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Abstract: The dinoflagellate Alexandrium pacificum can produce paralytic shellfish toxins and is
mainly distributed in the Pacific. Blooms of A. pacificum have been frequently reported in offshore
areas of the East China Sea, but not along the coast. To investigate the bloom dynamics of A. pacificum
and their potential origins in the Taiwan Strait, we performed intensive sampling of both water
and sediments from 2017 to 2020. Ellipsoidal cysts were identified as A. pacificum and enumerated
based on microscopic observation. Their abundances were quite low but there was a maximum of
9.6 cysts cm−3 in the sediment near the Minjiang River estuary in May 2020, consistent with the
high cell abundance in the water column in this area. Cells of A. pacificum were examined using a
quantitative polymerase chain reaction, and they appeared to be persistent in the water column across
the seasons. High densities of A. pacificum (103 cells L−1) were observed near the Jiulongjiang and
Minjiang River estuary in early May 2020, where high nutrients (dissolved inorganic nitrogen and
phosphate), and relatively low temperatures (20–21 ◦C) were also recorded. Strains isolated from the
East and South China Sea exhibited the highest division rate (0.63 and 0.93 divisions d−1) at 20 and
23 ◦C, respectively, but the strain from the Yellow Sea showed the highest division (0.40 divisions d−1)
at 17–23 ◦C. Strains from the East and South China Sea shared similar toxin profiles dominated by
the N-sulfocarbamoyl toxins C1/2, but the strain from the Yellow Sea predominantly produced the
carbamoyl toxins GTX1/4 and no C1/2. Our results suggest that both cyst germination and persistent
cells in the water column might contribute to the bloom formation in the Taiwan Strait. Our results
also indicate that the East and South China Sea populations are connected genetically through similar
toxin formation but separated from the Yellow Sea population geographically.

Keywords: harmful algal blooms; cysts; growth; paralytic shellfish toxins

1. Introduction

Paralytic shellfish toxins (PST) are among the most devastating biotoxins; consumption
of PST-contaminated bivalves may cause tingling and numbness, respiratory difficulty,
and even death [1]. The dinoflagellate genus Alexandrium includes several PST-producing
species, of which Alexandrium catenella Kofoid (previously A. tamarense species complex
Group I) and A. pacificum Litaker (previously A. tamarense species complex group IV) are
widely distributed. With fairly indistinguishable morphological characters, these two
species and the other three species of the A. tamarense species complex were redefined
primarily based on molecular phylogeny, mating incompatibilities, and toxin production [2].
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Alexandrium pacificum has been found in the Mediterranean (France, Italy, and Spain),
North Pacific (China, Japan, Singapore, and South Korea), South Pacific (Australia and
New Zealand), and the Southern Ocean [2]. Alexandrium catenella has a wider distribution
area towards the cold-water regions, but A. catenella and A. pacificum often occurred in
sympatry in North Pacific and Australia [2–5]. In China, A. catenella is mainly distributed
in the Yellow Sea, while A. pacificum has been detected in the South and East China Sea and
occasionally, in the Yellow Sea and Bohai Sea [6,7].

Like many other dinoflagellates, the life cycle of A. pacificum involves a cyst stage,
which plays a vital role in population initiation, development, dispersal, and decline [4].
Cysts remain dominant in disadvantageous environmental conditions, e.g., nutrient limi-
tation, low temperature, or darkness, and may germinate again when conditions become
favorable, especially under certain disturbances, e.g., wind-induced re-suspension [8,9].
Furthermore, cysts greatly expand the dispersal range of dinoflagellate species because
they can travel large distances via ballast water vectoring [10]. The distribution and abun-
dance of Alexandrium cysts, and their contribution to bloom formation, has been frequently
investigated [4,11–13]. The abundance of A. pacificum cysts is generally low in the East
and South China Sea with a recorded maximum of ca. 24 cysts cm−3 or 30 cysts g−1 of
sediments at stations near the Changjiang River estuary [14,15]. A high abundance of
A. pacificum cysts (503 cysts g−1) was reported in Daya Bay, South China Sea [16]. The
temporal and spatial mismatch between cyst germination and bloom outbreak implies that
bloom formation is a complex process influenced by physical, chemical, and biological
factors [4,17,18].

Alexandrium pacificum from different geographic areas show notable variation in
ecophysiological traits. The highest abundance of A. pacificum cells have been observed
in Kesennuma Bay, Japan, and in the East China Sea when the water temperature was
~20 ◦C [4,19]. In contrast, the abundance of Alexandrium spp. was high in Daya Bay, South
China Sea, at the temperature of 22.8–30.0 ◦C [20]. However, these cells were likely a
combination of A. pacificum and A. minutum [21]. Physiological adaptation of A. pacificum
to local environments has also been supported by culture experiments. The optimum
temperature for the growth of the strain ACT03 from Thau, France (Mediterranean Sea),
was 20–27 ◦C [22], in contrast to 20–30 ◦C for an A. pacificum strain isolated from Jinhae-
Masan Bay, Korea [23].

