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Key feature of the clean TWP
troposphere: close coupling of the
Why the Tropical West Pacific (TWP)? O; concentration and oxidizing
capacity (OH), influencing

overall transport of chemical
species to the stratosphere.

To improve the limited availability
of tropospheric O; observations
from this key region, the

was established in 2016 as part of
the EU-project StratoClim.

Need for monitoring of air composition and understanding By _ :
of underlying processes and transport pathways to TWP | " 7



(I) O, Dataset

Palau Soundings
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First characterization of tropospheric O, seasonality

in the TWP with a multi-year continuous time series from

ECC ozonesonde measurements every two weeks or in
intensive campaigns (SPC 6A, Vaisala R$92/41). - Miiller 2020

Special focus on quality issues of tropical soundings due to
controversy around near-zero O3 observations in the TWP (e.qg.
Voemel and Diaz 2010, Rex et al. 2014, Thompson et al. 2019)

[

i R
'
A A
FMAM)] J] ASOND
2016 2017 2018 2019

dep.)

03 VMR (Ib press




Palau (3-14km, 01/2016-10/2019)

...for local convective activity in clean maritime air:
100

(e.g. Folkins, 2002; Folkins et al., 1999; Kley et al., 1996; Paulik and b
Birner, 2012; Solomon et al., 2005) and

... for long range transport processes to the region, either related to

air pollution or stratospheric intrusions: "high” 03
(e.g. Andersen et al., 2016, Browell et al., 2001; Randel et al., 2016;
Tao et al. 2018; Thouret et al., 2000; Pan et al. 2015).
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Central Question:

Can we identify air mass origin and its seasonality

with the observed 03/RH relation? unique for Palau compared to stations of the
tropical

% of total count




(I) Tropospheric O, variability ‘
» Seasonal drivers: circulation (Walker, Hadley,
West Pacific Monsoon, Brewer-Dobson)
- modulated by Inter Tropical Convergence
Zone (ITCZ)

* Hot, humid & wet climate all year:
high convective activity

* Important Variation: ENSO
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TRMM (1998-2009) average for 125-175° E, O-
20°N, adapted from Shonk et al. 2018
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+ enhanced high altitude
and the occur simultaneously
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Mid-troposphere: from July-October, layers from February-April, often  anti-correlated with RH/




(Il) Tropospheric O, variability typical (tropical) ,S-Shape” ‘

monthly means grouped according to similar
shape: 4 distinct types of profiles (seasons).
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Monthly means highlight annual cycles, can explain upper dent in the ,,S“ (10-14 km);
corresponds with between 5-10 km or the belly of the ,,S“: weak cloud-mass divergence,

the of Palau. greatest anomalies from annual mean in ASO and FMA. 7



Underlying processes:
2016-07-29 2018-12-05 Local boundary layer air masses lacking pollution
RH [%] RH [%] are lifted locally by convection
0O 20 40 o0 80 100 0O 20 40 60 80 100 . : : :
20 (humid), creating a uniform profile.

)

No known mechanism for in situ production of

:Ez 15 15 high O, or dehydration in the mid-troposphere - —
% origin either transport from the (extratropical) )
'%‘) 10 stratosphere or non-local ground pollution, lifted 3 2
o convectively in the area of origin then undergoing 8_ 6
§_ dehydration during transport, e.g. via large-scale ® &
& > descent and radiative cooling. l:E

(compare Dessler and Minschwaner, 2007;

B 0 Andersen et al., 2016)
0 20 40 60 80 100 0 20 40 60 80 100
O3 VMR (Ib press.dep.) [ppb] O3 VMR (lb press.dep.) [ppb]

convectively controlled, interruptive layers, respective background are

Layered structures and

well-mixed background: controlled by transport: hidden in the belly of the ,S“
iles!
NON LOCAL mode of mean profiles! 3




(1) Air mass definition

* First step: define background profiles for both tracers Background profiles:
* Second step: determine anomalies against this background the monthly 20th (O;)
and 83rd (RH) quantile,
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* Third step: bimodality in RH anomalies
motivates classification in O;RH groups

— air mass definition
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(I11) Seasonal Air Mass Occurence ‘

O;0oRHo:

humid, O5-poor
background, present
year-round (!), but
dominates ASO

O,+RH-:

dry, O5-rich, most
frequent in FMA
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A 03 [ppbV] /A 03 [ppbV]
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(IV) Transport Pathways and Processes

With our process understanding, we identified major transport pathways
related to the O;RH relation observed in Palau:

Extratropical
stratosphere

Typical clean
boundary
layer air

Controversial
debate on
origin and

genesis

O,-RH-
{&=== Trade winds I Convective uplift \Clear sky cooling 3
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(IV) Backward Trajectories

Transport module of Langrangian
Chemistry and Transport Model ATLAS
(Wohltmann et al. 2010)

Setup:

e driven by ERA5S reanalysis data, no diffusion, no
convective model parameterization,
10-min time steps

* initialized from ozone sounding data, 01/2016-10/2019,
2-14 km, every 10th measurement

Assumptions:

e 10-day-backtrajectories for dynamical footprint

* Due to typical lifetime of marine boundary layer O;:
5-day-backtrajectory ending points
= origin of air mass composition
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(IV) Origin of Air Masses
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Distribution density

it

D|ff in press. altitude
(sonde-endpoint) [km]

All Observations per season:

O; VMR distributions:

 Center of in both seasons, FMA and
ASO, East of Palau
e Secondary center of in FMA,

