
marine drugs 

Review

A Soft Spot for Chemistry–Current Taxonomic and Evolutionary
Implications of Sponge Secondary Metabolite Distribution

Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,*

����������
�������

Citation: Galitz, A.; Nakao, Y.;

Schupp, P.J.; Wörheide, G.;

Erpenbeck, D. A Soft Spot for

Chemistry–Current Taxonomic and

Evolutionary Implications of Sponge

Secondary Metabolite Distribution.

Mar. Drugs 2021, 19, 448. https://

doi.org/10.3390/md19080448

Academic Editors: Micha Ilan,

Shmuel Carmeli, Michelle Kelly and

Mark T. Hamann

Received: 24 June 2021

Accepted: 27 July 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology,
Ludwig-Maximilians-Universität München, 80333 Munich, Germany; a.galitz@lrz.uni-muenchen.de (A.G.);
woerheide@lmu.de (G.W.)

2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku,
Tokyo 169-8555, Japan; ayocha@waseda.jp

3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University
Oldenburg, 26111 Wilhelmshaven, Germany; peter.schupp@uni-oldenburg.de

4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB),
26129 Oldenburg, Germany

5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany
* Correspondence: erpenbeck@lmu.de

Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive
compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical
applications, and in the past, they were also used as taxonomic markers alongside the difficult and
homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding
of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal
pathways and evolution of compound production in sponges. This benefits the discovery rate and
yield of bioprospecting for novel marine natural products by identifying lineages with high potential
of being new sources of valuable sponge compounds. In this review, we summarize the current
biochemical data on sponges and compare the metabolite distribution against a sponge phylogeny.
We assess compound specificity to lineages, potential convergences, and suitability as diagnostic
phylogenetic markers. Our study finds compound distribution corroborating current (molecular)
phylogenetic hypotheses, which include yet unaccepted polyphyly of several demosponge orders
and families. Likewise, several compounds and compound groups display a high degree of lineage
specificity, which suggests homologous biosynthetic pathways among their taxa, which identifies yet
unstudied species of this lineage as promising bioprospecting targets.

Keywords: bioactivity; marine sponge; secondary metabolite; natural product evolution; chemotaxonomy

1. Introduction

Sponges (Phylum Porifera) are among the most successful survivalists in the animal
kingdom, originating in the Neoproterozoic (>600 Mio yrs) and with over 9000 species
from every aquatic habitat to date, e.g., [1–4], ranging from tropical reefs, to the deep-sea,
arctic waters, and even freshwater bodies see, e.g., [5–8]. During the Cambrian and the
Jurassic, they acted as major reef builders; recent sponge reefs are however not as extensive
and can only be found in arctic deep waters on the western Canadian continental shelf,
formed by hexactinellid sponge communities [9,10]. In modern coral reefs, sponges fulfil a
key role in the ecosystem as nutrient and carbon recyclers, reef consolidators and habitats
for micro- and macroorganisms, e.g., [11–13].

Their sessile lifestyle constantly exposes sponges to pressure by the presence of spon-
givorous predators (e.g., turtles, fish, sea stars), by competitors for space (e.g., other
sponges, hard and soft corals, bryozoans), and by omnipresent parasites and microor-
ganisms [14–19]. Two evolutionary features played an important role for the survival of
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sponges to the present day, one being an exceptional regenerative potential, allowing them
to quickly recover from predatory attacks [20–22], the other one being elaborate biochemi-
cal defense mechanisms based on bioactive secondary metabolites [23,24]. These complex
compounds are either produced by the sponge itself or by one of its numerous microbial
symbionts and act as deterrents and self-medication to protect the sponge [25–29].