Alexandrium pacificum strains have low genetic divergence worldwide [2] but often
show notable variation in toxin profiles. Most strains of A. pacificum from Japan, Australia,
and the East and South China Sea have toxin profiles dominated by C1/2 [19,24–27].
However, the toxin profiles of A. pacificum strains from Korea and the Mediterranean are
much more varied, dominated by C1/2, C3/4, or GTX1/4 in some strains [28–30]. The
toxin profiles of A. pacificum and A. catenella isolates are distinctive and relatively consistent
and thus may be related to their origins [26,31]. The toxin profiles of A. pacificum strains
from the Yellow Sea of China have not yet been reported.

Alexandrium pacificum blooms have been frequently observed in the East China Sea [32],
but the cyst densities here were quite low [15]. The Taiwan Strait connects to the East and
South China Sea, although A. pacificum blooms are rarely reported in this area. However,
they pose a potential threat to shellfish aquaculture along the Western coast of the Tai-
wan Strait where a production of as much as 4.3 million tons was recorded in 2016 [33].
Cysts of A. pacificum have been reported in several localities in the Taiwan Strait at low
abundance [13], but intensive sampling has not yet been performed. This study aims
to understand (1) the bloom mechanism of A. pacificum in the Taiwan Strait and (2) the
relationship of the A. pacificum population in the Taiwan Strait to those in surrounding
waters. We examined the seasonal dynamics of A. pacificum cysts and cells in the Taiwan
Strait. The toxin profiles and growth rate of strains from the Taiwan Strait, South China
Sea, Yellow Sea of China, and New Zealand are also reported.
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2. Materials and Methods
2.1. Sample Collection and Treatment

Water and/or sediment samples were collected from December 2017 to December
2020 in the Taiwan Strait, Yellow Sea, South China Sea, and the Marlborough Sounds,
New Zealand (Figure 1A,B, Table 1, Supplementary Table S1). In addition, water and/or
sediment samples were collected monthly at three stations in Xiamen Bay from December
2017 to January 2020 and seasonally at 17 stations in Dongshan Bay from May 2019 to
December 2020 (Figure 1C,D, Supplementary Tables S2 and S3). Two liters of water samples
at 3 and 10 m depth were collected and prefiltered through a 200 µm mesh, subsequently
filtered onto 5 µm pore-size polycarbonate filters (Millipore, Eschborn, Germany), and
stored at −20 ◦C for DNA extraction. The concentration of chlorophyll a (Chl a), water
temperature, dissolved oxygen (DO), turbidity, and salinity were measured using a YSI
EXO Multi-Parameter Water Quality Sonde (Yellow Springs Instrument Company, Yellow
Springs, OH, USA).
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Figure 1. Sampling area and locations in the Taiwan Strait. (A) A world map showing the location of sampling areas.
(B) Overview of stations (MRE: Minjiang River estuary, JRE: Jiulongjiang River estuary, ZRE: Zhangjiang River estuary).
(C) Detailed view of the stations in Xiamen Bay. (D) Detailed view of the stations in Dongshan Bay.
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Table 1. Information of strains examined in this study, including location, latitude, longitude, collection time, origin, toxin,
and growth. NA: not available.

Strains Location Latitude Longitude Collection Time Origin Toxin Growth
Experiment

TIO855 Yantai, Yellow Sea 37◦29.28′ N 121◦37.24′ E 3 September 2016 Cell Present Yes
TIO1201 Qingdao, Yellow Sea 36◦0.15′ N 120◦21.27′ E 29 September 2017 Cyst None No
TIO1204 Taiwan Strait 25◦57.90′ N 119◦52.10′ E 16 November 2018 Cyst Present No
TIO1205 Taiwan Strait 25◦57.90′ N 119◦52.10′ E 16 November 2018 Cyst NA No
TIO1208 Taiwan Strait 25◦57.90′ N 119◦52.10′ E 16 November 2018 Cyst NA No
TIO987 Pingtan, Taiwan Strait 25◦38.04′ N 119◦48.97′ E 16 April 2020 Cell Present No
TIO989 Pingtan, Taiwan Strait 25◦38.04′ N 119◦48.97′ E 16 April 2020 Cell Present No

ATDH46 East China Sea 27◦35.24′ N 122◦7.65′ E 6 August 2009 Cyst NA Yes
TIO866 Beihai, South China Sea 21◦0.64′ N 109◦6.05′ E 11 April 2017 Cyst Present Yes
TIO1210 New Zealand 41◦16.04′ S 174◦12.14′ E 8 February 2018 Cyst Present No

