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Abstract: Spaceborne imaging spectroscopy, also called hyperspectral remote sensing, has shown
huge potential to improve current water colour retrievals and, thereby, the monitoring of inland
and coastal water ecosystems. However, the quality of water colour retrievals strongly depends on
successful removal of the atmospheric/surface contributions to the radiance measured by satellite
sensors. Atmospheric correction (AC) algorithms are specially designed to handle these effects, but
are challenged by the hundreds of narrow spectral bands obtained by hyperspectral sensors. In
this paper, we investigate the performance of Polymer AC for hyperspectral remote sensing over
coastal waters. Polymer is, in nature, a hyperspectral algorithm that has been mostly applied to
multispectral satellite data to date. Polymer was applied to data from the Hyperspectral Imager for
the Coastal Ocean (HICO), validated against in situ multispectral (AERONET-OC) and hyperspectral
radiometric measurements, and its performance was compared against that of the hyperspectral
version of NASA’s standard AC algorithm, L2gen. The match-up analysis demonstrated very good
performance of Polymer in the green spectral region. The mean absolute percentage difference
across all the visible bands varied between 16% (green spectral region) and 66% (red spectral region).
Compared with L2gen, Polymer remote sensing reflectances presented lower uncertainties, greater
data coverage, and higher spectral similarity to in situ measurements. These results demonstrate
the potential of Polymer to perform AC on hyperspectral satellite data over coastal waters, thus
supporting its application in current and future hyperspectral satellite missions.

Keywords: water colour; ocean colour; water reflectance; EnMAP

1. Introduction

The vast information provided by hyperspectral sensors allows us to comprehensively
explore the upwelling spectral radiance distribution from water and to improve the retrieval
of geo-biophysical parameters. The wide range of applications includes the detection of
phytoplankton types and harmful algal blooms, benthic habitat mapping, and phytoplank-
ton fluorescence retrievals. Past, current, and future hyperspectral sensors with potential
application in water colour studies include Hyperion (2000–2017), HICO (2009–2014),
SCIAMACHY (2002–2012), CHRIS-PROBA (2001–), OMI (2004–), GOME-2 (2006–, 2012–
and 2018–), TROPOMI (2017–), DESIS (2019–), PRISMA (2019–), HISUI (2019–), EnMAP
(2022–), OCI (PACE mission, 2023–), PRISMA SG (2025–), SHALOM (2025–), SBG (2027–),
and CHIME (2029–).
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Nearly all water colour algorithms require atmospheric correction (AC) of radiance
(or reflectance) backscattered by the water (water-leaving radiance, LW ; water-leaving
reflectance, ρw) as input. LW carries the information of the water optical properties and
constitutes only a small fraction of the radiance measured by the sensor. Thus, AC is
key to obtaining accurate retrievals over water using spaceborne remote sensing. There
exist several AC algorithms; however, most of them have been designed and applied to
multispectral sensors, as hyperspectral spaceborne data appropriate for water colour re-
search and application are limited. To date, only HICO, operated on the International Space
Station (ISS), and OCI sensors have been specifically designed for water colour applications,
such as signal-to-noise ratio (SNR), band location, and spatial/temporal resolution. The
other sensors are primarily designed for atmospheric and land-use applications. However,
the recent launch of hyperspectral sensors with characteristics suitable for water colour
research (e.g., DESIS and PRISMA) and the new ones set to launch in the coming years (e.g.,
EnMAP, OCI, SBG, SHALOM, and CHIME) will require AC algorithms that can cope with
hundreds of narrow spectral bands and atmospheric/surface effects. The main difficulties
faced by AC algorithms over water bodies are handling properly absorbing aerosols, trace
gases and water vapor, whitecaps, sun glint, highly complex waters, and adjacency effects,
as has been highlighted in the thorough review of AC in hyperspectral remote sensing
by [1].

