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Motivation

We observe deformation lines in the Arctic sea
ice, called the Linear Kinematic Features or
LKFs.
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Figure: Shear Deformation — From Rampal et al.
(2019) — under CC-BY license.
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LKFs influence
m Exchange of Energy and Moisture

m Creation of new ice — in leads
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m Creation of thick ice — in ridges
— Influence the mass balance
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Motivation

We observe deformation lines in the Arctic sea
ice, called the Linear Kinematic Features or
LKFs.

LKFs influence
m Exchange of Energy and Moisture
m Creation of new ice — in leads
m Creation of thick ice — in ridges

— Influence the mass balance

One (of the possible) metric

The LKFs intersection angles, or their half
angles, called fracture angles
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Figure: Shear Deformation — From Rampal et al.

(2019) — under CC-BY license.
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Models and observation disagree on LKFs intersection angles
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Figure: PDFs of LKFs half-intersection angles — Derived from Hutter and Losch (2020) — under
CC-BY license.
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Goals

We want
m to link the sea ice models to the angles

m to know how to create smaller angles in sea ice models

m to reproduce the LKFs patterns in sea ice dynamical models
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Idealized experiment. ..
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Idealized experiment. ..
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... which we can observe on the field.

Credit: Lukas Piotrowski Credit: Grace Shephard (distributed via imaggeo.egu.eu) CC-BY-NC
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Viscous-Plastic (VP) sea ice model

The de facto standard — the most widely used — sea ice rheological model today

2 Components

m Yield curve: Stresses in plastic failure

m Viscous inside the yield curve

m Flow rule: Deformation at failure
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Theory of fracture angles

m Coulomb Angle 0 (Coulomb, 1773):
The fracture angle depends on the slope of the yield curve F.
Oc = 1arccos —@
€= 2 80’1
m Roscoe Angle 0z (Roscoe, 1970):
The fracture angle depends on the flow rule (Plastic potential G)
Or = 1arccos _3011,(;
k= 2 60'1
m Arthur Angle 0,4 (Arthur et al., 1977):

The fracture angle is the mean of 8¢ and 6g.

Note: with a normal flow rule, then 8¢ = 0 = 04
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Elliptical yield curve with normal flow rule

Ringeisen et al. (2019) 10|
m Angle follow the theory ES

m Flow rule is coupled to the yield curve
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Elliptical yield curve with normal flow rule

Ringeisen et al. (2019)
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Elliptical yield curve with non-normal flow

Fracture angle 6 [°]
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Elliptical yield curve with non-normal flow rule

Fracture angle 6 [°]
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Elliptical yield curve with non-normal flow rule
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Elliptical yield curve with non-normal flow rule

Fracture angle 6 [°]
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Elliptical yield curve with non-normal flow rule
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Elliptical yield curve with non-normal flow rule
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Elliptical yield curve with non-normal flow rule
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Alternative yield curves
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w15



Mohr-Coulomb yield curve with non-normal flow rule
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o MCE rheology with e = 4.0
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60 o MCE rheology with e = 1.4
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OMCE,n

Ringeisen et al. (2021, in prep)

m Formulation is important Ip et al. (1991)
m Angles follow the Arthur angles 64
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Teardrop and Parabolic Lens yield curves — normal flow rules

Ringeisen et al. (2021, in prep)
m Correspond to the theory

m Flow rule is coupled to the yield curve
m Allows for angles < 30°
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Summary — Contact me for more info

Deformation lines in sea ice

m Intersection angles are larger in models
than observed.

m — Viscous-Plastic rheological model

VP yield curves — Flow rules
m Elliptical — normal and non-normal
m Mohr-Coulomb (MC) — non-normal
m Teardrop — normal flow rule Idealized numerical experiment
m Some rheologies allow for smaller angles

m MC creates fractures with Arthur angles

m Investigating rheologies is necessary
m Next step: test in pan-arctic setups

m Not only uni-axial compression
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