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Eukaryotic phytoplankton are responsible for at least 20% of annual global carbon fixation.

Their diversity and activity are shaped by interactions with prokaryotes as part of complex

microbiomes. Although differences in their local species diversity have been estimated, we

still have a limited understanding of environmental conditions responsible for compositional

differences between local species communities on a large scale from pole to pole. Here, we

show, based on pole-to-pole phytoplankton metatranscriptomes and microbial rDNA

sequencing, that environmental differences between polar and non-polar upper oceans most

strongly impact the large-scale spatial pattern of biodiversity and gene activity in algal

microbiomes. The geographic differentiation of co-occurring microbes in algal microbiomes

can be well explained by the latitudinal temperature gradient and associated break points in

their beta diversity, with an average breakpoint at 14 °C ± 4.3, separating cold and warm

upper oceans. As global warming impacts upper ocean temperatures, we project that break

points of beta diversity move markedly pole-wards. Hence, abrupt regime shifts in algal

microbiomes could be caused by anthropogenic climate change.
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Phytoplankton are a diverse group of largely photo-
autotrophic microorganisms encompassing algae and
cyanobacteria1,2, contributing approximately half of the

annual global carbon fixation3. Although the interconnected
oceans generally do not limit their global dispersal4–6 many
studies have shown that their local diversity is correlated with
geographical partitioning based on either oceanographic fronts
that separate populations or larger-scale ecosystem gradients such
as the latitude gradient in local species diversity7–10. However,
there is also evidence that environmental and ecological selection
in geographically well-defined and seemingly unstructured mar-
ine ecosystems likely plays a role in generating and maintaining
microbial diversity11. Regardless as to whether inter or intra-
specific variations are being considered to explain microbial
diversity patterns in the global ocean, two variables usually
explain most of the relatedness between species and populations,
respectively: temperature and whole-community chlorophyll
a9,11. Temperature is known to be a strong selecting agent evi-
denced by thermal tolerance limits according to the geographic
origin of species9,12,13. Furthermore, temperature together with
salinity and the flow of currents creates ecological boundaries in
the upper ocean such as oceanographic fronts, which might
impact the structure and evolution of inter and intra-specific
diversity across spatio-temporal scales10,14. Chlorophyll a on the
other hand, which is a proxy for the biomass of phytoplankton,
suggests that ecological selection is at play via interactions with
organisms that benefit from phytoplankton and vice versa11.
Besides herbivores such as copepods and krill, heterotrophic
microbes such as bacteria and archaea are among those groups
with significant interactions with phytoplankton15. Some of them
even form intimate relationships including mutualism and
symbiosis16,17. The space where most of the interactions between
phytoplankton and heterotrophic prokaryotes take place is the
phycosphere, a microscale mucus region that is rich in organic
matter surrounding a phytoplankton cell analogous to the rhi-
zosphere in plants18,19. Thus, organic matter released by phyto-
plankton are used as substrates for prokaryotes, which sometimes
provide essential bioactive compounds in return, such as vitamin
B12. About 60% of examined heterokont microalgae (e.g. dia-
toms) require vitamin B12 that is synthesized by bacteria and
archaea20. Thus, those bacteria have formed a mutualistic rela-
tionship with phytoplankton that potentially help to sustain
primary productivity in many parts of the global ocean16. There is
also evidence for species-specific diversity of algal microbiomes.
Often, it is the phytoplankton partner that recruits heterotrophic
microbes via the secretion of infochemicals, which elicits a
response from the other microbes19. As these signalling processes
can be species-specific and likely have co-evolved in association
with responding partners, algal microbiomes are complex and
dynamic and their diversity might be either driven by ecological
or environmental selection, generating and maintaining these
intimate relationships over space and evolutionary time.

As algal microbiomes underpin some of the largest food webs
on Earth and drive global biogeochemical cycles, significant
international efforts, especially over the last decade have provided
insights into what drives their diversity and global biogeography
in the global ocean. For instance, large-scale ocean omics studies
in the epipelagic realm as part of the Tara Oceans project21,22

showed that associations among microbes were non-randomly
distributed in co-occurrence networks and that their structure
was driven by both local and global patterns15. Microbial net-
works that included a significant amount of prokaryotic phyto-
plankton (cyanobacteria) even appear to be responsible for the
majority of carbon exported in the oligotrophic ocean23. Inter-
estingly, some of the co-occurrence networks that contained
eukaryotic phytoplankton groups were not taxon-specific and

dominated by mutual exclusions, which suggests that their bio-
geography may be influenced by predator-prey dynamics24.

These studies have provided a step change in our under-
standing of how ecological interactions in the context of changing
environmental conditions likely influence the diversity of the
photoautotrophic microbial interactome in the global ocean.
However, to assess how environmental conditions such as tem-
perature and variable nutrient concentrations impact the diversity
of algal microbiomes, it is instrumental to include polar oceans.
With their inclusion, the complete spectrum of environmental
parameters that co-vary can be used to assess how these para-
meters on a truly global scale from pole-to-pole impact differ-
ences in the variation of species identities and abundances
between local assemblages across larger regions (beta
diversity)25,26 of interacting algal microbiomes, which, to the best
of our knowledge, has not been addressed in previous studies. The
application of beta diversity enables us to understand the degree
of differentiation among biological communities, which across
the complete latitudinal scale from pole to pole will provide
insights into how marine microbes are latitudinally distributed.
As the Arctic and Southern Oceans and specifically their eukar-
yotic phytoplankton and associated prokaryotes are often not
included in global biodiversity surveys, our understanding of how
environmental variables including habitat characteristics of polar
oceans influence differences in their diversity and activity is
incomplete. However, with the inclusion of polar communities,
biogeographic differentiation will not likely reveal drivers
responsible for small-scale and local differences in the relatedness
of communities because the extreme ends of the environmental
spectrum are being considered. Rather, this approach will provide
insights into environmental variables that are likely responsible
for the most latitudinal differentiation of microbial diversity,
potentially overshadowing variables responsible for local differ-
ences in microbial diversity patterns. Our study, therefore,
addresses how large-scale environmental differences on a nearly
complete latitudinal scale from pole-to-pole correlate with the
biogeographical differentiation of algal microbiomes including
the gene activity of eukaryotic phytoplankton. Furthermore, as
the upper ocean is experiencing significant warming due to the
production of anthropogenic carbon dioxide, we estimate how
their biogeographic differentiation might alter based on a model
from the IPCC 5th Assessment Report. The main outcome of our
work shows that physico-chemical differences between polar and
non-polar upper oceans have a strong influence on the dissim-
ilarity of algal microbiomes with respect to changes in the
diversity of their co-occurring microbes but also the gene
expression activity of their primary producers. These results
suggest that there is an ecological boundary in sub-polar oceans
of both hemispheres, which not only alters the spatial scaling of
algal microbiomes but also shifts pole-wards due to global
warming.

Results
A meta-omics resource for algal microbiomes in the upper
ocean from pole to pole. Three different omics datasets were
collected for this study from chlorophyll amaximum layers of the
Arctic, Atlantic and Southern Oceans (Fig. 1A): (1) 79× eukar-
yotic metatranscriptomes, 2) 57 × 16S and (3) 54 × 18S rDNA
amplicon (V4 region) datasets as subsets of the 82 total samples
(Fig. 1A). Sequencing was done at the U.S. Department of Energy
Joint Genome Institute (JGI) as part of the JGI Community
Science Project 532/300780 (Sea of Change: Eukaryotic Phyto-
plankton Communities in the Arctic Ocean).

This dataset consists of sequence data from 4 separate cruises:
ARK-XXVII/1 (PS80)—17th June to 9th July 2012; Stratiphyt-II
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—April to May 2011; ANT-XXIX/1 (PS81)—1st to 24th
November 2012 and ANT-XXXII/2 (PS103)—20th December
2016 to 26th January 2017 and covers a transect of the Atlantic
Ocean from Greenland to the Weddell Sea (71.36°S to 79.09°N).