To date, two AC algorithms have been specifically designed for water colour remote
sensing, and are freely available for scientific use, and able to handle hyperspectral satellite
data—the POLYnomial-based algorithm applied to MERIS (Polymer) [2,3] and NASA’s
standard AC algorithm (L2gen) [4–6]. In the framework of the PACE mission, a hyperspec-
tral version of the L2gen was developed for application to HICO data, and was validated
against in situ measurements, showing very good agreement [6]. Major improvements
in the algorithm comprise the compensation for water vapor absorption, correction of
Rayleigh and aerosol scattering, and the derivation of new vicarious gains [6]. Polymer
is a spectral matching algorithm which uses the full spectra available, together with an
iterative optimisation scheme, to separate the radiometric contribution of water from the
atmospheric and surface contributions. Evaluation of Polymer applied to multispectral
data showed improved performance over other existing AC methods and increased data
coverage, due to its ability to handle thin clouds and sun glint [2,7–12]. Another strength
of Polymer, compared with other ocean colour AC algorithms, is that it can be applied to
several sensors, thus maximising the consistency between products [7]. This is a key point,
as long time-series of ocean colour products with high temporal and spatial resolution
are only accessible through the synergy of different sensors. However, an evaluation of
Polymer applied to hyperspectral satellite data is still missing.

In support of the Environmental Mapping and Analysis Program (EnMAP) scientific
preparation program, we investigate the performance of Polymer on hyperspectral remote
sensing data over coastal waters. EnMAP is a German hyperspectral satellite mission
to be launched in 2022, which aims to characterise the Earth’s terrestrial and marine
ecosystems at the global scale [13]. The mission will offer great advantages, in terms
of sensor characteristics, compared with existing ocean colour sensors: 242 bands from
420–2450 nm at 6.5 nm in the visible and near-infrared (VNIR) and 10 nm in the short-
infrared (SWIR), SNR ≥ 400:1 in the visible (VIS), spatial resolution of 30 m, and a revisit
period of 4 days with 30◦ across-track viewing. We tested Polymer using HICO data
acquired at seven coastal areas encompassing a wide range of optical characteristics, and
where multispectral or hyperspectral in situ radiometric measurements are available. In
addition, we compared its performance against that of L2gen. Finally, we implemented
Polymer in the EnMAP-Box, an open source plugin for QGIS for the processing and analysis
of EnMAP data, and tested the application using simulated EnMAP imagery.
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2. Materials and Methods
2.1. Atmospheric Correction Algorithms

The Polymer algorithm can be divided into a three-step process: pre-correction of
the top of atmosphere radiance (LTOA), spectral matching of the atmospheric and water
models, and retrieval of the water-leaving reflectance. First, LTOA measured by the sensor is
converted into reflectance (ρTOA). After correction for the gaseous transmittance estimated
for O3 using ancillary data, and for NO2 with climatology data, using the same spectral
absorption coefficients as L2gen, ρTOA can be described as the sum of the reflectance due
to scattering by air molecules (Rayleigh scattering, ρmol); sun glint reflectance (ρgli with
transmission factor T); aerosol reflectance (ρaer); the coupling between sun glint, molecules,
and aerosols (ρcoup); and the water-leaving reflectance just above the surface (ρ+w ) with
direct and diffuse atmospheric transmission (t):

ρTOA(λ) = toz(λ)tNO2(λ)[ρmol(λ) + Tρgli + ρaer(λ) + ρcoup(λ) + t(λ)ρ+w (λ)]. (1)

The ρTOA undergoes initial corrections for gaseous absorption, Rayleigh scattering,
and a sun glint pre-correction, resulting in a pre-corrected reflectance (ρ

′
). This ρ

′
contains

a residual sun glint (∆ρgli), the aerosol reflectance, the coupling terms, and the ocean
water-leaving reflectance:

ρ
′
(λ) = ∆ρgli(λ) + ρaer(λ) + ρcoup(λ) + t(λ)ρ+w (λ)]. (2)

Subsequently, ρ
′

can be split into the atmospheric and sun glint (ρag) and water
components (t.ρ+w ):

ρ
′
(λ) = ρag(λ) + t(λ)ρ+w (λ)], (3)

where ρag represents

ρag(λ) = ∆ρgli(λ) + ρaer(λ) + ρcoup(λ). (4)

The second step (which comprises the core of Polymer) is spectral matching. The
parameters of the atmospheric and water-leaving reflectance models are optimized, in
order to obtain the best spectral fit of ρ

′
. The atmospheric model that represents ρag is

a linear combination of three terms depending on the wavelength, which account for
spectrally flat components and the beam attenuation due to Rayleigh scattering (first term),
the aerosol signal with a spectral dependency representing an aerosol fine mode (second
term), and the couplings between flat components and the Rayleigh scattering (third term):

ρag(λ) = T(λ)c0 + c1λ−1 + c2ρmol(λ). (5)

