Sea Drift. Inset map shows study area within wider 1615 

context of Antarctica. APIS: Antarctic Peninsula Ice Sheet; EAIS: East Antarctic Ice 1616 

Sheet; WAIS: West Antarctic Ice Sheet. 1617 

Figure 2: Lithology and sedimentological data for core PC723/GBC724. Assignment 1618 

of core intervals to Marine Isotope Stages (MIS) from Lisiecki & Raymo (2005) is also 1619 

shown, with interglacial MIS highlighted by grey shading. Numbers in gravel column 1620 

mark age-depth fix points (ages in ka) according to the RPI-based “trial” age model of 1621 
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Channell et al. (2019), which the authors consider to be of poor quality, with bold 1622 

numbers highlighting interglacial ages. 1623 

Figure 3: Lithology and sedimentological data for core PC726/GBC725. Assignment 1624 

of core intervals to Marine Isotope Stages (MIS) from Lisiecki & Raymo (2005) is also 1625 

shown, with interglacial MIS highlighted by grey shading. Numbers in gravel column 1626 

mark age-depth fix points (ages in ka) according to the RPI-based age model of 1627 

Channell et al. (2019), with bold numbers highlighting interglacial ages. 1628 

Figure 4: Lithology and sedimentological data for core PC727/GBC730. Assignment 1629 

of core intervals to Marine Isotope Stages (MIS) from Lisiecki & Raymo (2005) is also 1630 

shown, with interglacial MIS highlighted by grey shading. 1631 

Figure 5: Lithology and sedimentological data for core PC728/GBC729. Assignment 1632 

of core intervals to Marine Isotope Stages (MIS) from Lisiecki & Raymo (2005) is also 1633 

shown, with interglacial MIS highlighted by grey shading. Numbers in gravel column 1634 

mark age-depth fix points (ages in ka) according to the RPI-based age model of 1635 

Channell et al. (2019), with bold numbers highlighting interglacial ages. 1636 

Figure 6: Lithology and sedimentological data for core PC732/GBC731. Assignment 1637 

of core intervals to Marine Isotope Stages (MIS) from Lisiecki & Raymo (2005) is also 1638 

shown, with interglacial MIS highlighted by grey shading. Numbers in gravel column 1639 

mark age-depth fix points (ages in ka) according to the RPI-based age model of 1640 

Channell et al. (2019), with bold numbers highlighting interglacial ages. 1641 

Figure 7: Lithology and sedimentological data for core PC734/GBC735. Assignment 1642 

of core intervals to Marine Isotope Stages (MIS) from Lisiecki & Raymo (2005) is also 1643 

shown, with interglacial MIS highlighted by grey shading. 1644 

Figure 8: Lithology and sedimentological data for core PC736/GBC722. Assignment 1645 

of core intervals to Marine Isotope Stages (MIS) from Lisiecki & Raymo (2005) is also 1646 

shown, with interglacial MIS highlighted by grey shading. Numbers in gravel column 1647 

mark age-depth fix points (ages in ka) according to the RPI-based age model of 1648 

Channell et al. (2019), with bold numbers highlighting interglacial ages. 1649 

Figure 9: Lithology and sedimentological data for core PS2556-2/-1. Assignment of 1650 

core intervals to Marine Isotope Stages (MIS) from Lisiecki & Raymo (2005) is also 1651 

shown, with interglacial MIS highlighted by grey shading. 1652 



54 

Figure 10: Lithology and sedimentological data for core PS1565-2. Assignment of 1653 

core intervals to Marine Isotope Stages (MIS) from Lisiecki & Raymo (2005) is also 1654 

shown, with interglacial MIS highlighted by grey shading. 1655 

Figure 11: Productivity proxies analysed on discrete samples (black dots) and with an 1656 

XRF scanner in core PC723/GBC724. Mn/Al ratios are also shown. 1657 

Figure 12: Productivity proxies analysed on discrete samples (black dots) and with an 1658 

XRF scanner in core PC727/GBC730. Mn/Al ratios are also shown. 1659 

Figure 13: Productivity proxies analysed on discrete samples (black dots) in core 1660 

PS1565-2. Mn/Al ratios and abundances of micro-Mn nodules (in the fraction >63 µm) 1661 

are also shown. 1662 

Figure 14: Seafloor surface sediments recovered at sites GBC729/PC728 and 1663 

GBC735/PC734. AMS14C dates obtained from calcareous (micro-)fossils from the two 1664 

samples are given in Table 2. 1665 

Figure 15: Ternary diagrams for clay mineral assemblages across the core transect 1666 

PS1565 – PC734 – PC727 from NE to SW along the Antarctic Peninsula continental 1667 

rise (data for core PS1565 are from Hillenbrand & Ehrmann 2002). Clay mineral 1668 

assemblages were re-calcuated on a kaolinite-free basis because kaolinite is present 1669 

in trace amounts only. Clay mineral data from smectite-enriched tephra layers are 1670 

excluded. 1671 

Figure 16: Example X-radiographs (negatives) for facies identified in the JR298 cores 1672 

(Table 4). Facies A: bioturbated mud with scattered gravel grains; Facies B: 1673 

structureless mud with scattered gravel grains; Facies C: mud alternating with thin silt 1674 

and (partly normally graded) sandy silt layers; Facies D: mud alternating with subtle, 1675 

(sub-)millimetre thin silt laminae; Facies E: mud alternating with a few centimetre thick 1676 

gravelly sand and sandy gravel layers; Facies F: laminated mud with scattered gravel 1677 

grains; Facies G: normally graded sandy gravel to gravelly sand with erosional base; 1678 

Facies H: normally graded sand overlain by muddy sand; Facies I: deformed mud 1679 

with silty to sandy layers and scattered gravel grains; Facies J: cross-laminated mud 1680 

alternating with silt; Facies K: structureless bed of silty to sandy volcanic glass. 1681 
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