Sediment samples were collected from a wide geographic area at random using a core
sampler or box sampler, and only surface sediments (0–2 cm) were sliced off. About 2.5 cm3

of surface sediment samples were processed for cysts enumeration. Cysts were extracted
using a sodium polytungstate density gradient with a density of 1.4 g cm−3 as detailed in
Bolch [34] for direct cyst counting with an inverted Eclipse TS100 (Nikon, Tokyo, Japan)
microscope. Cysts from the sediment or cells from the water sample were individually
isolated with a micropipette using the above microscope to 96-well plates filled with 300 µL
of f/2-Si medium [35] and incubated at 20 ◦C, 90 µmol photons m−2 s−1 under a 12: 12 h
light: dark cycle (hereafter called standard conditions) for the establishment of nine strains
(Table 1). Nearly all isolated cysts germinated within a week and gave rise to a culture.
Cultures were maintained in 100 mL Erlenmeyer flasks under the standard conditions.

The 0.22 µm filtered seawater (100 mL) was stored at −20 ◦C for the measurements
of nutrient concentration. The examination of nutrients was performed using a QuAAtro
(Seal Analytical, Norderstedt, Germany) as previously reported [36]. Total dissolved
inorganic nitrogen (DIN) was calculated based on the sum of ammonium, nitrate, and
nitrite concentrations.

2.2. PCR Amplifications and Sequencing

The molecular sequences of nine strains of A. pacificum were examined (Table 1). Single
cells were isolated from all nine strains and washed several times with sterile distilled
water and used for templates. PCR amplifications were carried out using 1 × PCR buffer,
50 µM dNTP mixture, 0.2 µM of each primer, and 1 U of ExTaq DNA Polymerase (Takara,
Tokyo, Japan) in 50 µL reactions. The LSU rRNA gene (D1–D6) was amplified using the
primers D1R/28–1483R and following detailed procedures as previously reported [36].
Nine new LSU rRNA gene sequences have been deposited in GenBank (accession numbers
OK178853 to OK178861).

2.3. Sequence Alignment and Phylogenetic Analysis

Newly obtained LSU rRNA (ca. 1300 bp) gene sequences were aligned with sequences
of Alexandrium available in GenBank. Sequences were aligned using the MAFFT v7.110 [37]
online program (http://mafft.cbrc.jp/alignment/server/ (accessed on 3 Aug 2021)) with
default settings. Alignments were manually checked with BioEdit v7.0.5 [38]. The final
alignment consisted of 1233 base pairs including introduced gaps. The program jModel-
Test [39] was used to select the best model of molecular evolution with Akaike Information
Criterion for Bayesian inference (BI). MrBayes 3.2 was used to perform Bayesian infer-
ence [40] with the substitution model (GTR+G) chosen by jModelTest. Four Markov chain
Monte Carlo (MCMC) chains ran for 2,000,000 generations, sampling every 1000 genera-
tions. The first 10% of burn-in trees were discarded. A majority rule consensus tree was
created to examine the posterior probabilities (BPP) of each clade. Maximum likelihood

http://mafft.cbrc.jp/alignment/server/
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(ML) analyses were conducted using RaxML v7.2.6 [41] on the T-REX web server [42] with
the model GTR+G. Bootstrap support (BS) was evaluated with 1000 replicates.

2.4. Extraction of DNA

Total genomic DNA (gDNA) of water samples were extracted using the Nucleospin
soil kit (Macherey & Nagel, Düren, Germany) following the manufacturer’s instructions.
DNA concentrations were analyzed using NanoDrop One Microvolume UV-Vis Spec-
trophotometer (Thermofisher Scientific, Wilmington, DE, USA). DNA extraction efficiency
was assessed by adding an exogenous plasmid pGEM-3Z (Promega, Tokyo, Japan) to
a portion of the sample with target cells before (Sample 1) and after (Sample 2) DNA
extraction, and dividing the copy number of pGEM-3Z computed from calibration curves
of Samples 1 and 2 [43].

2.5. Quantitative PCR (qPCR)

Quantitative PCR was performed using the A. pacificum specific real-time PCR assay
designed by Gao et al. [7] on a QuantStudio 1 real-time PCR detection system (Applied
Biosystems, Foster City, CA, USA). The primers (AtIV-F and AtIV-R) and probe (AtIV-P)
targeting the LSU rRNA gene [7] were synthesized and purified using HPLC (high perfor-
mance liquid chromatography) (Sangon Biotechnology, Shanghai, China). The specificity
of the primers and probe has been tested in a previous study using a BLAST search and
hybrid experiment [7]. The optimised assays consisted of a 20 µL reaction containing 10 µL
of 2× TaqMan Fast Advanced Master Mix (Thermofisher Scientific, Wilmington, DE, USA),
900 nM of forward and reverse primers, 200 nM of fluorescent probe, and 2 µL of DNA
template. Cycling conditions were 50 ◦C for 2 min, 95 ◦C for 2 min, and 45 cycles of 95 ◦C
for 15 s and 60 ◦C for 45 s.