The 79 eukaryotic metatranscriptomes were sequenced (Illu-
mina HiSeq-2000 instrument) to an average depth of 251Mbp
each based on standard JGI protocols. These data were processed
by the Integrated Microbial Genomes and Microbiomes (IMG)
pipeline at JGI27. For estimating microbial diversity, 16S and 18S
rDNA amplicon datasets were generated (Illumina MiSeq) with
an average sequencing depth of 71.8 Mbp and 52.5 Mbp per
sample, comprising an average of 393,247 and 142,693 sequences

per sample, respectively. A custom bioinformatics pipeline was
built for 18S rDNA classifications including a model to normalise
the copy number of 18S rDNAs according to the estimated
genome sizes of diverse eukaryotic microbes (Supplementary
Figs. 1, 2). Rarefaction analysis of all sequence datasets indicated
that adequate sampling was achieved for all three types of datasets
(Supplementary Fig. 3). Of the total number of contigs
(34,241,890) in our metatranscriptome dataset, 36,354,419 non-
redundant genes could be predicted, and from these genes ca.
31% (11,205,641 genes) could be assigned to a Pfam domain28.
Most of the identified prokaryotic and eukaryotic taxa were
present at more than 20 stations and had an evenness of J’ ≥0.5
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Fig. 1 Sampling sites and environmental metadata. A Stations for metatranscriptome sequencing (green) and 16 and 18S rDNA amplicon sequencing
(red). Map was generated using Ocean Data view. B Latitude versus temperature (degree celsius). C Latitude versus nitrate and nitrite concentrations. D
Latitude versus silicate concentrations. E Latitude versus phosphate concentrations. Nutrient concentrations in µmol L−1.
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(Supplementary Figs. 4, 5). Only 22% of the 18S dataset could be
assigned to taxa at the levels of species (Supplementary Figs. 4a,
6c), while for the 16S dataset, 47% could be assigned to taxa at the
levels of genus (Supplementary Fig. 4b, Supplementary Fig. 6d).
The metatranscriptomes represent a set of 36,354,419 non-
redundant genes of which nearly 28% could be annotated as being
of eukaryotic origin, and 31% had homology to known protein
domains in the Pfam database. All sequence data were
accompanied by measurements of temperature, salinity, dissolved
inorganic nitrate/nitrite, phosphate and silicate at the depth of

sampling (Fig. 1B–E; Supplementary Table 1). Temperatures in
both hemispheres ranged from ca. −1.74 to 29.02 °C reflecting
the pole to equator distribution of annual average upper ocean
temperatures (Fig. 1B). Salinity varied between 31.0 and 36.9
PSU. Dissolved inorganic nutrients (µmol L−1) were most highly
concentrated in the Southern Ocean with minima for all nutrients
at ca. 30°S/N (Fig. 1C–E). Based on a canonical correspondence
analysis (CCA) all Pfams from metatranscriptomes against these
individual environmental variables (Supplementary Fig. 6a, b),
temperature was determined to account for the highest
percentage of variation compared to all other environmental
variables in each dataset. Temperature also had a significantly
positive correlation (R2 ≥ 0.63; p-value ≤ 0.001) with prokaryotic
and eukaryotic diversity (Shannon Index) (Supplementary Fig. 7).

Co-occurrence networks of expressed genes and microbial taxa.
The first pole-to-pole eukaryotic metatranscriptomes from
chlorophyll a maximum layers (Fig. 1A) enabled us to provide
insights into how global-scale environmental conditions in the
upper ocean drive biogeographic differentiation of eukaryotic
community gene expression. To identify which environmental
variable was most responsible for a possible latitudinal differ-
entiation in gene co-expression networks, we applied a weighted
gene co-occurrence network analysis (WGCNA)29 based on Pfam
gene counts. Our WGCNA revealed that there were two gene co-
expression networks only based on positive links (Fig. 2A, Sup-
plementary Table 5). A correlation statistical analysis which is
part of the WGCNA package was conducted. This involved tak-
ing each network’s ‘eigengene’, a term used by WGCNA, which is
the first principal component of a network, to be representative of
that network in order to conduct a correlation analysis of net-
works to the environmental variables as shown in Fig. 2B. Based
on this work, temperature was identified as the primary driver for
both networks, which corroborates results from our CCA analysis
(See above and Supplementary Fig. 6). Whereas salinity was co-
correlated with temperature, the major inorganic nutrients such
as nitrate, phosphate and silicate were significantly (p-value
≤0.001) anti-correlated to temperature and salinity. The gene co-
expression network designated as blue (N= 1614 Pfams) has a
strong positive relationship with temperature (correlation coeffi-
cient of +0.72; p-value= 2e−12), hence, this is considered to be
the warm network. The network designated as turquoise
(N= 2369 Pfams) has a strong negative relationship with tem-
perature (correlation coefficient of −0.8; p-value= 1e−16),
hence, this is considered to be the cold network. 7,172,786 genes
with an average length of 757 bps were part of the cold network
whereas the warm network was composed of 4,954,085 genes that
had an average length of 655 bps. The average GC content of
transcripts in the cold network was 51% and in the warm network
was 52%. 831,540,849 reads of the cold network and
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Fig. 2 Co-occurrence networks of protein families in eukaryotic
metatranscriptomes and their gene ontology. On the log10-scaled gene
counts of protein families (Pfams), two networks were found: A
blue=warm (n= 1614) and turquoise= cold (n= 2369). B Co-occurrence
analysis of Pfam protein families dataset, two networks were found, a
turquoise (cold) and blue (warm), and also a grey (2 Pfams: no network).
Correlation heatmap between the networks and environmental parameters.
The colours correspond to the correlation values, red is positively
correlated and blue is negatively correlated. The values in each of the
squares correspond to the assigned Pearson correlation coefficient value on
top and p-value in brackets below. C Gene ontology (GO) analysis of the
co-occurrence of Pfam protein families dataset for both co-occurrence
networks.
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1,239,584,159 reads of the warm network could be assigned Pfam
domains. Unassigned Pfams designated as grey (N= 2 Pfams) did
not form a co-expression network and had only a significantly
positive correlation (+0.39; p-value= 8e−04) with latitude.

Gene ontology (GO) analyses with Pfams from both networks
(Fig. 2C; Supplementary Fig. 8) showed that the cold network was
enriched in several molecular functions associated with catalytic
activity in general and specifically with acting on proteins and
RNAs. Strongly enriched in the warm network were cellular
components including mitochondria, ribosomes, non-membrane
bound organelles, and the envelope.

The mapping of the node-specific Pfam abundance for each
network across all stations is shown in Fig. 3A, B. Pfams of the
cold network mainly recruit from the Southern Ocean and the
Arctic (86.7% total) with the lowest abundance of Pfams mapping
to stations between 30°N/S (13.3% total). In contrast, Pfams from
the warm network were mainly recruited from the tropical and
temperate North Atlantic (48.1% total). Interestingly, slightly
more Pfams were recruited from the Arctic (38.7% total) then the
Southern Ocean (13.2% total) for this network.