The water-leaving reflectance model is based on the bio-optical model of [14], de-
veloped for both case 1 and case 2 waters. Modifications of the original water-leaving
reflectance model have been described in [3]; for instance, the model described in [14] also
includes a dependence on the coloured dissolved organic matter absorption variability,
which is neglected in Polymer, as it introduces instability into the algorithm. In Polymer,
the water-leaving reflectance model depends on the wavelength, the observation geometry,
and two free parameters—chlorophyll-a concentration (chl) and a coefficient fb that scales
the backscattering coefficient of particles:

ρ+w (λ) = f (chl, fb). (6)

The spectral matching is performed using 50 bands of HICO between 410 nm and
776 nm, excluding those affected by gaseous absorption bands (e.g., those between 668 and
736 nm which are affected by oxygen-B, ozone, and water vapor absorption). Bands greater
than 800 nm present spectral calibration problems in HICO [6], and should be avoided.
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Finally, when the optimisation of the free parameters (c0, c1, c2, chl, and fb) is achieved, the
water-leaving reflectance can be estimated by:

ρ+w (λ) =
ρ
′
(λ)− T(λ)c0 + c1λ−1 + c2ρmol(λ)

t(λ)
. (7)

The ρ+w is further normalised to the nominal wavelength and for the water-leaving
reflectance bidirectional effects (BRDF), as described in [3], such that the radiometric
output of Polymer is the fully normalised water-leaving reflectance spectrum corrected
for bidirectional effects. Detailed information on the pre-correction (e.g., estimation of the
gaseous transmittance, Rayleigh scattering, and pre-glint correction), spectral matching,
and the atmospheric model has been presented in [2,3]; information on the water-leaving
reflectance model can be found in [14]; and its modifications, water-leaving reflectance
normalisation, and BRDF correction have been detailed in [3]. The vicarious calibration
gains of HICO, derived by [6], are also accounted for in Polymer and applied to the level
1B input product.

L2gen is based on the NASA heritage AC algorithm—a standard atmospheric cor-
rection scheme, in which the aerosol signal is estimated in the red, near infrared (NIR),
or short wave infrared (SWIR) bands and extrapolated to the visible bands. The initially
developed L2gen [4] assumed that the water-leaving reflectance is negligible in the NIR
region, leading to significant errors in highly productive and optically complex waters,
where this assumption does not hold. The study in [15] revised the algorithm by includ-
ing a bio-optical model with an iteration scheme, in order to estimate the water-leaving
reflectance in the NIR. L2gen was further adapted and improved by [6], supporting its ap-
plication to hyperspectral sensors. It includes the ATmospheric REMoval code to estimate
and correct for the absorption of seven gases (water vapor, ozone, oxygen, nitrous oxide,
carbon monoxide, methane, and carbon dioxide) and extends the multispectral Rayleigh
and aerosol correction to the hyperspectral domain. The radiometric output of L2gen is the
remote sensing reflectance (Rrs) spectrum, including bidirectional reflectance correction.
To compare the radiometric output of L2gen and Polymer, the normalised water-leaving
reflectance of Polymer can be converted to Rrs by dividing its value by π [1].

2.2. In Situ Radiometric Data

The multispectral radiometric measurements were obtained from the AERosol Robotic
NETwork—Ocean Colour (AERONET-OC) at six coastal sites (Figure 1): COVE_SEAPRISM
(Cove), MVCO, LISCO, WaveCIS_site_CSI_6 (Wave), Gloria, and Venice. Quality-controlled
(level 2.0) normalised water-leaving radiances corrected for bidirectional effects [16] were
converted to Rrs by dividing by F0, the extraterrestrial solar irradiance at the mean Earth–
Sun distance [17]. The data set was available in five or six spectral bands in the VIS range,
which varied or changed slightly with location and/or year (Table 1) and are here named
as 412, 441, 490, 530, 551, and 668 nm. These spectral bands were compared to HICO bands
at 410, 444, 490, 530, 553, and 668 nm.