Since the first discovery of bioactive chemical compounds from sponges in the 1950s
by Bergmann and Feeney [30], many other marine organisms (e.g., nudibranchs, algae,
bacteria) became known to be producers of bioactive natural products. However, so far,
sponges remain by far their most potent sources [31,32], although marine bacteria, espe-
cially bacteria and fungi isolated from sponges and other marine invertebrates have gained
much attention as sources of novel bioactive compounds [33,34]. While sponge secondary
metabolites serve important roles for the defense and survival of sponges, their various
effects (e.g., anti-inflammatory, anti-bacterial, anti-viral, anti-platelet, anti-cancer, etc.) also
make them attractive for potential pharmaceutical applications [35–37]. Despite many of
these natural or synthesized compounds being tested in clinical trials, only few drugs are
approved by the various regulatory agencies (e.g., US Food and Drug Administration,
FDA) and are readily available on the market yet, such as Cytosar, AZT (azidothymidine),
or Remdisivir [38–40]. With the omnipresent and increasing danger of multiresistant germs
and new viral diseases, as well as high interest in new cancer medications, the scientific
and commercial interest in new sponge metabolites, and especially their synthetic analogs,
is in constantly high demand [41–43].

Although the discovery of new marine metabolites and their synthesis for medicinal
application are the main priorities of current sponge biochemistry, some of these com-
pounds were once also regarded as potential markers for sponge taxonomy, as substitute
or extension of classical morphology-based sponge classification [44,45]. However, it be-
came apparent that these compound-driven chemosystematics could not fulfil the initial
expectations, hence partially losing their importance, while at the same time molecular
methods underwent quick advancements and a steep gain in popularity [46,47]. However,
despite the availability of these molecular methods, most aspects of currently valid sponge
taxonomy are still based on morphological characters, often leading to conflicting results
and relationships between molecular and morphological phylogenies, e.g., [48,49]. The
usage of sponge morphology for classification is prone to error due to paucity of clear-cut
discriminating characters coupled with phenotypic plasticity, which likewise impedes
correct identification of the metabolite bearing sponge species; see, e.g., [50,51].

In contrast to the relationships among sponges, knowledge on the evolution, interac-
tions, and the production pathways of their secondary metabolites is comparatively scarce,
e.g., [52,53]. Getting a better understanding of the relationships among sponge clades with
respect to their compound production (and composition) will further bioprospecting and
pharmaceutical biotechnology of sponges. Literature based research on sponge compounds,
as conducted here, and subsequent compilation of metabolite distribution can be impeded
and distorted by a number of obstacles, e.g., [45,54]. The most commonly encountered
problems are biased focuses on certain compound groups and/or promising bioactive
species, seemingly homologous natural products with non-homologous production path-
ways, sponge–sponge overgrowth and contamination, and especially insufficient or even
misidentified sponge specimens, causing false taxonomic assignments [46]. Most extant
sponges live in symbiotic relationships with photosynthetic and heterotrophic bacteria
or other microorganisms, thus featuring a pronounced microbiome [55]. Often it is not
evident whether the sponge, its symbionts, or a combination of both are responsible for the
production of certain metabolites, e.g., [56]. Generally disregarding symbiont-produced
bioactive compounds as taxonomically irrelevant would however be a mistake, as part of
the microbiome can be highly sponge-specific as well [57].

More than a decade ago, Erpenbeck and van Soest [46] compiled a comprehensive
overview of sponge-specific and thus chemotaxonomically relevant metabolites. Although
there have been a number of publications reviewing separate sponge compound groups,
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there has not been a general overview since, e.g., [58,59]. Thus, in the following, we
compiled all the recent biochemical publications on sponges and reviews of the last decade
in order to aid tracing the taxonomic distribution of compounds based on our current
understanding of demosponge phylogeny, which changed considerably in the last couple
of years [60].

We believe that the insights we gained here will contribute to the resolution of current
and future conflicts in Porifera taxonomy but particularly facilitate the discovery rate and
taxonomic accuracy of sponge bioprospecting.

2. Methods

The evaluation of the current status and distribution of secondary metabolites from
sponges is based on the approach of Erpenbeck and van Soest [46] (obtained from the
MarinLit database and data from van Soest and Braekman [45]) and subsequently expanded
upon it with data from the annually released review of Marine Natural Products, e.g.,
from 2005 to 2017 [31,32], as well as additional singular publications. Metabolites were
separated into major chemical compound categories and plotted against a combined
molecular phylogenetic consensus tree for all sponge classes based on some of the latest
studies available for the different sponge taxa (Figure 1), e.g., [61–67]. Compound groups
commonly known for production by microorganisms were generally disregarded due to
frequent symbioses with a plethora of different sponge species, unless host specificity could
be verified with sufficient reliability. Validity and status of the sponge taxa as named in
the individual publications was checked against the World Porifera Database [4] and the
Systema Porifera [68].