To reveal how environmental gradients from the Arctic to the
equator influence associations between microbial eukaryotes and
prokaryotes, we applied the same WGCNA29 analysis as applied
for the eukaryotic metatranscriptomes on log10 transformed
normalized (according to genome size, Supplementary Fig. 2)
abundances of 18S and 16S rDNA sequences. Co-occurrences
were estimated on the normalized abundance of sequences at the
species level for eukaryotes (18S) and genus level for prokaryotes
(16S). Similar to the gene expression co-occurrence analysis, we
obtained two major networks between eukaryotes and prokar-
yotes that correlated most strongly with temperature and latitude
(Fig. 4A, B). Thus, similar to the gene co-expression networks, we
identified a cold (Blue; n= 51 species; correlation coefficient of
≤0.79; p-value ≤ 1e−10) and a warm network (Turquoise;
n= 70 species; correlation coefficient of ≥0.83; p-value ≤ 3e−12)
of co-occurring eukaryotic and prokaryotic microbes (Supple-
mentary Table 2). Unlike for the metatranscriptomes, there were
no unassigned 16 and 18S sequences. In the cold network, green
algae of the group Prasinophytes were species rich and the
Prymnesiophyte Phaeocyctis cordata had the highest number of
connections to other species in this cluster (Supplementary
Table 2). The prokaryotic community had several highly

connected bacterial taxa known to include cold-adapted species
some of which co-occurring with diatoms (e.g. Glaciecola)30. Two
bacterial taxa in this cluster (Herbaspirillum, Bradyrhizobium)
are known to have species that have the ability to fix atmospheric
N2

31,32. Although Coscinodiscophyceae were particularly abun-
dant in cold waters of the Arctic, only one species (Actinocyclus
actinochilus) was part of this cluster. The network from warm
waters was very different in terms of species composition and co-
occurrence patterns. Unlike in the cold network, cyanobacteria
were among the most highly connected taxa including Prochlor-
ococcus and Synechococcus. Small and mostly flagellated species
from the group of Heterokontophyta dominated the most diverse
group of eukaryotes in this cluster. There were also Dinoflagel-
lates, Haptophytes and Pelagophytes. Many highly connected
heterotrophic bacteria in this cluster are known to be associated
with particles (e.g. soil, biofilm) and two taxa are known to have
photoheterotrophic species that contain bacteriochlorophyll
(Erythrobacter, Roseivivax)33. This cluster contained neither
diatoms nor prasinophytes. There were eight shared classes of
species in both co-occurrence networks namely Gammaproteo-
bacteria, Alphaproteobacteria and Flavobacteriia. A full list of the
classes of species can be found in Supplementary Table 2.

Biogeographical mapping of the node-specific 16 and 18S
abundance for each network across all stations are shown in
Fig. 4C, D. This revealed that 90.01% of sequences from the cold
network were recruited from north of 60° in the Arctic Ocean
with the opposite biogeographical recruitment pattern for the
warm network (78.25 % from stations <60°N).

The latitudinal differentiation (beta diversity) for expressed
eukaryotic genes and microbial taxa. As the co-occurrence
analysis revealed for both expressed genes and taxa, that the
environmental difference between polar and non-polar upper
ocean waters appears to be most responsible for the geographical
separation of algal microbiomes, we tested this result by calcu-
lating the ratio between regional and local sequence diversity
(beta diversity) across all stations, which provides a measure of
genetic differentiation between communities across latitudes. The
partitioning of cold and warm co-occurrence networks suggests
that there are major breakpoints in the genetic differentiation
demarking the transition between polar and non-polar upper

Pfam biogeography
of cold

co-occurrence network

Pfam biogeography
of warm

co-occurrence networkA B

Fig. 3 Biogeographical mapping of the node-specific abundance for each protein family (Pfams) network across all stations from pole to pole.
Contribution of Pfam containing sequences from individual metatranscriptome sites to corresponding protein family co-occurrence networks. Bubbles
scaled according to percentage contribution to total abundance pool. A Pfam biogeography of cold co-occurrence network and B Pfam biogeography of
warm co-occurrence network. Abundance is given in percentage contribution to the total sequence pool per site with increasing contribution from small to
large circles and from blue to red.
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ocean ecosystems, with temperature and latitude likely being
major drivers.

In order to test this hypothesis, we calculated a
presence–absence matrix for each dataset. A multiple-site
dissimilarity was performed on the presence–absence matrix
with beta.pair, a function from the betapart R package and a
dissimilarity index set by Sørensen34. These values were then
plotted against all environmental variables, to enable us to get a
range of values in which the breakpoint might be located. We
then searched through these possible breakpoints for the one with

the lowest mean squared error. The search for breakpoints was
performed using all environmental variables including nutrients
and salinity as they are known to have an impact on microbial
diversity and activity (Supplementary Figs. 9, 10)14 Latitude
correlates like temperature (Figs. 2B, 4B, 5A, B). Only the strong
latitudinal gradient of temperature showed significant break-
points in beta diversity, which largely separated cold from warm
microbial communities and their associated metabolism (Fig. 5A).
For metatranscriptomes, the breakpoint was estimated to be at
18.06 °C (Fig. 5A), for 16S we identified a breakpoint at ca.
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Fig. 4 Co-occurrence networks of 16 and 18S rDNAs, their biodiversity and biogeographical mapping of the node-specific abundance for each
taxonomic network across all stations from pole to pole. On the log10 transformed abundances of 18S rDNA species level and 16S rDNA genus level, two
networks were found: A cold (n= 51) and warm (n= 70). A list of species names and class names of the species can be found in the Supplementary
Table 2. B Co-occurrence analysis of 18S rDNA species level and 16S rDNA genus level, two networks were found, a turquoise (cold) and blue (warm).
Correlation heatmap between the networks and environmental parameters. The colours correspond to the correlation values, red is positively correlated
and blue is negatively correlated. The values in each of the squares correspond to the assigned Pearson correlation coefficient value on top and p-value in
brackets below. C Taxa biogeography of cold 16/18S co-occurrence network. D Taxa biogeography of warm 16/18S co-occurrence network. Abundance is
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Fig. 5 Beta diversity break-point analyses. A, B Represent breakpoints of protein families as part of the metatranscriptome dataset. C, D Represent
breakpoints of the 18S rDNA and 16S rDNA datasets. The numbers correspond to sample locations as shown in Fig. 1A. The y-axis represents beta diversity
across all stations. The x-axis in A, C and D represents temperature and in B represents latitude. The horizontal lines indicate the breakpoints in beta
diversity. For the Pfam protein families dataset in (A), the breakpoint is at 18.06 °C with a p-value of 3.741e−10. In B the breakpoint is at 52.167 degrees
altered latitude (37.833 degrees latitude) with a p-value of 2.225e−07. For the 16S rDNA dataset in (C), the breakpoint is at 9.49 °C with a p-value of
1.413e−4. For the 18S rDNA dataset in (D), the breakpoint is at 13.96 °C with a p-value of 8.407e−11.
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9.49 °C (Fig. 5C) and 18S at 13.96 °C (Fig. 5D). The average
temperature for the taxonomic and functional beta diversity of
eukaryotic phytoplankton and their co-occurring bacteria is
14 °C ± 4.3. The metatranscriptome data enabled us to identify
the geographical locations of the breakpoints as the dataset is pole
to pole (Fig. 5B). The two breakpoints identified largely separate
polar from non-polar oceans (Fig. 5B).

Projection of geographical shifts in beta-diversity breakpoints
across the North Atlantic. The global ocean is a significant sink
of heat with the consequence that the upper ocean has become
warmer over the past 100 years due to the anthropogenic pro-
duction of carbon dioxide. Thus, stratified warm-water masses
expand pole-wards. This is of particular relevance in the North
Atlantic and North Pacific and even the Arctic Ocean35,36.To
simulate how warming of the North Atlantic might impact the
beta-diversity breakpoints and therefore local changes in the algal

microbiomes, we utilised a model from the IPCC 5th Assessment
Report. For estimates of changes over the 21st century, we use the
RCP 8.5 HadGEM2-ES CMIP5 experiment37. A historical
HadGEM2-ES experiment was also run for CMIP5, which we
used to bias-correct the projected temperatures. The resulting
shifts in breakpoints from these temperatures are shown in Fig. 6.
Grid boxes that contain sea ice in the climatology were ignored
from this analysis. Projections from the model show that the most
affected geographical region in terms of shifts in the diversity of
algal microbiomes over the coming decades is the area between 40
and 60° N, which includes the North Sea and most of the British
Isles (Fig. 6).