The hyperspectral data set was shared by [18], and is composed of quality-controlled
Rrs measurements at 1 nm spectral resolution for the 400–735 nm range at 25 stations at
Pensacola Bay (30◦42′ N, 87◦22′ W) on 2 June 2011. Pensacola Bay is a shallow coastal
estuary system connected to the Gulf of Mexico, which is largely influenced by river
runoff [19]. The measurements were collected by an above-surface radiometry system
(HyperSAS, Satlantic Inc., Halifax, Nova Scotia); details on the measurements and data
processing can be found in [20]. HICO Rrs data for the 410–719 nm range were paired to
the same wavelengths of HyperSAS Rrs data for comparison. HICO’s spectral response
function was not accounted for because the data were available as reflectance and the
spectral convolution should be performed on the radiance space [21].
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Figure 1. True-colour image composites of HICO Level 1B data at AERONET-OC sites and Pensacola Bay. Red circles show
the location of the AERONET-OC and sampling stations.

Table 1. AERONET-OC sites and corresponding data used in this study.

Station Name Location Years Spectral Bands (nm)

COVE_SEAPRISM 36◦ N, 75◦ W 2013, 2014 413, 441, 489, 530, 551, 668
MVCO 41◦ N, 70◦ W 2010, 2013, 2014 412, 442, 490, 530, 551, 668
LISCO 43◦ N, 70◦ W 2010, 2011, 2012, 2014 413, 442, 491, 551, 668
WaveCIS_site_CSI_6 28◦ N, 90◦ W 2010, 2011, 2012, 2013, 2014 411, 442, 491, 551, 668
Gloria 44◦ N, 29◦ E 2012, 2014 411, 412, 442, 490, 491, 530, 551, 667, 668
Venice 45◦ N, 12◦ E 2010, 2011, 2012, 2013, 2014 412, 441, 442, 488, 490, 491, 530, 551, 554, 555, 667, 668

2.3. Satellite Data and Validation

HICO [22,23] level 1B and level 2 images were obtained for the seven sites from
NASA’s ocean colour website [24]. The level 1B data set was processed with Polymer
version 4.11, using the default settings. The Polymer-normalised water-leaving reflectance
was converted to Rrs by dividing by π [1]. The HICO level 2 data set corresponds to Rrs
products processed with the hyperspectral-L2gen [6], and was used for comparison.

To derive high-quality match-ups, a strict quality control was applied, including a
time window of ±3 h between in situ measurements and HICO overflights and a spatial
homogeneity check over a 3 × 3 pixel box centered on the location of the in situ data.
All nine pixels were checked, regarding the quality control flags provided by the AC
algorithms. For Polymer, the flags applied were: ‘land’, ‘cloud base’, ‘external mask’, ‘high
air mass’, ‘thick aerosol’, ‘exception’, ‘level 1 invalid’, and ‘negative bb’. The L2gen flags
assigned were ‘land’, ‘atmfail’, ‘straylight, ‘hilt’, and ‘cldice’. Match-ups are regarded as
valid if at least 50% of the pixels remained after the assignment of flags and if the coefficient
of variation (ratio of the standard deviation to the median value) of satellite Rrs (410, 444,
and 490 nm) in the pixel box was smaller than 0.15. The median values of the remaining
pixels were then used for statistical analyses. If more than one in situ measurement was
collocated to the same satellite data, the median value was used for the match-up exercise.

To compare the satellite products and in situ measurements, three performance metrics
were selected, following [25,26]: the mean absolute percentage difference (MAPD, as an
index for dispersion), the mean percentage difference (MPD, as an index for bias), and the
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spectral angle (SA, as an index for spectral similarity). The MAPD and MPD metrics are
defined as:

MAPD =
∑N

i=1 100
∣∣∣ yi−xi

xi

∣∣∣
N

, (8)

MPD =

N
∑

i=1
100( yi−xi

xi
)

N
, (9)

where x and y are the in situ and satellite-estimated Rrs data, respectively, and N is the
total number of samples.

The SA (θ, degrees) was used to investigate the agreement between in situ and satellite-
derived Rrs spectra. The smaller the spectral angle, the higher the similarity in the spectral
shape. The spectral angle θ is defined as [27]:

θ(x, y) = cos−1


n
∑

i=1
(xi.yi)√

n
∑

i=1
x2

i

√
n
∑

i=1
y2

i

, (10)

where x and y are the in situ and satellite Rrs data, respectively, and n is the number of
spectral bands.

3. Results and Discussion

The mean match-up in situ Rrs spectra of the investigated sites exhibited two major
spectral shapes (Figure 2). At the MVCO, Lisco, Gloria, and Pensacola sites, the mean
spectra presented a gradual increase in the Rrs until the peak around 550–570 nm, where
they started to decrease towards the longer wavelengths. At the Cove, Wave, and Venice
sites, this initial increase in the reflectance was less sharp and there was no clear peak at
550 nm; however, a broad region of high reflectance between 490 and 560 nm was observed.
The higher number of match-ups at the Venice site, compared with the other regions,
allowed us to observe the significant variability in the spectral shape caused by the wide
range of bio-optical conditions, due to the location of the tower between open and coastal
waters [28].