North of Palau from India to East China

Vertical displacement:
 Mainly in FMA, North of Palau air masses
towards Palau ( ),

consistent with large-scale descent within the
Hadley circulation and subsequent
dehydration

J dominates ASO air masses
( ), corresponding well with the
dominance of convective uplift
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various possible sources

of ground pollution

Diff. in press. altitude
(sonde-endpoint) [km]

i

Origin of dry O;-rich air
masses in areas of
increased air pollution on
the ground from industry
or bio mass burning,
speaking in favor for a
pollution based origin

Tropopause

All Observations per O;/RH group :

Selection of trajectories for air masses identified
as or
dry O;-rich (O;+RH-) anomaly from the
background separates air masses according to
the processes controlling RH (Convective ,
ASO; dehydration during , FMA) and
locates spatially separate source regions

indication for significant contribution of

Potential Vorticitiy analysis for all trajectories
(from 4 years, 138 profiles, 5-10 km) revealed
essentially no air mass crossing the 1.5 PVU
threshold for more than a day during 10 days
backwards.
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v" Palau’s four-year tropospheric O, time series fills the observational gap in this key region of stratospheric entry.

v" Using the ECC O; sounding data set (01/2016-10/1019), seasonal analysis, trajectory modelling and a statistical
approach to distinguish air masses by O;/RH relation, we identified transport processes and pathways to the TWP:

Humid, O;-poor

Dry, O;-rich

N

I Convective background Large scale descent, pollution

Tropical Asia (anticyclonic route)

(014111l Pacific or local

FELIELTAA Year-round, dominates Aug-Oct § Most frequent in Feb-Apr

v' Watch out for the upcoming publications!
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Palau Atmospheric
Observatory

MaxDOAS:
Pandora2S —
Pandonia Network
0., NO,, AOD
(, H,0, S0,, ...
FTIR Spectrometer:
Total abundances of
~ 20 chemical species ,
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Lidar:

Vertical profiles of
aerosol properties

Since 2018: multi-A cloud

lidar ComCAL
Research balloons:

and aerosol
in new lab

Vertical profiles of
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MICA:

Ground sampling of
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Latitude

(1) Motivation - TransBrom
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Density distribution function
of the horizontal positions of
the trajectories between
boundary layer and
Lagrangian Cold Points;
TransBrom
Cruise 2009; filled circles: from
ozonesonde measurements
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286

Lifetime comparison for A
tropical Atlantic and West
Pacific (values for mid-
troposphere- 500 hPa at the
equator for typical conditions)
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November-January: NDJ,
February-April: FMA, ..., chosen

T
due to similar profile shapes £
Low 03 (<25ppb) and enhanced é —— 2016/2017 (#:5) ;8;6; Ei;?z)
mid-trop. O; (>50 ppb) observed E ) — Soranots (e 200 (5
in all seasons # o e A T oo

greatest anomalies from the
annual mean: &

Air masses deviating from a low

O, background signal occur as £

filaments or layers, S

predominantly in the 5-10 km 5 2o1s 5 2016 019
layer, disguised in the averaged E 2018 (#:3) 2018 (419
belly of the ,S’ seasonal mean — seasonal mesn
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Monthly Quantiles Monthly Quantiles
January (12) February (8) 14 March {16} 1 April (10) January (12 February (8) 14 March

0 30 40 50 0 30 40 50 0 30 40 50 0 30 40 50 20 40 60 80 100 60 80 100 O 20 40 60 80 100 O
May (8) June July (8) August (11) e (8) Jul

— ! ! I I I I I I
0 20 30 40 50 O 30 40 50 20 30 40 50 20 30 40 50 20 40 60 80 100 20 40 60 80 100 O 20 40 60 80 100 O

September (23) October 28 November (8) December (5) 14 September (23) 14 October (28) November

T i T I 1 1 1 T T T 1 T L)
12 12
10 10
' 8 ) 8
6 ] 6
4 4
2 2 1 1 1 L

-
_(
“ 1 L 1 )Z L 1 1 1 1 1 1
0 30 40 50 30 40 50 60 0 20 30 40 50 10 20 30 40 50 0 20 40 60 80 100 O 20 40 60 80 100 © 20 40 60 80 100 O 20 40 60 80 100
03 VMR [ppbl — 20% RH [%] — 83.3%
—— 20% smoothed —— 83.3% smoothed

MU//EI’ZOZO —— Median —— Median

£
%4
]
=
2
@
I
=
(e
o
o
@
O

Geopot. Height [km]




Miiller 2020

Joi, Vietnam
Costa Rica (vario Koror, Palau

San Cristobal, Ecuagor

‘ago Pago, Am. Samoa

03 VMR [ppb]

v

Analyses of 7 selected SHADOZ stations reveals
3 types of free-tropospheric O,/RH distributions

&

Approximate Longitude

(see Miller 2020). Seasonal distributions (not shown
here) highlight uniqueness of Palau

Hanoi (3-14km, 09/2004-06/2018) Fiji (3-14km, 01/1998-01/2019) Palau (3-14km, 01/2016-10/2019) Costa Rica (3-14km, 07/2005-10/2018)
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Predominantly »L“-shaped: low O; over whole RH range Gaussian distribution

dry air over a wider + tail towards higher O; corresponding to of O; + evenly
range of O; VMR low RH distributed RH
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Example: O3+RH- air masses occur in 25% of all Example: O3+RH- air masses make up for 40% of
ASO profiles. all datapoints observed in FMA. 23