Discussion
Our study has provided evidence that differences in environ-
mental conditions between polar and non-polar upper oceans can
explain the partitioning of co-occurring sequences into two major
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Fig. 6 IPCC-based modelling of climate driven shifts in beta diversity breakpoints. Observations (1961–1990) and modelled (2010–2099) changes over
the 21st century, in the thresholds for breakpoints in beta diversity. Regions are shown as red for metatranscriptomes (>18.06 °C), orange for 18S
(<18.06 °C, >13.96 °C), yellow for 16S (<13.96 °C, >9.49 °C) and blue for temperatures <9.49 °C for a 1961–1990 observations from the HadISST dataset.
Modelled estimates temperatures from the HadGEM2-ES CMIP5 run for the 30-year averages, 2010–2039, 2040–2069, and 2070–2099, respectively.
Temperatures from HadGEM2-ES have been calibrated to the HadISST observations as described in methods. Black solid line represents the 15 °C and the
dashed line the 14 °C average upper ocean temperature.
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algal microbiomes (Figs. 2–4). The latitudinal differentiation of
their individual sequences based on beta diversity is mainly
correlated with the latitudinal gradient of temperature in the
upper ocean, especially at transition zones (breakpoints) between
polar and non-polar oceans (Fig. 5), hence corroborating our
WGCNA analysis (Figs. 2–4). However, many other environ-
mental parameters including essential nutrients were either sig-
nificantly negatively or positively correlated with temperature and
latitude, suggesting that they also play an important role in the
biogeographic differentiation of algal microbiomes in the upper
ocean. The negative correlation of inorganic nutrients with
temperature (Figs. 2B, 4B) reflects the observation that cold upper
waters are usually nutrient-rich whilst warmer upper
ocean waters tend to be nutrient poor considering global and
annual averages38. Thus, differences in the physical structure (e.g.
seasonally mixed vs permanently stratified water) of the upper
ocean caused by latitudinal gradients of temperature might be the
main reason for the separation into largely polar (cold) and non-
polar (warm) algal microbiomes. The difference in recruiting
sequences from polar vs non-polar oceans is larger for the two
taxonomic networks (Fig. 4C, D) compared to the gene expres-
sion networks (Fig. 3A, B). Considering that the number and
redundancy of expressed genes and Pfams in metatranscriptomes
is significantly higher than the more distinct datasets of 16 and
18S sequences, this numerical difference may have contributed to
differences in the degree of latitudinal partitioning. A reason for
the stronger recruitment of Pfams from the Arctic (38.7% total)
compared to the Southern Ocean (13.2% total) for the warm
network might be due to the North Atlantic Current (NAC),
which was sampled (Fig. 1), and likely carried microbes from
lower latitudes as the NAC is a northward prolongation of the
Gulf Stream. In contrast, the frontal system in the Southern
Ocean represents a boundary system less prone to a poleward
range shift of microbial species from lower latitudes10. Hence, a
lower number of Southern Ocean Pfams were recruited for the
warm co-occurrence network.

Although several global-scale studies, with Tara Oceans22 being
the most significant, have already revealed that temperature can
be considered the best predictor of local epipelagic plankton
diversity9 our study has extended this work by including both
polar oceans and by focusing on eukaryotic phytoplankton and
their co-occurring prokaryotic microbes. Furthermore, this is the
first study, at least to the best of our knowledge, which is based on
latitudinal beta diversity to reveal genetic differentiation in
marine microbial communities from pole to pole in relation to
variable environmental conditions. Our results, therefore, provide
insights into how changing environmental conditions correlate
with biodiversity changes (breakpoints in beta diversity) subject
to large-scale environmental fluctuation and disturbances26. This
knowledge is essential for predicting the consequences of global
warming (Fig. 6) and therefore may guide environmental man-
agement. Most previous studies compared local species diversity
(alpha diversity) across latitudes9. Nevertheless, temperature was
also identified as one of the most important variables explaining
differences in species composition of local communities across
large-scale latitudinal gradients.

The concept of ocean biogeochemical provinces (Longhurst
provinces)39 often matches local differences in upper-ocean
microbiomes14 and their linked biogeochemical activity such as
nutrient and carbon cycling40. Although our study confirms the
large-scale genetic differentiation of algal microbiomes between
polar (ICE, SPSS) and non-polar Longhurst provinces (e.g. STSS,
NHSTPS, SHSTPS) covered by our pole-to-pole transect, we did
not identify geographic differentiation between any of the non-
polar Longhurst provinces. Arguably, there are no stronger
environmental differences than between polar and non-polar

upper oceans mainly caused by strong seasonality closer to the
poles, overall low temperatures, the presence of sea ice, and dif-
ferences in seasonal mixing38. Thus, environmental differences
between polar and non-polar oceans may impose much stronger
geographic differentiation in biodiversity of algal microbiomes
and their expressed genes compared to environmental differences
between Longhurst provinces of non-polar oceans (e.g. STSS,
NHSTPS, SHSTPS). As the Arctic and the Southern Ocean do not
significantly differ in their overall environmental conditions, this
may explain why we have not seen a differentiation of algal
microbiomes between both polar oceans. Hence, Pfams for the
cold co-occurrence cluster have been recruited from both polar
oceans (Fig. 3). The enrichment of GO terms for catalytic activity
in the cold Pfam network likely reflects metabolic requirements to
thrive under polar conditions. Most cold-adapted microbes
optimise their enzymes to increase their catalytical activity at
lower temperatures41. The optimization of enzymes to low tem-
perature activity is usually facilitated by destabilisation of the
molecular structures (e.g. active site). The enrichment of GO
terms specifically for the catalytical activity of proteins and RNAs
(Fig. 2C) suggests that these polar microbial communities have
not only increased their catalytical activity of enzymes but also
catalytic activity that acts to modify RNAs42. The GO enrichment
of cellular components in the warm network (Fig. 2C) might
reflect an increased turnover of subcellular compartments
including their membranes due to increased metabolic activity
(respiration in mitochondria) and stress (radical oxygen species)
at higher temperatures, which is known to occur in microalgae43.

The taxonomic differences based on 16 and 18S rDNA sequen-
cing between cold and warm co-occurrence networks largely con-
firm differences in the biogeographical distribution of individual
species across latitudinal regions of the global upper ocean9,22,44–47.
For instance, Prochlorococcus and Synechoccus mainly dominate
tropical and subtropical upper oceans together with eukaryotic
pico- and nanoflagellates. Those taxa were found to be dominant in
the warm network with a significant number of connections to
additional taxa. In contrast, the cold network was characterised by
abundant and well-connected sequences from phylogenetic groups
known to include cold-adapted bacteria (e.g. Polaribacter, Glacie-
cola) and microalgae such as diatoms (e.g. Actinocyclus actinochilus)
and Prymnesiophytes (e.g. Phaecystis cordata).