3.1. Match-Up Analysis

Statistical analysis of the match-ups revealed that Polymer retrieved Rrs with uncer-
tainties (MAPD) in the range of 16.31% to 65.81%, with bias (MPD) between −2.89% and
53.67%, where the best performance was in the green bands at 530 and 553 nm, and the
lowest was in the 668 nm red band (Figure 3). Comparison to in situ measurements did
not show systematic under-/over-estimation of the Rrs, but suggested over-correction
of the atmospheric/surface effects between 490 and 553 nm and under-correction at 410,
444, and 668 nm. In the blue band (410 nm), the ratio of water-leaving reflectance to
top-of-atmosphere reflectance is lower and there is higher uncertainty in the aerosol correc-
tion, due to increased Rayleigh scattering at blue wavelengths; in the red band (668 nm),
the water absorption increases towards the longer wavelengths, such that the Rrs signal
becomes very small, thus increasing the relative errors (Figures 2 and 3). These issues make
AC more challenging at these spectral regions, compared with other bands. Further, we did
not observe a dependence of the differences between HICO-Rrs and in situ-Rrs per band on
the aerosol optical thickness, wind, or solar zenith angle, suggesting that the hyperspectral
Polymer is robust with respect to illumination and environmental conditions.
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Figure 2. In situ Rrs spectra from AERONET-OC sites and Pensacola Bay (match-ups). The continu-
ous black lines indicate mean values, the dashed lines indicate ±1 standard deviation and the grey
lines are all matched data with Polymer and L2gen. N represents the number of match-up spectra at
each region.

Although no other evaluation of Polymer applied to hyperspectral satellite data
has been carried out, we can compare our results of the Rrs match-up analysis to the
literature on the performance of Polymer applied to multispectral data in optically complex
waters. The uncertainties observed here were lower or close to those reported in recent
studies evaluating OLCI (Ocean and Land Colour Instrument on board Sentinel-3 satellites)
Polymer radiometric retrievals in inland and coastal waters [12,29]. For instance, ref. [29]
reported MAPD ranging from 22 to 43% in the blue bands (412–490 nm) for Estonian inland
and Baltic Sea coastal waters; our results showed differences between 16 and 36%. Except
for the red band 668 nm, the biases were also much lower than those reported by [12] for
the coastal waters of British Columbia and Southeast Alaska.

The EnMAP mission, as dedicated ocean colour missions, targets radiometric uncer-
tainty within 5%; this requirement was not achieved with Polymer or L2gen. However,
the uncertainties presented here include not only those associated with AC algorithms,
but also with the HICO sensor (e.g., calibration), in situ measurements (e.g., instrument
calibration), and match-ups (e.g., spatial and temporal mismatches). Studies on HICO have
confirmed the potential of hyperspectral technology for water colour research [18,30–33],
but the sensor presented issues with radiometric and spectral calibration and geolocation



Sensors 2021, 21, 4125 8 of 16

accuracy, as HICO was aboard the ISS. These issues have been improved considerably
over the years; in particular, through the new vicarious calibration gains derived by [6].
Regarding the in situ radiometers, [28] estimated a 4.5–8% uncertainty in the normalised
water-leaving radiances at Venice AERONET-OC. Finally, we attempted to minimise the
uncertainty in the match-ups by following strict match-up criteria and applying the recom-
mended quality control flags. Following a very similar match-up protocol, [34] showed
that reducing the temporal threshold at the Venice site from 3.5 h to 1 h had little influence
on the uncertainties (2% at most); our data set comprised data mostly from the Venice
AERONET-OC.
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Figure 3. Scatterplots of the AERONET-OC Rrs versus Polymer-HICO Rrs. The two match-ups with both flags ‘case-2’ and
‘inconsistency’ raised were excluded before the statistics were computed.