The sensitivity of the assay was assessed with gDNA extracted from 1, 3, 5, and 10 cells.
Calibration curves were constructed using serial dilutions of a known concentration of
both synthetic gene fragment and cells [44]. A fragment of the LSU rRNA of A. pacificum
flanked by both forward and reversed primers, with an extra ten base pair (bp) long at both
ends, was synthesized (Sangon Biotechnology, Shanghai, China). A linear regression was
performed onto the calibration curve to determine the R2 value and slope. Amplification
efficiency (AE) was calculated (AE = [10(−1/slope) − 1] × 100%). The copy numbers of
LSU rRNA gene per cell of A. pacificum were determined from samples with known cell
numbers based on the gene fragment calibration curve. Once the mean copy number of
LSU rRNA gene per cell were confirmed, subsequent samples were examined by qPCR
based on synthetic gene fragment as it was more stable and easy to preserve. All qPCR
reactions were performed in triplicate and both negative control (no template control, NTC)
and positive control (known concentration of synthetic gene fragment) were included.

To evaluate the qPCR assay performance in the field and to account for potential
PCR inhibition effects of a natural seawater matrix, living cells of A. pacificum with known
numbers were spiked into a natural seawater sample collected in Xiamen Bay. The absence
of A. pacificum in the natural seawater was confirmed by light microscopy and qPCR. 105,
104, 103, and 102 cells of A. pacificum were spiked into 50 mL of the natural seawater matrix
in triplicates. Negative controls were also prepared using natural seawater without adding
A. pacificum cells. The spiked seawater sample was subsequently filtered through 5 µm
filters, as described for the field samples, and then stored at −20 ◦C until further process-
ing. DNA of the spiked samples was extracted, subsequent qPCRs with gene fragment
calibration curves were performed, and the A. pacificum cell number was calculated as
described above.

2.6. Growth Experiment

Strains TIO855 (from the Yellow Sea), ATDH46 (from the East China Sea, as originally
reported in Zou et al. [45]), and TIO866 (from the South China Sea) representing tropical,
subtropical, and temperate populations were subjected to growth experiments. ATDH46
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was chosen because strains from the Taiwan Strait did not grow well. Experiments on
growth response to various temperatures (8, 11, 14, 17, 20, 23, 26, and 29 ◦C) were conducted
in triplicate with 50 mL glass bottles containing 30 mL f/2-Si medium and an initial
cell density of ~1000 cells mL−1. Cultures were acclimated for 15 days to neighboring
temperatures successively, at a step less than 3 ◦C at a time. The light: dark cycle was
set as 12:12 h in all experiments. Subsamples of 0.05 mL were removed from the culture
every two days and fixed in Lugol’s solution. Each subsample was then transferred to a
Sedgwick–Rafter chamber, and at least 200 cells per sample were counted. The growth
rates in the exponential growth phase were calculated as described previously [46].

2.7. Analysis of Paralytic Shellfish Toxins

Approximately 70,000 cells of strains TIO1201 and TIO855 from Yellow Sea, strains
TIO1204, TIO987, and TIO989 from East China Sea, strain TIO866 from South China Sea,
and strain TIO1210 from New Zealand were collected in the exponential growth phase by
a Universal 320 R centrifuge (Hettich-Zentrifugen, Tuttlingen, Germany) at 2500× g for
10 min at 4 ◦C. Algal pellets were transferred to 2 mL microcentrifuge tubes and stored at
−20 ◦C until analysis.

Cell pellets were resuspended in 500 µL 0.03 M acetic and homogenized with 0.9 g of
lysing matrix D by reciprocal shaking at 6.5 m s−1 for 45 s in a Bio101 FastPrep instrument
(Thermo Savant, Illkirch, France). Samples were then centrifuged at 16,100× g for 15 min
at 4 ◦C. The supernatants were transferred to spin-filters of 0.45 µm pore-size (Millipore
Ultrafree, Eschborn, Germany) and centrifuged for 30 s at 800× g, and then transferred to
autosampler vials until measurement by LC-MS/MS.