Interestingly, two previous studies have suggested a similar
geographic partitioning but for phytoplankton productivity and
mainly prokaryotic biodiversity. Behrenfeld et al.38 identified that
the physical environment of the upper ocean impacts the net
primary production (NPP) of phytoplankton communities. On a
global scale including polar oceans, they identified that differ-
ences in upper-ocean temperature and stratification across a
latitudinal gradient were mainly responsible for the partitioning
of NPP. The latter being higher in cold, nutrient-rich, and high-
latitude regions whereas lower NPP was observed in warm,
nutrient-poor and permanently stratified upper oceans. The
demarcation zone between both global regions for NPP was
estimated to be at approximately 15 °C on an annual average.
This temperature is in good agreement with the average tem-
perature for breakpoints in the taxonomic and functional beta
diversity of eukaryotic phytoplankton and their co-occurring
bacteria at 14 °C ± 4.3. A similar demarcation boundary was
found for the latitudinal partitioning in diversity and activity of
prokaryote-enriched metagenomes and metatranscriptomes,
respectively48. Thus, our data together with these previous stu-
died provide support for the hypothesis that environmental
conditions separating cold (nutrient rich) from warm (nutrient
poor) upper oceans are likely responsible for the latitudinal dif-
ferentiation of algal microbiomes underpinning differences in
ocean productivity and global biogeochemical cycles.
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The latitudinal gradient of temperature caused by seasonal
differences in solar radiation together with associated conditions
such as differences in upper-ocean stratification and nutrient
concentrations appear to be the main drivers. As the anthro-
pogenic production of carbon dioxide raises global temperatures,
which has already caused significant ocean warming, it is likely
that the spatial distribution of algal microbiomes will change
according to poleward shifts in geographical demarcation
boundaries matching breakpoints in beta diversity of species and
their gene pool. Our model for the North Atlantic shows that the
area between 40 and 60° N might be affected the most over the
next approximate 100 years as we forecast a complete replace-
ment of cold algal microbiomes (Fig. 6) in this geographical area.
As the area between 40 and 60° N is known to be nutrient rich
and, therefore, productive especially the North Sea, a replacement
of current microbial communities is likely to have significant
impact on food webs including fisheries with consequences for
associated industries.

Taken together, our study confirms the latitudinal distribution
pattern in local (alpha) diversity of complex marine microbial
communities with a significant decrease from the equator towards
polar ecosystems (Supplementary Fig. 7)9. However, pole-to-pole
datasets, which represent a more complete spectrum of envir-
onmental variables, offer the opportunity to identify the most
pronounced differences in the variation of alpha diversity across
larger biogeographic regions (beta diversity). The latter, to the
best of our knowledge, has never been estimated before for
oceanic microbes although this knowledge is instrumental for
spatial scaling of changes in diversity, i.e. loss and gain26. The
application of beta diversity to pole-to-pole algal microbiomes
revealed for the first time that physico-chemical differences
between polar and non-polar upper oceans have a strong influ-
ence not only on changes in their diversity but also the gene
expression activity of their primary producers. Consequently,
there appear to be ecological boundaries in sub-polar oceans of
both hemispheres, which not only alter the spatial scaling of algal
microbiomes (breakpoints in beta diversity), but also shift pole-
wards due to global warming.

Methods
Research cruises. This dataset consists of sequence data from 4 separate cruises:
ARK-XXVII/1 (PS80)—17th June to 9th July 2012; Stratiphyt-II— April to May
2011; ANT-XXIX/1 (PS81)—1st to 24th November 2012 and ANT-XXXII/2
(PS103)—16th December 2016 to 3rd February 2017 and covers a transect of the
Atlantic Ocean from Greenland to the Weddell Sea (71.36°S to 79.09°N) (Sup-
plementary Table 1). In order to study the composition, distribution and activity of
microbial communities in the upper ocean across the broadest latitudinal ranges
possible, samples have been collected during four field campaigns as shown in
Fig. 1A. The first collection of samples was collected in the North Atlantic Ocean
from April to May 2011 by Dr. Willem van de Poll of the University of Groningen,
Netherlands and Dr. Klaas Timmermans of the Royal Netherlands Institute for Sea
Research. The second set of samples was collected in the Arctic Ocean from June to
July 2012, and the third set of samples was collected in the South Atlantic Ocean
from October to November 2012. Both of which were collected by Dr. Katrin
Schmidt of the University of East Anglia. The final set of samples was collected in
the Antarctic Ocean from December 2016 to January 2017 by Dr. Allison Fong of
the Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven,
Germany.

Sampling. Water samples from the Arctic Ocean and South Atlantic Ocean
expeditions were collected using 12 L Niskin bottles (Rosette sampler with an
attached Sonde (CTD, conductivity, temperature, depth) either at the chlorophyll
maximum (10–110 m) and/or upper of the ocean (0–10 m). As soon as the rosette
sampler was back on board, water samples were immediately transferred into
plastic containers and transported to the laboratory. All samples were accompanied
by measurements on salinity, temperature, sampling depth and silicate, nitrate,
phosphate concentration (Supplementary Table 1). Water samples were pre-filtered
with a 100 μm mesh to remove larger organisms and subsequently filtered onto 1.2
μm polycarbonate filters (Isopore membrane, Millipore, MA, USA). All filters were
snap frozen in liquid nitrogen and stored at −80 °C until further analysis.

Water samples from the North Atlantic Ocean cruise were also taken with 12 L
Niskin bottles attached to a Rosette sampler with a Sonde. However, these samples
were filtered onto 0.2 μm polycarbonate filters (Isopore membrane, Millipore, MA,
USA) without pre-filtration but snap frozen in liquid nitrogen and stored at −80 °C
as the other samples.

Water samples from the Southern Ocean cruise were taken with 12 L Niskin
bottles attached to an SBE911plus CTD system equipped with 24 Niskin samplers.
These samples were filtered onto 1.2 μm polycarbonate membrane filters (Merck
Millipore, Germany) in a container cooled to 4 °C and snap frozen in liquid
nitrogen and stored at −80 °C as the other samples. Environmental data recorded
at the time of sampling can be found in Supplementary Table 1.

DNA extractions: Arctic Ocean and South Atlantic Ocean samples. DNA was
extracted with the EasyDNA Kit (Invitrogen, Carlsbad, CA, USA) with modification
to optimise DNA quantity and quality. Briefly, cells were washed off the filter with
pre-heated (65 °C) Solution A and the supernatant was transferred into a new tube
with one small spoon of glass beads (425–600 μm, acid washed) (Sigma-Aldrich, St.
Louis, MO, USA). Samples were vortexed three times in intervals of 3 s to break the
cells. RNase A was added to the samples and incubated for 30min at 65 °C. The
supernatant was transferred into a new tube and Solution B was added followed by a
chloroform phase separation and an ethanol precipitation step. DNA was pelleted by
centrifugation and washed several times with isopropanol, air dried and suspended in
100 μL TE buffer (10mM Tris-HCl, pH 7.5, 1 mM EDTA, pH 8.0). Samples were
snap frozen in liquid nitrogen and stored at −80 °C until sequencing.

DNA extractions: North Atlantic Ocean samples. North Atlantic Ocean samples
were extracted with the ZR-Duet™DNA/RNA MiniPrep kit (Zymo Research, Irvine,
USA) allowing simultaneous extraction of DNA and RNA from one sample filter.
Briefly, cells were washed from the filters with DNA/RNA Lysis Buffer and one
spoon of glass beads (425–600 μm, Sigma-Aldrich, MO, USA) was added. Samples
were vortexed quickly and loaded onto Zymno-Spin™IIIC columns. The columns
were washed several times and DNA was eluted in 60 μmL, DNase-free water.
Samples were snap frozen in liquid nitrogen and stored at −80 °C until sequencing.

DNA extractions: Southern Ocean samples. DNA from the Southern Ocean
samples was extracted with the NucleoSpin Soil DNA extraction kit (Macherey‐
Nagel) following the manufacturer’s instructions. Briefly, cells were washed from
the filters with DNA Lysis Buffer and into a lysis tube containing glass beads was
added. Samples were disrupted by bead beating for 2 × 30 s interrupted by 1 min
cooling on ice and loaded onto the NucleoSpin columns. The columns were washed
three times and DNA was eluted in 50 μL, DNase-free water. Samples were stored
at −20 °C until further processing.

