Technical note: Sea salt interference with black carbon quantification in snow samples using the single particle soot photometer


Contact
Andreas.Herber [ at ] awi.de

Abstract

After aerosol deposition from the atmosphere, black carbon (BC) takes part in the snow albedo feed- back contributing to the modification of the Arctic radiative budget. With the initial goal of quantifying the concentra- tion of BC in the Arctic snow and subsequent climatic im- pacts, snow samples were collected during the research ves- sel (R/V) Polarstern expedition of PASCAL (Physical Feed- backs of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol; Polarstern cruise 106) in the sea-ice-covered Fram Strait in early summer 2017. The refractory BC (rBC) content was then measured in the laboratory of the Alfred Wegener In- stitute with the single particle soot photometer (SP2). Based on the strong observational correlations between both rBC concentration and rBC diameter with snow salinity, we hy- pothesize a salt-induced matrix effect interfering with the SP2 analysis. This paper evaluates the impact of sea salt, based on the measurement of electrical conductivity (κ) in water samples, on rBC measurements made with a SP2 neb- ulizer technique. Under realistic salinity conditions, labora- tory experiments indicated a dramatic six-fold reduction in observed rBC concentration with increasing salinity. In the salinity conditions tested in the present work (salt concen- tration below 0.4 g L−1) the impact of salt on the nebuliza- tion of water droplets might be negligible. However, the SP2 mass detection efficiency systematically decreased with in- creasing salinity, with the smaller rBC particles being preferentially undetected. The high concentration of suspended salt particles and the formation of thick salt coatings on rBC cores caused problems in the SP2 analog-to-digital conver- sion of the signal and incandescence quenching, respectively. Changes to the signal acquisition parameters and the laser power of the SP2 improved the mass detection efficiency, which, nonetheless, stayed below unity. The present work provides evidence that a high concentration of sea salt un- dermines the quantification of rBC in snow performed with the SP2 nebulizer system described here. This interference has not been previously reported and might affect the future such analysis of rBC particles in snow collected, especially over sea ice or coastal regions strongly affected by sea salt deposition.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Peer revision
ISI/Scopus peer-reviewed
Publication Status
Published
Eprint ID
54282
DOI 10.5194/acp-21-9329-2021

Cite as
Zanatta, M. , Herber, A. , Juranyi, Z. , Eppers, O. , Schneider, J. and Schwaz, J. P. (2021): Technical note: Sea salt interference with black carbon quantification in snow samples using the single particle soot photometer , Atmosheric Chemistry and Physics, 21 , pp. 9329-9342 . doi: 10.5194/acp-21-9329-2021


Download
[thumbnail of 2021-Zanatta-etal-ACP.pdf]
Preview
PDF
2021-Zanatta-etal-ACP.pdf

Download (2MB) | Preview

Share


Citation

Geographical region

Research Platforms

Campaigns
N/A


Actions
Edit Item Edit Item