Figure 1. Cont.
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Figure 1. Cont.
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Figure 1. Phylogenetic distribution of bioactive sponge compounds. Taxa were chosen from a comprehensive list of
metabolite-bearing sponge species, independent of their taxon specificity, and were supplemented with further taxa from
the respective molecular tree sources where applicable. Colors do not depict relatedness of compounds and were solely
chosen for better contrast between different compound classes. Dashed lines indicate reports of compounds suggested for
verification. Genus and species names have been adopted from the respective source publications. Particularly for taxa
that still await revision, higher-level classification (as given on the branches) might be in conflict with the current reference
(World Porifera Database). See text for details.

3. Specificity and Phylogenetic Relevance of Sponge Compounds
3.1. General

The updated and supplemented dataset created by Erpenbeck and van Soest [46] could
be further expanded by over 1100 new metabolite reports from over 160 genera, finally
comprising 80 compound classes from over 850 different sponge species. Based on this
data, 30 characteristic, and potentially lineage-specific, metabolite classes (henceforth also
referred to as “markers”) could be identified, spanning 11 sponge orders in Demospongiae
and Homoscleromorpha (see Table 1 and Figure 1). No conclusive evidence of new markers
for Calcarea or Hexactinellida could be found since 2007.
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Table 1. Compilation of taxon specificity of investigated compound groups and comparison of the results in this
study (as ‘2020′) with previous reviews in van Soest and Braekman [45] and Erpenbeck and van Soest [46], de-
noted by their respective year of publication. Plus sign = taxon specific; minus sign = nonspecific/unsuitable;
circle = unresolved/conflicting information.

Metabolite Class Taxonomic Group 1998 2004 2020

Pyrroloquinoline alkaloids Poecilosclerida O + +
Norditerpene peroxides Podospongiidae (Poecilosclerida) n.a. n.a. +

Norsesterterpene peroxides Poecilosclerida O + +
Pentacyclic guanidine alkaloids Monanchora (Poecilosclerida) + + +

Tetramic acids Tetractinellida n.a. O +
Steroidal saponins/glycosides Tetractinellida O - O
Isomalabaricane triterpenoids Astrophorina (Tetractinellida) + + +

Bengamide and bengazoles Ancorinidae (Tetractinellida) n.a. O +
Hydroxyiminosterols Cinachyrella (Tetractinellida) n.a. + +
Azetidine alkaloids Penares (Tetractinellida) + + +

3-Alkylpiperidines + 3-Alkylpyridines Haplosclerida + - +
Renieramycins Haplosclerida O O +

Straight-chain polyacetylenes Haplosclerida + O -
Pentacyclic hydroquinones Petrosiidae (Haplosclerida) n.a. n.a. +

3β-Hydroxymethyl-A-nor-sterols Axinellida n.a. + +
Cyanthiwigin diterpenes Myrmekioderma (Axinellida) O + +

Diterpene iso/thio/cyanides + formamides Bubarida O O +
Sesquiterpene iso/thio/cyanides + formamides Bubarida O O +

Carbonimidic dichlorides Formerly Halichondrida n.a. O -

Aaptamines Suberitida + - -
Suberitane-derived sesterterpenes Suberitida n.a. + -

Pyrrole-2-aminoimidazole alkaloids Agelasida + + +
Adenine-derivatives of diterpenes Agelas (Agelasida) n.a. n.a. +

Hypotaurocyamine (Sesquiterp. derivatives) Agelas (Agelasida) + + +

Bromotyrosines Verongiida + - +

Sesquiterpene lactones/furans Dysideidae (Dictyoceratida) O - +
Diterpene lactones/furans Dendroceratida + Dictyoceratida O + +

Sesterterpene lactones/furans Spongiidae, Thorectidae, Irciniidae (Dictyoceratida) O - +
Scalarane sesterterpenes Spongiidae, Thorectidae, Irciniidae (Dictyoceratida) n.a. + +

Scalarane sesterterpene hydroquinones Dysidea + Acanthodendrilla (Dictyoceratida) n.a. n.a. +
Polyprenylated benzoquinones Irciniidae (Dictyoceratida) n.a. n.a. +