Amplicon sequencing of 16S and 18S rDNA. All extracted DNA samples were
sequenced and pre-processed by the Joint Genome Institute (JGI) (Department of
Energy, Berkeley, CA, USA). iTAG amplicon sequencing was performed at JGI
with primers for the V4 region of the 16S (FW(515F): GTGCCAGCMGCCGCG
GTAA; RV(806R): GGACTACNVGGGTWTCTAAT)49 and 18S (FW(565F):
CCAGCASCYGCGGTAATTCC; RV(948R): ACTTTCGTTCTTGATYRA)50.
(Supplementary Table 6) rRNA gene (on an Illumina MiSeq instrument with a
2 × 300 base pairs (bp) read configuration51. 18S sequences were pre-processed,
this consisted of scanning for contamination with the tool Duk (US Department of
Energy Joint Genome Institute (JGI), 2017,a) and quality trimming of reads with
cutadapt52. Paired end reads were merged using FLASH53 with a max mismatch set
to 0.3 and min overlap set to 20. A total of 54 18S samples passed quality control
after sequencing. After read trimming, there was an average of 142,693 read pairs
per 18S sample with an average length of 367 bp and 2.8 Gb of data over all
samples.

16S sequences were pre-processed, this consisted of merging the overlapping
read pairs using USEARCH’s merge pairs54 with the parameter minimum number
of differences (merge max diff pct) set to 15.0 into unpaired consensus sequences.
Any reads that could not be merged are discarded. JGI then applied the tool
USEARCH’s search oligodb tool with the parameters mean length (len mean) set to
292, length standard deviation (len stdev) set to 20, primer trimmed max difference
(primer trim max diffs) set to 3, a list of primers and length filter max difference
(len filter max diffs) set to 2.5 to ensure the Polymerase Chain Reaction (PCR)
primers were located with the correct direction and inside the expected spacing.
Reads that did not pass this quality control step were discarded. With a max
expected error rate (max exp err rate) set to 0.02, JGI evaluated the quality score of
the reads and those with too many expected errors were discarded. Any identical
sequence was de-duplicated. These are then counted and sorted alphabetically for
merging with other such files later. A total of 57 × 16S samples passed quality
control after sequencing. There was an average 393,247 read pairs per sample and
an average base length of 253 bp for each sequence with a total of 5.6 Gb.

RNA extractions: Arctic Ocean and Atlantic samples. RNA from the Arctic and
Atlantic Ocean samples was extracted using the Direct-zol RNA Miniprep Kit
(Zymo Research, USA). Briefly, cells were washed off the filters with Trizol into a
tube with one spoon of glass beads (425–600 μm, Sigma-Aldrich, MO, USA). Filters
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were removed and tubes bead beaten for 3 min. An equal volume of 95% ethanol
was added, and the solution was transferred onto Zymo-Spin™ IICR Column and
the manufacturer instructions were followed. Samples were treated with DNAse to
remove DNA impurities, snap frozen in liquid nitrogen and stored at −80 °C until
sequencing.

RNA extractions: Southern Ocean. RNA from the Southern Ocean samples was
extracted using the QIAGEN RNeasy Plant Mini Kit (QIAGEN, Germany) fol-
lowing the manufacturer’s instructions with on-column DNA digestion. Cells were
broken by bead beating like for the DNA extractions before loading samples onto
the columns. Elution was performed with 30 µm RNase-free water. Extracted
samples were snap frozen in liquid nitrogen and stored at −80 °C until sequencing.

Metatranscriptome sequencing. All samples were sequenced and pre-processed
by the U.S. Department of Energy Joint Genome Institute (JGI). Metatran-
scriptome sequencing was performed on an Illumina HiSeq-2000 instrument27. A
total of 79 samples passed quality control after sequencing with 19.87 Gb of
sequence read data over all samples for analysis. This comprised a total of
34,241,890 contigs, with an average length of 503 and an average GC% of 51%. This
resulted in 36354419 of non-redundant genes detected.

JGI employed their suite of tools called BBTools55 for preprocessing the
sequences. First, the sequences were cleaned using Duk a tool in the BBTools suite
that performs various data quality procedures such as quality trimming and
filtering by kmer matching. In our dataset, Duk identified and removed adaptor
sequences, and also quality trimmed the raw reads to a phred score of Q10. In Duk
the parameters were; kmer-trim (ktrim) was set to r, kmer (k) was set to 25, shorter
kmers (mink) set to 12, quality trimming (qtrim) was set to r, trimming phred
(trimq) set to 10, average quality below (maq) set to 10, maximum Ns (maxns) set
to 3, minimum read length (minlen) set to 50, the flag “tpe” was set to t, so both
reads are trimmed to the same length and the “tbo” flag was set to t, so to trim
adaptors based on pair overlap detection. The reads were further filtered to remove
process artefacts also using Duk with the kmer (k) parameter set to 16.

BBMap55 is another a tool in the BBTools suite, that performs mapping of DNA
and RNA reads to a database. BBMap aligns the reads by using a multi-kmer-seed-
and-extend approach. To remove ribosomal RNA reads, the reads were aligned
against a trimmed version of the SILVA database using BBMap with parameters set
to; minratio (minid) set to 0.90, local alignment converter flag (local) set to t and
fast flag (fast) set to t. Also, any human reads identified were removed
using BBMap.

BBmerge56 is a tool in the BBTools suite that performs the merging of
overlapping paired end reads (Bushnell, 2017). For assembling the
metatranscriptome, the reads were first merged with the tool BBmerge, and then
BBNorm was used to normalise the coverage so as to generate a flat coverage
distribution. This type of operation can speed up assembly and can even result in
an improved assembly quality.

Rnnotator52 was employed for assembling the metatranscriptome samples 1–68.
Rnnotator assembles the transcripts by using a de novo assembly approach of
RNA-Seq data and it accomplishes this without a reference genome52.
MEGAHIT57 was employed for assembling the metatranscriptome samples 69–82.
The tool BBMap was used for reference mapping, the cleaned reads were mapped
to metagenome/isolate reference(s) and the metatranscriptome assembly.

Metatranscriptome analysis. JGI performed the functional analysis on the
metatranscriptomic dataset. JGI’s annotation system is called the Metagenome
Annotation Pipeline (MAP) (v4.15.2)27. JGI used HMMER 3.1b258 and the Pfam
v3059 database for the functional analysis of our metatranscriptomic dataset. This
resulted in 11,205,641 genes assigned to one or more Pfam domain. This resulted in
8379 Pfam functional assignments and their gene counts across the 79 samples.
The files were further normalised by applying hits per million.

18S rDNA analysis. A reference dataset of 18S rRNA gene sequences that
represent algae taxa was compiled for the construction of the phylogenetic tree by
retrieving sequences of algae and outgroups taxa from the SILVA database
(SSUREF 115)60 and Marine Microbial Eukaryote Transcriptome Sequencing
Project (MMETSP) database61. The algae reference database consists of 1636 spe-
cies from the following groups: Opisthokonta, Cryptophyta, Glaucocystophyceae,
Rhizaria, Stramenopiles, Haptophyceae, Viridiplantae, Alveolata, Amoebozoa and
Rhodophyta. A diagram of the 18S classification pipeline can be found in Sup-
plementary Fig. 1. In order to construct the algae 18S reference database, we first
retrieved all eukaryotic species from the SILVA database with a sequence length
of >= 1500 base pairs (bp) and converted all base letters of U to T. Under each
genus, we took the first species to represent that genus. Using a custom written
script (https://github.com/SeaOfChange/SOC/blob/master/get_ref_seqs.pl), the
species of interest (as stated above) were selected from the SILVA database, clas-
sified with NCBI taxa IDs and a sequence information file produced that describes
each of the algae sequences by their sequence ID and NCBI species ID. Taxonomy
from the NCBI database, eukaryote sequences from the SILVA database and a list
of algal taxa including outgroups were used as input for the script. This infor-
mation was combined with the MMETSP database excluding duplications.