Measurements were performed in the selected reaction monitoring (SRM) mode on
a Xevo TQ-XS triple quadrupole mass spectrometer equipped with a Z-Spray source
(Waters, Eschborn, Germany). Chromatographic separation was achieved on an Acquity
UPLC Glycan BEH Amide column (130 Å, 150 mm × 2.1 mm, 1.7 µm, Waters, Eschborn,
Germany) equipped with an in-line 0.2 µm Acquity filter and thermostated at 60 ◦C
with an isocratic elution to 5 min with 98% eluent B followed by a linear gradient of
2.5 min to 50% B and 1.5 min isocratic elution. The flow rate was 0.4 mL min−1, and the
injection volume was 2 µL. Mobile A comprised water with 0.15 % formic acid and 0.6 %
ammonia. Mobile B comprised water/acetonitrile (3:7, v/v) with 0.1% formic acid. PSTs
were quantified by external calibration with standard mix solutions of four concentration
levels consisting of the following PSTs: STX, NEO, GTX2/3, GTX1/4, dcSTX, dcNEO,
dcGTX2/3, dcGTX1/4, B1(GTX5), B2(GTX6), C1/2, and C3/4 purchased from the Certified
Reference Materials Program (CRMP) of the Institute for Marine Biosciences, National
Research Council (Halifax, NS, Canada).

2.8. Statistical Analysis

The presented maps in this study were generated using the program “Ocean Data
View” (ODV), version 5.1.0 [47].

3. Results
3.1. Molecular Identification of A. pacificum

Nine strains of A. pacificum from the Taiwan Strait, South China Sea, Yellow Sea, and
New Zealand (Table 1) shared nearly identical LSU rRNA gene sequences and differed
from each other only in one position. They grouped together with those strains from South
Korea, Australia, and the Mediterranean Sea (Figure 2).
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3.2. Assessment of the DNA Extraction Procedure

The concentration of the DNA extracts in this study ranged from 57 to 266 ng µL−1.
The qPCR results of the pGEM-3Z exogenous control in samples before and after gDNA
extractions showed that Cq was delayed by approximately one unit, and the average cor-
rection factor (extraction efficiency) was 0.53 (Supplementary Table S4). Since a consistent
gDNA extraction procedure was applied for all samples in the study, quantification could
be performed without considering the correction factor.

3.3. Assessment of the qPCR Assay

The negative control in each qPCR run showed no signal of amplification. The gene-
based calibration curve had a linear detection ranging over seven orders of magnitude
(R2 = 0.9996, AE = 96.8%; Supplementary Figure S1). The qPCR assay could detect a
minimum of 104 gene copies. The cell-based calibration curve was also linear over seven
orders of magnitude (R2 = 0.9984; AE = 99.5%; Supplementary Figure S2).

Evaluation of the assay sensitivity showed that our qPCR assay was able to detect a
consistent Cq from one (Cq = 27.44± 0.39), three (Cq = 26.03± 0.48), five (Cq = 25.27± 0.22),
and 10 (Cq = 24.24± 0.27) target cells, respectively. Therefore, the minimum number of cells
for a reliable quantification was one cell per reaction. The average LSU copy numbers per
cell of A. pacificum in this study was 168,550 ± 18,780 (slope ± SD) (R2 = 0.9992, p < 0.0001;
Supplementary Figure S3).

The recovery rate for different cell numbers of A. pacificum by spike experiments
ranged from 87% to 121%. Cell number estimation using the gene-based calibration curve
showed a positive correlation with the number of spiked cells determined microscopically
(R2 = 0.9983, p < 0.0001; Supplementary Figure S4).

3.4. Cyst Dynamics in the Taiwan Strait

Cyst abundances of A. pacificum were very low in the Taiwan Strait. Cysts were
detected at two out of 10 stations in November 2018, with an abundance of 0.8 cysts cm−3

(Figure 3A). No cysts were detected in May 2019 (Figure 3B). Cysts were found in three
out of eight stations in July 2019, with abundances that ranged from 0.8 to 3.2 cysts cm−3

(Figure 3C). In May 2020, cysts were found at seven out of 30 stations, with abundances
ranging from 0.4 to 9.6 cysts cm−3; the highest density was recorded at the station near
the Minjiang River estuary (Figure 3D). In August 2020, cysts were detected at two out of
24 stations, with abundances of 0.4 and 0.8 cysts cm−3 (Figure 3E).

3.5. Cell Dynamics in the Taiwan Strait Using qPCR

Alexandrium pacificum cells were detected at four stations in November 2018, with the
highest abundance of ~18 cells L−1 near Quanzhou (Figure 4A). Cells were detected at six
stations in May 2019, with the highest abundance of ~99 cells L−1 near the Minjiang River
estuary (Figure 4B). In July 2019, cells were found in only one station near Jiulongjiang
River estuary with a density of 2 cells L−1 (Figure 4C). In October and November 2019,
cells appeared at two stations out of the Zhangjiang and Minjiang River estuary, with an
abundance of around 139 and 15 cells L−1, respectively (Figure 4D).
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Between 1–4 May 2020, cells were detected at six out of 28 stations, ~1233 cells L−1

at the station near Jiulongjiang River estuary, and ~841 cells L−1 near the Minjiang River
estuary (Figure 4E). On 12 May 2020, an abundance of ~4610 cells L−1 was recorded near
the Minjiang River estuary (Figure 4F). On 28 May 2020, ~452 cells L−1 was recorded near
Jiulongjiang River estuary (Figure 4G). Cells were present at 10 stations in August 2020
but the highest abundance was only ~22 cells L−1 at the station near the Zhangjiang River
estuary (Figure 4H).
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3.6. Cell Dynamics in Dongshan Bay and Xiamen Bay Using qPCR