Thiazole polyketides Thorectidae (Dictyoceratida) n.a. n.a. +
Polybrominated diphenyl ethers Dysideidae (symbiotic origin) (Dictyoceratida) n.a. - +

Cholest-5-en-3β-ol/5α(H)-cholestan-3β-ol Hexactinellida n.a. + +
Glycoceramides Hexactinellida n.a. n.a. +

Peroxy-Polyketides Plakortis + Plakinastrella (Homoscleromorpha) O - O
Steroidal alkaloids Plakina + Corticium (Homoscleromorpha) + + +

C27 to C29∆5,7,22 & C27 to C29∆5,7,9(11),22 sterols Calcarea n.a. n.a. -
Long-chain aminoalcohols Clathrinida (Calcarea) + O O

3.2. Demospongiae

Extant demosponges are currently divided into three subclasses: Heteroscleromorpha
comprises species (mostly) possessing siliceous spicules, Verongimorpha and Keratosa
with (mostly) aspiculous species [60].
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3.2.1. Heteroscleromorpha
Poecilosclerida

Poecilosclerida constitute the largest demosponge order in terms of taxon [69] and
supported distinct from other orders due to the joint possession of characteristic skeletal
elements “chelae” and its derivatives, [70] and molecular phylogenetic reconstructions [67].

Norditerpene peroxides pose a potential marker exclusive to the family of Podospongi-
idae within Poecilosclerida, e.g., [71,72] (Figure 2). The related norsesterterpene peroxides
are also found outside of this family in several specimens of Mycale and Latrunculia, as dis-
cussed in van Soest and Braekman [45]. This would expand the range of norsesterterpenes
as marker for higher poecilosclerid lineages, misidentifications of podospongiid sponges
for the stated genera can however not unequivocally be ruled out (Figure 1).

Pyrroloquinoline, or pyrroloiminoquinone alkaloids, are frequently found in members
of the molecularly closely related families of Acarnidae (Zyzzya) and Chrondropsidae
(Batzella), making them a well-supported marker for these clades [73]. The detection of
pyrroloiminoquinone alkaloids in Latrunculia brevis [74] and other species of this genus
e.g., [75–77] lends further support to this metabolite group being a reliable indicator
for Poecilosclerida, while the phylogenetic position of L. lunaviridis close to Acarnidae
(Figure 1) indicates the general need of thorough, interdisciplinary investigation of the
source material (see [78] for a good example on latrunculids), as species of Latrunculia are
generally well described with clear morphological relationships [70].

Pentacyclic guanidine alkaloids might represent a new marker exclusive for the Cram-
beidae genus Monanchora, e.g., [79]. While polycyclic and especially tricyclic guanidine
alkaloids can also be frequently found in Poecilosclerida, they seem to not be restricted to
this order and are also found in Axinellida, Biemnida, and Bubarida, e.g., [80,81].

Tetractinellida

Tetractinellida constitutes a distinct demosponge order as reflected in characteristic
morphology, e.g., [60], supported molecular phylogenies, e.g., [82,83], and also in its distinct
biochemical compounds.

Tetramic acid glycosides are well known compounds produced by various tetractinel-
lid families (Ancorinidae, Geodiidae, Neopeltidae, Theonellidae) among the suborder
Astrophorina (see Figure 1), which were suggested as distinct markers for these fami-
lies [46]. Due to the documented production of this compound class by fungi, the authors
did however note its ambiguous specificity for sponges, e.g., [84]. Tetramic acids without
glycosidic moiety can also be found in other sponge taxa, as well as in sponge-derived
fungi, making this glycosidic moiety specific for Tetractinellida [85,86].

Steroidal saponins and glycosides, besides being commonly found in many Echino-
dermata [87], also have been reported in sponges. Since the compounds have been mainly
reported from specimens of the suborder Astrophorina, they were initially considered
as evolutionary characteristics for this clade but were disregarded due to studies from
non-tetractinellid genera [46,88]. As Ivanchina et al. [89] stated, there are, however, major
structural differences among glycosides in sponges, with sparse reports of these metabolites
outside of Astrophorina possibly being rare homologs. Although all recent metabolites
reports refer to Astrophorina, the aforementioned outliers (e.g., Pandaros, Niphates, Ecty-
oplasia) should not be disregarded, hence rendering the specificity of these metabolites
questionable [90–92], especially when taking into account their occurrence in other inverte-
brates [87].
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Figure 2. Selection of exemplary sponge-derived secondary metabolites with potential for taxon specificity. The value and
validity of the investigated compound groups are discussed in their respective sections of the text.