When compared with L2gen, Polymer exhibited lower uncertainties and bias (Figure 4),
and provided greater data coverage. For example, the Polymer match-up data set at the
Venice site consisted of 35 match-ups, compared with 26 for L2gen. The largest differences
between Polymer and L2gen were observed at the bands with weakest Rrs signals; that is, at
410 nm and 688 nm. L2gen also showed systematic underestimation, as has been reported
in [6,35], with negative retrievals at 410 nm and 668 nm. Negative retrievals in L2gen may
result from uncertainties in the estimation of the aerosol contribution and extrapolation
to the shorter wavelengths or adjacency effects [6,15]. The dependence of L2gen on the
aerosol models is absent in Polymer, as the algorithm does not use a specific aerosol model
but, instead, a linear combination of terms that accounts for the aerosol contribution to
the atmospheric reflectance. The AC in Polymer relies on the full visible spectrum and is
coupled with a water-leaving reflectance model. This prevents, by construction, strongly
negative retrievals at any wavelength.

The comparison of Polymer Rrs to in situ hyperspectral Rrs (HyperSAS) showed good
agreement between these two data sets (Figure 5). Moreover, following our observations in
the multispectral analysis, Polymer provided greater data coverage and lower errors than
L2gen. In the hyperspectral match-up, we observed that Polymer retrieved a few unrealistic
negative values, which occurred in the 719 nm band, likely caused by the influence of the
725 nm water vapor band. As this band was not available for the AERONET-OC sites,
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these negative Rrs were absent in the multispectral analysis. In L2gen, negative Rrs values
were observed at bands ≤456 nm and, in addition, the data points in the L2gen plot show a
structure that could not explained, based on our small hyperspectral data set. The 220 data
points correspond to only four coincident HyperSAS-Polymer-L2gen stations (Figure 5).
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Figure 4. Scatterplots of the AERONET-OC-Rrs versus Polymer (blue) and L2gen (salmon) HICO-Rrs at Venice AERONET-
OC; coincident match-ups.

Differences between the spectral resolutions and sampling intervals of HICO and
HyperSAS may also have contributed to the observed uncertainties. HICO measured with
a 3.2 nm spectral resolution and 1.9 nm spectral sampling, but three bands were binned
on board to increase the SNR, resulting in spectral sampling of 5.7 nm and a full-width
half-maximum spectral resolution of 10 nm in the spectral range ≤745 nm [36]. HyperSAS
instruments have a spectral sampling of 3.3 nm and a spectral width of about 10 nm. The
data used here were provided at 1 nm intervals.

0.000 0.005 0.010

0.000

0.005

0.010 MAPD = 29.67%
MPD = -9.95%
N = 495

Polymer

1:1 line
fitted

0.000 0.005 0.010

0.000

0.005

0.010
MAPD = 24.72%
MPD = -20.12%
N = 220

Polymer

1:1 line
fitted

0.000 0.005 0.010

0.000

0.005

0.010
MAPD = 44.89%
MPD = -32.86%
N = 220

L2gen

1:1 line
fitted

450

500

550

600

650

700

W
avelength [nm

]

HyperSAS - Rrs [sr 1]

H
IC

O
 - 

R
rs

 [s
r

1 ]

Figure 5. Scatterplots of HyperSAS-Rrs versus HICO-Rrs for the 410–719 nm spectral range: All Polymer match-ups (left),
and Polymer (centre) and L2gen (right) coincident match-ups.
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Quality Flags

Despite applying the recommended flags for Polymer processing, two match-ups with
satellite Rrs values close to zero at all wavelengths stood out: one at the Gloria site and one
at the Wave AERONET-OC site. These match-ups were excluded from the multispectral
match-up data set before computing the statistics; however, we further looked at these
unusual data points and found that, in both cases, the flags ‘case-2’ and ‘inconsistency’ were
raised. Normally these flags do not invalidate the results; particularly ‘case-2’, which is
raised when the optimisation uses initial values adjusted for ‘case 2’ water areas/pixels [37].
The inconsistency flag is raised, if at any band, ρatm or t*ρ+w exceeds the ρTOA corrected
for Rayleigh scattering [37]. As these were the only cases in the multispectral match-up
data set with this flag combination, we searched in the hyperspectral match-up data set for
similar cases. There were three match-ups with both flags (i.e., ‘case-2’ and ‘inconsistency’)
raised, but the values of Rrs were in the range of the other match-ups. Excluding the
hyperspectral match-ups with both ‘case-2’ and ‘inconsistency’ flags raised reduced the
MAPD from 29.67% to 27.54%, but the MPD increased from −9.95% to 19.24%, as most of
the data removed were overestimating Rrs. Moreover, it removed the variability inherent
in the study site. However, future studies should gauge the extent to which these flags are
important to filter out low-quality retrievals. The influence of this additional combination
of flags on satellite data coverage is illustrated in Figure 6 for the northern Adriatic Sea:
more pixels were flagged in the southern limit of the scene when the recommended flags
plus ‘case-2’ and ‘inconsistency’ flags were raised together.