Cells of A. pacificum were detected at three stations of Dongshan Bay in May 2019,
with the highest abundance of ~10 cells L−1 at the station inside the bay mouth (Figure 5A).
No cells were found in August 2019 (Figure 5B). Cells were detected in two stations in
December 2019; the highest abundance was ~3 cells L−1 outside the bay mouth (Figure 5C).
In July 2020, cells were found at three stations, with the highest abundance of ~240 cells L−1

inside the bay mouth (Figure 5D). No cells were found in August and December of 2020
(Figure 5E,F).
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Cells were detected in Xiamen Bay from December 2017 to January 2020, with a cell
abundance of approximately 5.6 cells L−1 in December 2017; 19.6, 6.1, and 14.5 cells L−1
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in February, March and April 2018; and 4.9 and 4.2 cells L−1 in March and April 2019,
respectively (Figure 6A), when the water temperature was between 15.6 and 24.0 ◦C
(Figure 6B).
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3.7. Growth Experiments

Strain TIO855 isolated from the Yellow Sea showed growth at temperatures between
11 and 26 ◦C. The highest division rate was ~0.40 divisions d−1 at 17–23 ◦C, which then
decreased slowly towards higher and lower temperatures. Division rates were similar at
temperatures of 11, 14, and 26 ◦C (~0.30–0.31 divisions d−1). Almost no divisions occurred
at 8 and 29 ◦C (Figure 7A).
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Figure 7. Growth responses of Alexandrium pacificum to various temperatures. (A) Strain TIO855 from
the Yellow Sea, (B) strain ATDH46 from the East China Sea, and (C) strain TIO866 from the South
China Sea. The values refer to mean divisions day−1 and the error bars refer to standard deviations.
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Strain ATDH46 isolated from the East China Sea exhibited growth at temperatures
between 11 and 26 ◦C. The highest division rate was 0.63 divisions d−1 at 20 ◦C and
then dropped towards higher and lower temperatures. The division rates were 0.39, 0.55,
and 0.50 divisions d−1 at 14, 17, and 23 ◦C, respectively. Division rates were similar at
temperatures of 11 and 26 ◦C (~0.35 divisions d–1). Almost no division occurred at 8 and
29 ◦C (Figure 7B).

Strain TIO866 isolated from the South China Sea exhibited growth at temperatures
between 11 and 29 ◦C. The highest division rate was 0.93 divisions d−1 at 23 ◦C, which
then decreased sharply towards higher and lower temperatures. The division rates were
similar at temperatures of 17, 20 and 26 ◦C (around 0.5 divisions d−1). Division rate was
0.32, 0.46, and 0.34 divisions d−1 at 11, 14, and 29 ◦C, respectively. Almost no division
occurred at 8 ◦C (Figure 7C).

3.8. Toxin Profiles

All seven strains examined were able to produce PSTs except for strain TIO1201 from
the Yellow Sea. Other strains did not grow well and were excluded from examination.
N-sulfocarbamoyl toxins (C1/2 and B1) were produced by strains isolated from the East
and South China Sea and the South Pacific Ocean; among them, C1/2 (0.13–0.76 pg cell−1)
were dominant, followed by B1 (0.02–0.12 pg cell−1). In contrast, the carbamoyl toxins
GTX1/4 (6.13 pg cell−1) were dominant in strain TIO855 isolated from the Yellow Sea,
followed by GTX2/3 (1.82 pg cell−1) (Figure 8).
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3.9. Environmental Parameters in the Taiwan Strait in May 2019 and 2020

The water temperatures ranged from 21.6 to 25.2 ◦C in 2019 (Figure 9A) and from 18.8
to 26.5 ◦C in 2020, with the lowest water temperature recorded near the Minjiang River
estuary (Figure 9F). Salinity ranged from 27.4 to 34.6 in 2019 (Figure 9B) and from 27.8 to
35.6 in 2020, with the lowest salinity recorded near the Minjiang River estuary (Figure 9G).
The maximum turbidity was 5.3 NTU near the Jiulongjiang River in 2020 (Figure 9C),
compared to 10.4 NTU outside Quanzhou Bay in 2019 (Figure 9H). There were peaks of Chl
a (12.6 µg L−1) and ODO (10.2 mg L−1) near the Minjiang River estuary in 2020 (Figure 9I,J)
but not in 2019 (Figure 9D,E).
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3.10. Nutrient Concentrations in the Taiwan Strait in May 2020