Likewise, triterpenoid saponins, which also commonly occur in echinoderms, are
frequently found in the suborder of Astrophorina, especially among members of the family
Geodiidae, e.g., [93,94]. Their concentrated occurrence made these compounds additional
potential Astrophorina markers; however, multiple reports from various unrelated taxa
diminish their suitability greatly, e.g., [95,96].

While isomalabaricane triterpenoids were considered to be robust markers for the as-
trophorid Rhabdastrella [46], and previous findings in the related genera of Jaspis, Geodia and
Stelletta had been ruled out as misidentifications [45], several recent reports from the latter
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taxa now contradict this theory, with at least Jaspis being verified in two instances [97,98].
Based on these reports, isomalabaricane triterpenoids at least remain a marker for the
suborder Astrophorina.

Metabolites from the classes bengamides, bengazoles, and their derivatives are known
from few Astrophorina genera, with Jaspis being the most prominent, e.g., [99,100]. Van
Soest and Braekman [45] already suggested these compounds as being exclusive to this
suborder, but due to their resemblance to bacterial fatty acids, they did not commit to this
decision. A more recent review by White et al. [101], however, supports the assessment
of specificity and even implies that most other Astrophorina sponges from older studies
actually were misidentified Jaspis specimens, with multiple Jaspis and Stelletta species
formerly being assigned to the genus Dorypleres. A combination of these findings with
the occurrence of bengamides in Stelletta [102] makes bengamides, bengazoles, and their
derivatives specific for the family Ancorinidae, but also highlights the complex taxonomic
situation between Jaspis and Stelletta, prompting for a possible revision of these genera.

Naturally acetylated glycolipids are rarely occurring compounds in sponges, mainly
reported from the geodiid taxa Caminus, Pachymatisma and Erylus, making them a po-
tentially distinct marker for Geodiidae [103]. Contradicting this assessment are however
discoveries in the Axinellida genera Trikentrion and Myrmekioderma, e.g., [104]. Despite the
large variety, lack of specificity, and often symbiotic (co-)production of lipids in sponges,
these rare acetylated metabolites appear to be largely confined to species of tetractinellid
and axinellid sponges (see Figure 1). Furthermore, according to Wjonar and Northcote [105],
these comparatively uncommon compounds might often go unnoticed due to the frequent
use of acetylation for the isolation of glycolipids [106]. Since there are no obvious structural
differences between the tetractinellid and axinellid glycolipids, we assume their analogous
origin in both orders.

Within Tetractinellida, the spirophorid genus Cinachyrella is characterized by the
presence of certain oxime containing sterols, the hydroxyiminosterols. These were already
dubbed potential markers by Erpenbeck and van Soest [46], which gains further support
by recent findings [107].

With no recent reports of azetidine alkaloids, like penaresidin and penazetidine, this
group of metabolites retains its status as a highly likely marker for the ancorinid genus
Penares [45,46].

Haplosclerida

Molecularly, the distinctiveness of the order Haplosclerida is reflected in particular
structural ribosomal features [108] and subsequent molecular phylogenies, e.g., [109],
although internal phylogeny of this order remains yet to be unraveled, e.g., [110] and
subsequent publications of the McCormack group.

3-alkylpyridine and 3-alkylpiperidine alkaloids are compounds typically found across
all haplosclerid families but the Phloeodictyidae and thus were considered as taxon-specific
metabolite class, although reports from other sponge taxa undermined this assumption,
e.g., [111,112]. With the overwhelming majority of older and more recent reports being
almost exclusively limited to Haplosclerida, correct reports from other orders seem increas-
ingly unlikely, although few studies on the Suberitida family Halichondriidae claim to have
found compounds identical to those from Haliclona, e.g., [113]. Without inspection of the
original sponge material, misidentifications or sponge–sponge contaminations in these rare
cases cannot be completely ruled out. The commonness of these alkaloids in Haplosclerida,
however, strongly supports the validity of 3-alkylpyridine and 3-alkylpiperidine alkaloids
as a specific marker.