Figure 6. Comparison of the spatial distribution of HICO-Rrs at 553 nm in the northern Adriatic Sea on 26 September 2010:
(A) no flags; (B) recommended flags; and (C) recommended flags plus ‘case-2’ and ‘inconsistency’ flags raised together.

3.2. Spectral Similarity Analysis

Investigation of the spectral similarity provides additional information about the
effectiveness of the algorithms. Both algorithms showed good consistency across the
spectra, compared to the in situ multispectral data set (Figure 7), but the performance of
Polymer was, on average, better than that of L2gen. For example, the median spectral angle
of Polymer at the Venice site was 7.35◦, while that of L2gen was 10.78◦ (Figure 7, boxplot).
These values were similar to those reported by [9], who compared the performance of
different AC algorithms applied to OLCI data in optically complex waters on the coast of
France; they reported SA values of 7.29◦ for Polymer and 14.60◦ for L2gen.

Looking at the hyperspectral data set (Pensacola Bay), the spectral shape of the L2gen-
Rrs spectra was more similar to the in situ HyperSAS spectra than those of Polymer,
especially at the peak around 570 nm (Figure 8). L2gen seemed to also better compensate
for the spectral features of gaseous absorption (e.g., at 690 nm and 719 nm, caused by the
absorption by oxygen-B and water vapor, respectively), as Polymer corrects only for O3 and
for NO2 gaseous absorption. Nevertheless, Polymer performed better in the blue–green
spectral region and, overall, the magnitude of its Rrs spectra was closer to the in situ
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spectra than L2gen-Rrs. This influenced the spectral angle, leading to smaller SA values
for Polymer than for L2gen. HICO instrument artifacts were also visible, as slight peaks, at
416 nm and 496 nm.
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Figure 7. Top: Spectra of coincident match-ups of HICO-Polymer, HICO-L2gen, and AERONET-OC at MVCO, Gloria, and
Wave sites (N = 1). Bottom left: boxplots of spectral angle for each AC algorithm at the AERONET-OC Venice site (N = 22).
Center lines show the medians, box limits indicate the 25th and 75th percentiles, whiskers extend 1.5 times the interquartile
range, and the spectral angle data are represented by data points on top of the boxes. (Bottom center and right): spectra of
coincident match-ups of HICO-Polymer and HICO-L2gen at AERONET-OC Venice for the lowest and highest Polymer
spectral angles.
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3.3. EnMAP-Box

The Polymer algorithm is currently being integrated into the EnMAP processing tool
(EnPT, [38]) of the EnMAP-Box [39], using the wrapper module ACwater. The EnMAP-Box
is a software toolbox for processing hyperspectral data, used as a plugin of the QGIS [40]
software, and provides the interface to the processing suites developed for imaging spec-
troscopy. EnPT is a pre-processing chain to process EnMAP data from Level 1B to Level
2A, which can be used as a standalone Python package or within the EnMAP-Box. It
features radiometric, geometric, and atmospheric corrections, as well as orthorectification.
AROSICS (An Automated and Robust Open-Source Image Co-Registration Software for
Multi-Sensor Satellite Data, [41,42]) is used to detect and correct spatial misregistrations.
Atmospheric correction is performed with SICOR (Sensor Independent Atmospheric Cor-
rection of optical Earth observation data from multi- and hyper-spectral instruments, [43])
over land surfaces and with Polymer over water surfaces. The module ACwater is embed-
ded in the EnPT suite, which contains the specifications and technical framework required
to apply the Polymer algorithm to EnMAP data. A critical part of the implementation is
the application of the Polymer algorithm to the two separate EnMAP detectors (VNIR and
SWIR) in sensor geometry, as they have a spatial shift of around 20 pixels along-track and
1 pixel across-track, depending on the image position.