Nutrient concentrations were quite high at the stations near the Minjiang River estuary
and Jiulongjiang River estuary. The maximum concentration of PO4

3− and DIN (NO2
−,

NO3
−, and NH4

+) was 1.017 and 18.722 µmol L−1, respectively, near the Minjiang River
estuary (Figure 10A,B).
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4. Discussion
4.1. Spatio-Temporal Distribution of A. pacificum Cells in the Taiwan Strait and
Surrounding Waters

High densities of A. pacificum (103–106 cells L−1, as Alexandrium sp.) were observed in
the East China Sea from 2004 to 2007 [19,32]. However, these investigations were based on
microscopic observations only; thus, the reported cell numbers may be overestimates since
morphologically similar species, such as Alexandrium affine, are also present in this area [6].
To the best of our knowledge, this is the first attempt to quantify A. pacificum cells using a
molecular approach focusing on the East China Sea.

A previous survey based on qPCR revealed a maximum A. pacificum abundance of
554 cells L−1 in the joint area between the Yellow Sea and East China Sea, but the abundance
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was generally less than 20 cells L−1 in the Yellow Sea and Bohai Sea [7]. This survey was
carried out in May 2012, similar to our survey in the Taiwan Strait, in which A. pacificum
abundance as high as 103 cells L−1 were recorded. Blooms of A. pacificum occurred in
central Japan much later (from July to September) but the water temperature was almost
the same (~20 ◦C) [4]. Blooms of A. pacificum have not yet been confirmed in northern China
but an intensive bloom (108 cells L−1) of Alexandrium tamarense broke out in the Bohai Strait
in September 2006, causing massive mortality of abalone [48]. The responsible species was
likely to be A. pacificum as the water temperature was ~23 ◦C during the bloom [48], based
on the fact that A. catenella prefers lower temperatures [4].

Unlike the blooms of A. pacificum recorded 100 km away from the Zhejiang coast of
the East China Sea [32], high cell densities were observed near the Taiwan Strait coast. The
average annual sediment load into East China Sea from the Changjiang River is 22.9 GT, but
the Minjiang River discharges much less sediment (0.4 GT) to the Taiwan Strait [49]. This
results in much higher turbidity along the coast of East China Sea (Zhejiang province) than
that along the western Taiwan Strait coast (Fujian province) and may explain the spatial
distinction of blooms between these two areas. It is worth noting that the western coast
of Taiwan Strait is an important area for shellfish culture [33]; thus, routine monitoring of
PSTs in shellfish is needed during the bloom season. In addition, our results suggest that
intensive monitoring of A. pacificum cells using a molecular approach in early May will
provide an early warning of potential blooms. In fact, monthly sampling in Xiamen Bay
revealed a relatively high abundance of A. pacificum cells in early spring (Figure 6A).

Alexandrium catenella has been reported to prefer less saline and nutrient-rich waters
provided by river runoff [50,51], which might also apply to A. pacificum. The maximum
nutrient concentrations were recorded near the Minjiang and Jiulongjiang River estuary in
early May 2020, where high abundances of A. pacificum cells (~1000 cells L−1) were also
recorded (Figure 4). The patchy distribution of A. pacificum cells supports the idea that a
unique set of environmental and oceanographic forcing has determined the timing and
extent of bloom development, as also demonstrated in A. catenella [52].

4.2. Possible Origins of A. pacificum Blooms in the Taiwan Strait

Both A. catenella and A. pacificum are able to produce ellipsoidal cysts that cannot
be differentiated morphologically, but previous surveys have demonstrated that only
A. pacificum is present in the East China Sea [6,15]. Therefore, we consider the ellipsoidal
cysts in the Taiwan Strait are true A. pacificum and reveal that cyst densities were very low
along the western coast of Taiwan Strait from 2018 to 2020. The findings of a maximum cyst
density of A. pacificum (9.6 cysts cm−3) in the Taiwan Strait are consistent with previous
investigations (maximum: 23.5 cysts cm−3 or 30 cysts g−1 dry weight [DW]−1) in the East
China Sea [14,15], although blooms of A. pacificum have been frequently observed there [32].
The currents in the Taiwan Strait are often strong and can reach 0.45 m s–1 [53], which
is unfavorable for cyst accumulation. In addition, the dormancy of A. pacificum cysts is
less than 2 weeks, after which they are ready to germinate under suitable environmental
conditions [14], which is further disadvantageous for the formation of cyst banks. The cyst
density of A. pacificum was extremely low in Xiamen Bay and Dongshan Bay (Gu, personal
observation), but a high abundance in the other 11 bays in the Taiwan Strait cannot be
excluded and will be the focus of future study. In fact, several patches with high cyst
densities up to 440 cysts g DW−1 were recorded in Thau Lagoon, although the average cyst
density was less than 20 cysts g DW−1 [17].