More specific and less controversial markers are pentacyclic hydroquinones found
in Petrosiidae sponges. Non-terpenoid quinones are comparably rare compounds found
among sponges, especially the pentacyclic, as well as in few cases hexacyclic, variants
found in specimens of Petrosia and Neopetrosia, e.g., [114,115].



Mar. Drugs 2021, 19, 448 10 of 25

Renieramycin-type metabolites from the family of tetrahydroisoquinolines are fre-
quently found in different haplosclerid sponges, e.g., Haliclona, Xestospongia, and
Cribrochalina [116]. Their taxonomic specificity was however doubted by van Soest and
Braekman [45] and Erpenbeck and van Soest [46] due to the possibility of bacterial ori-
gin. This assessment is corroborated by recent findings of Tianero et al. [117] of highly
specific bacterial symbionts in a species of Haliclona, also unravelling the biosynthetic
pathways and host-symbiont relationships on a cellular level. These results would imply
similar mechanisms for related sponges and would support renieramycins as characteristic
metabolites for Haplosclerida.

Straight-chain polyacetylenes are compounds previously considered to be taxonomi-
cally distinct to the order Haplosclerida, which was subsequently restricted to acetylenes
with bromine (Xestospongia) or hydroxylic (Petrosia) moieties [45,46]. While recent reports
from Haplosclerida still vastly outnumber any other sponge taxa, further polyacetylenes
from non-haplosclerid sponges have been discovered as well, some of which also seem
to bear brominated or hydroxylated side chains [118]. Although the majority of sponge-
derived polyacetylenes have long chain lengths, there also are C15 and short-chain (less
than C15) acetylenic compounds, which appear more specific for Haplosclerida. However,
some C15 polyacetylenes have been found both in sponges and algae, making the exact
origin of these metabolites more ambiguous [119]. Consequently, a thorough investigation
of polyacetylenic metabolites found within and outside of Haplosclerida is necessary to
evaluate the taxonomic specificity of straight-chain polyacetylenes.

On Agelasida, Axinellida, Bubarida, and Suberitida

The classification of the genera from the current orders Agelasida, Axinellida, Bubarida,
and Suberitida experienced a major turmoil in the last couple of years when molecular
data revealed eminent shortcomings in the traditional (morphological) classification due
to the lack of unambiguous morphological discriminatory apomorphies (see Erpenbeck,
Hall et al. [62] and Wörheide et al. [47] for an overview). Still, the position of many taxa
in the current classification [60] awaits robust molecular support, while several genera
have subsequently been recovered as polyphyletic, e.g., [63,64]. The uncertain classification
complicates estimation of the taxonomic range of metabolites from the literature alone.

Agelasida

Pyrrole-2-aminoimidazoles (P-2-AI), also called bromopyrroles, pyrrole-imidazole
alkaloids, or pyrrole-2-carboxylic acid derivatives, have been proposed multiple times as
chemotaxonomic markers for Agelasida, e.g., [44,46,58,120]. Since these metabolites are
also commonly found in certain specimens classified as Axinella spp. and Stylissa spp.,
Braekman et al. [120] suggested a closer relationship of these genera to Agelasida. Indeed,
molecular data have revealed Axinella as polyphyletic, e.g., [48,63] with the P-2-AI produc-
ing species A. corrugata, A. damicornis, and A. verrucosa being distant from Axinella sensu
stricto (that include the type species A. polypoides) [63] and in close relationship to Age-
lasida, e.g., [48]. Similarly, the genus Stylissa is found as nonmonophyletic, with the P-2-AI
producing species (incl. S. carteri and S. massa) forming a clade with Agelasida [49,121] and
distant to the nominal type species S. flabelliformis (Order Scopalinida) [122]. Subsequently,
Morrow et al. [65] classified some of the divergent Axinella and Stylissa species into a new
family Hymerhabdiidae inside a re-defined order Agalasida. The production of P-2-AI in
Cymbastela cantharella [123] and Prosuberites laughlini [124] is subsequently reflected by their
molecular phylogenetic position in this clade, e.g., [63–65]. This Agelasida sensu Morrow
et al. [65] clade is further corroborated by additional recent biochemical reports of P-2-AIs,
e.g., [125–128], as well as molecular phylogenetic studies [67].