The ACwater module for running Polymer within EnPT is publicly available, along
with its documentation and installation instructions, at [44]. A first application of Polymer
to simulated EnMAP data is presented in Figure 9, which shows that Polymer can provide
realistic atmospheric correction over water. The Rrs values are in the same range of those
observed at the different AERONET-OC sites and Pensacola Bay (Figure 2). Spectra of mod-
erate turbid (pink and orange lines) and clear waters (blue lines) can be distinguished by
the increased Rrs in the red bands, characteristic of waters with higher sediment loads [45].

Figure 9. True-color image composite of the simulated EnMAP level 1B data [46] at lake Cazaux et de Sanguinet, located
south of Arcachon, France, on 8 November 2017. The spectral signature of four different water types after Polymer was
applied to the level 1B data in sensor geometry. The spectra were smoothed using a Gaussian filter with standard deviation
of 1.

We used HICO data to support algorithm testing in preparation for the EnMAP
mission. Compared with HICO, the EnMAP sensor characteristics can potentially lead
to less uncertainties of the atmospherically corrected products. For instance, while HICO
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relied on an SNR of >200:1 (400–600 nm, [23]), EnMAP will have >400:1 (VNIR, [13]) and
may improve retrievals over dark inland and coastal waters rich in organic matter. Other
advantages are the increased spectral range, covering the SWIR region that can potentially
improve the performance of atmospheric correction algorithms over extremely turbid
waters [47,48], higher number of bands, and tilt capability (5◦–30◦ from nadir), enabling it
to avoid sun glint and improving its revisit time.

4. Conclusions

Exploring the fine spectral resolution of hyperspectral sensors can help to improve cur-
rent water colour remote sensing retrievals, going beyond standard algorithms/retrievals
(e.g., band ratio/chlorophyll-a concentration), for such applications as the distinction of
different phytoplankton functional groups and water optical constituents. However, the
quality of hyperspectral radiometric retrievals depends, in part, on successful AC. In this
scope, we presented the first evaluation of hyperspectral radiometric satellite retrievals
from Polymer AC, based on HICO data collected between 2010 and 2014 at seven study
sites. Polymer HICO retrievals were validated against in situ multi- and hyper-spectral
data. The performance statistics of the Polymer AC showed good agreement with in situ
measurements. In the green spectral region, the uncertainties can be as low as 16% while,
in the red region, they were as high as 66%, in agreement with the range of uncertainties
reported in the literature for Polymer applied to multispectral satellite data. Furthermore,
Polymer outperformed L2gen, exhibiting lower uncertainties, higher spectral similarity
compared with in situ multi- and hyper-spectral measurements, and greater coverage.
These findings encourage the application, further development, and validation of Polymer,
regarding the new generation of hyperspectral satellite sensors.
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Abbreviations
The following abbreviations are used in this manuscript:

AC atmospheric correction
AERONET AErosol RObotic NETwork
AROSICS An Automated and Robust Open-Source Image Co-Registration Software

for Multi-Sensor Satellite Data
BRDF Bidirectional Reflectance Distribution Function
CHIME Copernicus Hyperspectral Imaging Mission for the Environment
CHRIS Compact High Resolution Imaging Spectrometer
DESIS DLR Earth Sensing Imaging Spectrometer
DLR Deutsche Zentrum für Luft- und Raumfahrt (German Aerospace Center)
EnMAP Environmental Mapping and Analysis Program
EnPT EnMAP processing tool
ESA European Space Agency
GOME Global Ozone Monitoring Experiment
HISUI Hyperspectral Imager Suite
HICO Hyperspectral Imager for the Coastal Ocean
ISS International Space Station
MAPD mean absolute percentage difference
MPD mean percentage difference
NASA National Aeronautics and Space Administration
NIR near-infrared
OC Ocean Colour
OCI Ocean Colour Instrument
OLCI Ocean and Land Colour Instrument
OMI Ozone Monitoring Instrument
PACE Plankton, Aerosol,Cloud, ocean Ecosystem
PRISMA PRecursore IperSpettrale della Missione Applicativa
PRISMA SG PRISMA Second Generation
SA spectral angle
SBG Surface Biology and Geology
SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography
Sentinel-5P Sentinel-5 Precursor
SICOR Sensor-Independent Atmospheric Correction of optical Earth observation data

from multi- and hyper-spectral instruments
SHALOM Spaceborne Hyperspectral Applicative Land and Ocean Mission
SNR signal-to-noise ratio
SWIR short-wavelength infrared
VIS visible
VNIR visible and near-infrared
TROPOMI TROPOspheric Monitoring Instrument
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