The formation of the initial population of A. pacificum by peak cyst germination is
important for subsequent blooms 1–2 months later in Kesennuma Bay of central Japan [4].
The role of excystment in bloom initiation in the Taiwan Strait cannot be underestimated
because cysts in the surface sediment at low abundances (2–25 cysts cm−3) can provide
an inoculum of vegetative cells for bloom initiation [54]. Cyst abundance of A. pacificum
was less than 10 cysts cm−3 in the Taiwan Strait but it apparently falls within this range.
Alternatively, the persistent presence of cells in the water column, as many as 15–18 cells L−1
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in winter (Figure 3A,D), is also likely to lead to proliferation into high density blooms
in spring when coincident with favorable physical, chemical, and biological factors, as
observed in A. catenella [55].

4.3. Identifying Populations Based on Physiological Differentiation

The optimum water temperature of the cultured strains of A. pacificum from the
East and South China Sea was 20 and 23 ◦C, respectively, similar to strains from Japan,
Korea, Australia, and the Mediterranean Sea, showing optimum growth temperatures from
20 ◦C to 25 ◦C [4,22,23,27,56]. Strain TIO855 from the Yellow Sea showed lower division
rates (0.06 divisions d−1) at 29 ◦C compared to the 0.34 divisions d–1 of the South China
Sea strain TIO866, suggesting that geographically separated populations are adapted to
local environments.

In addition to the differentiation in division rates, the toxin profiles of A. pacificum
strains from different areas, or even from the same region, also varied significantly [18,45].
However, the dominance of C1/2 toxins appeared to be characteristics of A. pacificum strains
isolated from the East China Sea [45]. These strains were established exclusively from
resting cysts but C1/2 were also the dominant toxins in the bloom samples of A. pacificum in
the East China Sea [32]. Three new strains of A. pacificum from water column and sediments
in the Taiwan Strait also produced predominantly C1/2, thus supporting the notion that
they belong to the same population as a result of rapid transition between cyst and cell
stages. In terms of toxin profiles, A. pacificum strains from the East China Sea were similar
to Japanese strains as they both produced predominantly C1/2 but the latter also produced
predominantly GTX1/4 or B1 [57]. These results suggest that gene flow between these
two populations is infrequent, although limited gene flow may have occurred based on
microsatellite data [58].

To the best of our knowledge, this is the first report of the toxin profiles of A. pacificum
from northern China, although this species is known to be present in the Bohai Sea and
Yellow Sea of China [7,59]. One of these strains produced predominantly GTX1/4 but
lacked C toxins. These types of toxin profiles are unusual and not found in strains from
elsewhere (Supplementary Table S5). The saxitoxin (STX) biosynthesis pathway includes a
group of genes, which form a gene cluster in cyanobacteria Cylindrospermopsis raciborskii [60].
Comparative transcriptomics of toxin synthesis genes revealed that most of the key genes
for STX synthesis are present in A. pacificum [61]. The unusual toxin profile of A. pacificum
from Yellow Sea likely resulted from the failure to produce N-sulfocarbamoyl toxins due
to the lack of sulfotransferases, which is related with the production of N-sulfocarbamoyl
toxins by the sulfoconjugation process [62]. GTX1/4 toxins are more potent than C1/2;
thus, the risk potential by A. pacificum is higher in northern China. The number of strains
available from the Yellow Sea of China is still limited, and more strains are needed for the
determination of toxin profiles. It is proposed that populations between the East China
Sea and Yellow Sea may be separated and may have different origins based on the distinct
toxin profiles [63].

The coincidence of increased Changjiang River discharge and the resulting weakening
of the China Coast Current in the summer may act as a physical barrier limiting the
dispersal of A. pacificum cells, as also reported in larvae of the limpet Cellana toreuma [64].
Both of these are marine species and may not survive the freshwater plumes. Moreover,
they are planktonic and rely heavily on currents for dispersal. In contrast, populations
from the East and South China Sea are probably the same as there is no strong physical
barrier between them. Our new strain TIO866 from the Beibu Gulf shared similar toxin
profile with strains from the South China Sea, which also predominantly produce C1/2
toxins [21,24,26], thus supporting the idea of a single population. Strain TIO1210 from New
Zealand produced a similar toxin profile to those from the Taiwan Strait, but differed from
those in the Bay of Plenty by the lack of C3/4 [65], indicating that there are also variable
strains and populations in New Zealand.
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