The algae reference database was clustered to remove closely related sequences
with CD-HIT (4.6.1)62 using a similarity threshold of 97%. Using ClustalW (2.1)63

we aligned the reference sequences with the addition of the parameter iteration
numbers set to 5. The alignment was examined by colour coding each species to
their groups and visualising in iTOL64. It was observed that a few species were
misaligning to other groups and these were then deleted using Jalview65. The
resulting alignment was tidied up with TrimAL (1.1)66 by applying parameters to
delete any positions in the alignment that have gaps in 10% or more of the
sequence, except if this results in less than 60% of the sequence remaining. A
maximum likelihood phylogenetic reference tree and statistics file based on our
algae reference alignment was constructed by employing RaxML (8.0.20)67 with a
general time reversible model of nucleotide substitution along with the GAMMA
model of rate heterogeneity. For a description of the lineages of all species back to
the root in the algae reference database, the taxa IDs were submitted for each
species to extract a subset of the NCBI taxonomy with the NCBI taxtastic tool
(0.8.4)68 Based on the algae reference multiple sequence alignment, with HMMER3
(3.1B1)69 a Profile HMM was created. A pplacer reference package using taxtastic
was generated, which produced an organized collection of all the files and
taxonomic information into one directory. With the reference package, a SQLite
database was created using pplacer’s Reference Package PReparer (rppr). With
hmmalign, the query sequences were aligned to the reference set and created a
combined Stockholm format alignment. Pplacer (re-aligned to the reference set and
created a combined Stockholm format alignment. Pplacer (1.1)70 was used to place
the query sequences on the phylogenetic reference tree by means of the reference
alignment according to a maximum likelihood model70 The place files were
converted to CSV with pplacer’s guppy tool; in order to easily take those with a
maximum likelihood score of >= 0.5 and counted the number of reads assigned to
each classification. This resulted in 6,053,291 reads that were taxonomically
assigned being taken for analysis.

Normalisation of 18S rDNA gene copy number. 18S rDNA gene copy number
vary widely among eukaryotes. In order to create an estimate of abundances of the
species in the samples the data had to be normalised. Previous work has explored
the link between copy number and genome size71. However, there is not a single
database of 18S rDNA gene copy numbers for eukaryote species. In order to
address this, gene copy number and related genome sizes of 185 species across the
eukaryote tree was investigated and plotted (Supplementary Fig. 2, Supplementary
Table 4)68,71–79. Based on the log transformed data, a significant correlation with a
R2 of 0.55 with a p-value < 2.2e−16 between genome size and 18S copy number
was observed. A regression equation was determined (f(x)= 0.66X+ 0.75) as
shown in Supplementary Fig. 2.

To derive this equation, the genome sizes for the species in the reference
datasets were retrieved from the NCBI genome database. Since some of the genome
sizes were unavailable, for species with missing genome sizes, an average of
available genome sizes in closely related species was taken instead. More
specifically, first a taxonomic lineage of the relevant subset of the NCBI database
was obtained by submitting the taxa IDs using the NCBI taxtastic tool68. Average
genome sizes were then calculated by utilizing the parent ID and taxa ID columns
and the known genome sizes of the lowest common ancestor. The 18S datasets
were normalised by assigning their genome sizes using the regression equation. The
files were further normalised by applying the hits per million reads method.

18S rDNA file preparation. In our 18S rDNA dataset, we had taxonomic
assignments from the eukaryote node down to the species nodes. We employed
Metagenome Analyzer (MEGAN) (5.10.3)80 to cut out specific taxonomic levels. In
MEGAN, we extracted the classifications at the taxonomic rank of species. This
consisted of a file being generated for each station that contained the species names
and their assigned abundances. The files were further normalised to hits per
million.

In MEGAN, we extracted the leaves of the taxonomy tree at the rank of class
and above but excluded assignments to the eukaryote node. Firstly, this consisted of
a file being generated for each station that contained all assignments to the class
nodes as well as any assignments under their respective lineages down to species
being summed up under the individual class node. Secondly, we included nodes
that were not highlighted for class taxonomic level on the leaves of the tree in
MEGAN. These leaves were not highlighted because in NCBI taxonomy there are
species that do not have a taxonomy designation at every taxonomy level. We took
the nodes that were not highlighted on leaves of the tree and summed them
together within their respective lineages and placed them under a new name. For
example, under the phylum Rhizaria, on the leaves of the tree, there is Cercozoa,
Gromiidae and unclassified Rhizaria which are not highlighted. Their abundance
was summed together and renamed Nc. Rhizaria, “Nc.” standing for “No class”.
The abundances assigned to Rhizaria were not included in this calculation. The
leaves of the tree made up 34% of the total 18S rDNA dataset. The internal nodes
between the leaves of the tree at the taxonomic rank of class and the eukaryote
node was given a “U.” in front of their name, “U.” standing for “Unknown”. This
was done to highlight that while they are of course associated with the lower
lineages they are in fact considered separate, as those assignments to those nodes
could not be determined any lower. The internal nodes made up 29% of the total
18S rDNA dataset.
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The abundance assigned to the eukaryote node was excluded from our analysis
as these sequences could not be classified lower. This comprised of a total of 37% of
the 18S rDNA dataset. A file was generated for each station that contained the class
nodes, “Nc.” nodes and “U.” nodes with their respective abundances. The files were
further normalised to hits per million. Throughout the paper we refer to the
analysis of these files at the taxonomic rank of class.

16S rDNA analysis. JGI performed the classification analysis on the 16S rDNA
dataset81,82. JGI’s 16S rDNA classification pipeline (JGI pipeline iTagger v2.1 16S
classification pipeline) consists of firstly removing samples with less than
1000 sequences. The remaining samples and the de-duplicated identical sequences
from the preprocessing step are then combined and their sequences organized by
decreasing abundance. The sequences are divided out based on the criterion as to
whether they contained a cluster centroid with a minimum size of at least 3 copies.
The low-abundance sequences are put aside and not used for clustering.
USEARCH’s83 cluster otus command is employed to incrementally cluster the
clusterable sequences. This begins at 99% identity and the radius is increased by 1%
for each iteration until a OTU clustering identity of 97% is reached. At each step,
the sequences are sorted by decreasing abundance. Once clustering is complete,
USEARCH’s usearch global is used to map the low-abundance sequences to the
cluster centroids. These are added to OTU counts if they were in the prescribed
percent identity threshold. If they do not fall within this prescribed percent identity
threshold they are discarded. USEARCH’s UTAX along with the SILVA database is
used to evaluate the clustered centroid sequences. The predicted taxonomic clas-
sifications are then filtered with a cutoff of 0.5. Any chloroplast sequences iden-
tified are removed. The final accepted OTUs and read counts for each sample are
finally placed in a taxonomic classification file.

Normalisation of 16S rDNA gene copy number. In order to normalise the 16S
copy number, the 16S copy numbers for the species in the dataset were retrieved
from the Ribosomal RNA Operon Copy Number Database (rrnDB)84 The rrnDB
database version 5.3 consisted at the time of 3021 bacterial entries. Firstly, since
multiple entries of a species are in the rrnDB database due to the presence of
different strains, we obtained an average copy number for each species in the
rrnDB database, which resulted in 2876 species entries. The higher taxonomic
levels for the rrnDB species needed to be established so that we could calculate their
average copy number. For a description of the lineages of all species back to the
root in the rrnDB database, we submitted the species names for each entry to
extract a subset of the NCBI taxonomy with the NCBI taxtastic tool68 thus pro-
ducing a Taxtastic file. The Taxtastic file based on species from the rrnDB database
was used to calculate the average copy number for higher taxonomic levels from
the known copy number species level, with the assistance of the parent id and taxa
id layout in the Taxtastic file. A Taxtastic file based on 16S rDNA species from our
dataset was generated and we assigned our 16S species entries a copy number from
species to root from the prepared average copy number rrnDB Taxtastic file. Not all
copy numbers in the 16S rDNA dataset were known. We, therefore, took the
average of closely related species from the above taxonomic level of those we could
get and took that as the copy number for those that were missing in our dataset.
The 16S dataset was normalised by dividing by the assigned copy number. The files
were further normalised by applying the hits per million reads method.

16S rDNA file preparation. In our 16S rDNA dataset, we had taxonomic assign-
ments from the bacteria node down to the genus nodes. We extracted the classifi-
cations at the taxonomic rank of genus. This consisted of a file being generated for
each station that contained the genus names and their assigned abundances. The files
were further normalised by applying the hits per million reads method.

We extracted the leaves of the tree that included class nodes and “Nc.” nodes
with their respective abundances. This step resulted in 94% of the 16S rDNA
dataset. Also, we extracted the internal nodes and placed “U.” in front of their
names. This resulted in 3% of the 16S rDNA dataset. The abundance assigned to
the bacteria node was excluded from our analysis and this comprised of a total of
3% of the 16S rDNA dataset. We generated a file for each station that contained the
class nodes, “Nc.” nodes and “U.” nodes with their respective abundances. The files
were further normalised by applying the hits per million reads method.
Throughout the paper we refer to the analysis of these files at the taxonomic rank
of class.

Statistical analysis. Alpha diversity (Shannon index) in relation to environmental
covariates

The Shannon index H’85 was used to calculate abundance weighted richness per
station. The Shannon index was used over the Simpson index as the latter is heavily
weighted towards the most abundant orders. The Shannon index was calculated
based on the following equation:

H0 ¼ � ∑
S

i¼1
pi In pi

Environmental covariates were related to the Shannon index (H’) by fitting
generalized linear models. Step-by-step backwards selection of covariates was used

for model building, removing non-significant covariates until remaining covariates
were significant at a p-value < 0.05.

Beta diversity in relation to environmental factors was calculated across the
transect based on a Hellinger transformed class abundance matrix using the vegdist
function of the vegan package86. The Bray-Curtis dissimilarity index87 was used as
a measure of beta-diversity and was calculated based on the following equation:

BCij ¼ ∑
jnik � njkj
ðnik þ njkÞ

Evenness and occupancy. An abundance, station evenness and occupancy plots
were produced for each 18S rDNA class level (n= 54) and 16S rRNA class level
(n= 57) (Supplementary Fig. 5, Supplementary Table 3) The x-axis represents the
number of times that class taxonomy occurs across the stations. The y-axis
represents the evenness of that class taxonomy across stations it occurs in. This was
calculated using a Dispersion index, which is a varient of J’ of Pielou’s evenness88

and based on H’ of Shannon85,89. Each circle represents a class taxonomy abun-
dance. The size of each circle is resized by replacing the area of the circle which
represented the total abundance for that class with square root of the abundance
divided by pi.

Canonical correspondence analyses (CCAs). The R package VEGAN90 was
employed to perform a Canonical Correspondence Analysis (CCA) on each dataset
of 18S, 16S and metatranscript Pfam against the individual environmental vari-
ables. The environmental data consisted of temperature, salinity, nitrate/nitrite,
phosphate and silicate (Supplementary Fig. 6).

Network analysis. A network analysis was performed using the R package
Weighted Gene Co-Expression Network Analysis (WGCNA)91 The first analysis
was performed on samples of combined prokaryotes at the taxonomic rank of
genus and on eukaryotes at the taxonomic rank of species to describe networks
derived from their log10-scaled abundances. The prokaryotes and eukaryotes
normalised files were combined for each station. A signed adjacency measure for
each lineage was determined by raising the absolute value of the Pearson corre-
lation coefficient to the power of 11. A topological overlap measure (TOM) was
calculated from the resulting adjacency matrix. Hierarchical clustering was carried
out on the TOM measure, which resulted in two networks being discovered in the
network (Fig. 4). The second analysis was performed on samples of the meta-
transcriptome Pfam dataset to describe networks derived from their log10-scaled
gene counts. A signed adjacency measure for each lineage was determined by
raising the absolute value of the Pearson correlation coefficient to the power of 12.
A topological overlap measure (TOM) was calculated from the resulting adjacency
matrix. Hierarchical clustering was carried out on the TOM measure, which
resulted in two networks being discovered in the network (Fig. 2, Supplementary
Table 5).

When incorporating environmental data, latitude values were redefined, so that
the North pole is 0°, the Equator is 90° and the South pole is 180°. Unaltered
environmental data can be found in Supplementary Table 1.

Beta diversity break-point analysis. The break-point analysis is based on the
methodology from ref. 92. The beta diversity indices used in the break-point
analyses is the Sørensen indices. A breakpoint was determined and plotted for each
of the Pfam protein families, 18S rDNA and 16S rDNA datasets. Breakpoints in the
18S and 16S rDNA datasets were investigated between the temperature range of
7 °C to 29.02 °C. When incorporating environmental data, latitude values were
redefined, so that the North pole is 0°, the Equator is 90° and the South pole is 180°.
Unaltered environmental data can be found in Supplementary Table 1.

The break-point analysis was generated using piecewise regression in R. This
was calculated by firstly producing a presence–absence matrix for each dataset. A
multiple-site dissimilarity was performed on the presence–absence matrix with
beta.pair, a function from the betapart R package and a dissimilarity index set to
Sørensen, thus produced a distance object called beta.sor34. Outliers were identified
with bagplot, a function from the aplpack R package and then removed from the
analyses. Remaining values were then plotted against the environmental variable
(temperature or altered latitude), these were searched through for possible
breakpoints, that is for the one with the lowest mean squared error.

For the 18S rDNA and 16S rDNA datasets, a number of samples in the North
Atlantic Ocean did not pass quality control before sequencing. Due to this, when
performing the 18S rDNA and 16S rDNA break-points analyses there were gaps in
each of the datasets plots in the North Atlantic Ocean region. To investigate the
effects of the missing samples, four model scenarios were produced to mimic the
missing samples. The first model scenario involved filling in beta diversity values
for the missing North Atlantic Ocean with current closest by latitude stations. This
resulted in breakpoints for the 18S and 16S rDNA of 20.66 °C and 9.49 °C,
respectively. The second model scenario involved filling in beta diversity values for
the missing North Atlantic Ocean with values from the Arctic Ocean. This resulted
in breakpoints for the 18S and 16S rDNA of 14.4 °C and 12.07 °C, respectively. The
third model scenario involved filling in beta diversity values for the missing North
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Atlantic Ocean with values from the South Atlantic Ocean. This resulted in
breakpoints for the 18S and 16S rDNA of 9.49 °C and 12.22 °C, respectively. The
fourth model scenario involved filling in beta diversity values for the missing North
Atlantic Ocean with values from both the Arctic Ocean and the South Atlantic
Ocean. This resulted in breakpoints for the 18S and 16S rDNA of 14.4 °C and
12.22 °C, respectively.

A break-point analysis was performed for the Pfam protein families beta
diversity against temperate with the North Atlantic Ocean samples (Stratiphyt-II)
removed to test whether key results remain unchanged (Supplementary Fig. 10e). A
breakpoint of 18.2 °C was determined with a p-value of 1.65e−11. Hence, the main
result (Fig. 5A) remains unchanged.

IPCC-based modelling of geographical shifts in beta-diversity breakpoints
across the North Atlantic. To assess where these boundaries are, we began with
the HadISST dataset93, taking the 1961–1990 climatology (Fig. 6). For estimates of
changes over the 21st century, we used the RCP 8.5 HadGEM2-ES CMIP5
experiment37. A historical HadGEM2-ES experiment was also run for CMIP5,
which we used to bias-correct the projected temperatures. This was achieved by
determining the differences between the 1961–1990 HadISST and HadGEM2-ES
temperatures for each grid box and adding them to the projections. Grid boxes that
contain sea ice in the climatology are ignored from this analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
iTAG rDNA Data: https://opendata.earlham.ac. Eukaryotic metatranscriptome data:
https://genome.jgi.doe.gov/. (https://doi.org/10.25585/1488054).
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