Braekman et al. [120] identified and suggested special diterpenes with an adenine
moiety, including hypotaurocyamine, as potential apomorphic character for the genus
Agelas, with numerous recent reports of adenine derivatives of diterpenes from this genus,
e.g., [129,130]. These compounds appear characteristic and apomorphic for Agelas.
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Although not as common as the diterpenoid variants, sesquiterpenoid derivatives of
hypotaurocyamine can also be found among Agelasida. Since no new reports contradict
the initial assessment of this class of metabolites being specific to the genus Agelas, its status
as a valid marker persists [120,131].

3β-Hydroxymethyl-A-nor-sterols were previously regarded as potential markers for
Axinellidae (Erpenbeck and van Soest [46]). In our current understanding of demosponge
phylogeny, hydroxymethyl-A-nor-sterols now appear restricted to Hymerhabdiidae. Be-
sides the records mentioned and discussed in Erpenbeck and van Soest [132] and Erpenbeck
and van Soest [46] and new reports solely for “Axinella” (=Stylissa) carteri [133,134]. For re-
ports from A. polypoides [135] and Phakellia (=Axinella) aruensis [136], a taxonomic reanalysis
is advisable in the light of Axinella polyphyly.

Axinellida

Cyanthiwigin-type 7-6-5 tricyclic diterpenes of the cyathane family are compounds
exclusive to the axinellid genus Myrmekioderma. Previous reports of these metabolites
from Higginsia actually belong to the nigernin-type within the cyathanes [46,137]. Another
sponge frequently discussed as cyanthiwigin-containing is “Epipolasis reiswigi” [138], which,
however, has been synonymized with Myrmekioderma gyroderma, hence corroborating
cyanthiwigin-type 7-6-5 tricyclic diterpenes as marker unique to Myrmekioderma.

Bubarida and Suberitida “Incertae Sedis”

Bubarida is a recently erected order consisting of primarily suberitid and axinellid
taxa [60] that were molecularly found distant to currently accepted Suberitida or Axinellida,
e.g., [62,67]. Polyphyly of several species and the lack of unambiguous molecular data
from type species currently hamper genus delimitations, e.g., [48,64].

Terpene isocyanides, isothiocyanides, and formamides often occur together in
sponges [139], and hence, we regard them as a single marker. Substituted diterpene vari-
ants (diterpene isocyanides) are mainly found in sponges of the order Bubarida, including
taxa formerly classified as Axinellida, making them a potential evolutionary apomorphy
for this order (see Figure 1). Within the diterpenoid compounds, the class of kalihinanes
is only present in sponges of the genus Acanthella see review of [140]. The class of am-
philectanes, despite being mainly reported from bubarid genera, e.g., [141,142], has been
described from taxa outside of this order as well, e.g., Ectyoplasia ferox as Hymeniacidon
amphilecta in [143], Hymeniacidon sp. [144], Halichondria sp. [145], Haliclona sp. as Adocia
sp., [146], Svenzea flava, e.g., [147] Stylissa massa as Ciocalapata sp., [148], and Cribrochalina
sp. [149]. Several of these species lack discrete distinguishing morphological characters,
and therefore, a taxonomic revision of the material is strongly suggested.

Compared to the diterpenes, the larger group of marine isonitriles and related com-
pounds contain a sesquiterpenoid backbone and are subdivided into nine classes. Similarly
to the diterpene variants, these compounds are predominantly found in Bubarida, former
members of Suberitida, and closely related species, e.g., [150,151] (see Figure 1), while
several have also been described from unrelated taxa. These outliers comprise isonitriloids
of the classes axanes, eudesmanes, aromadendranes, and epimaalianes, being reported
from Axinella cannabina, e.g., [152], while unspecified Halichondria sp. were found to con-
tain sesquiterpenes with eudesmane, cadinane, spiroaxane, and bisabolene backbones,
e.g., [153]. Further sesquiterpenoids were found in Ciocalypta sp. Pupukeane-class; as
Hymeniacidon sp., [154], Halichondria panicea Cadinane-class; [155], Halichondria cf. lenden-
feldi Bisabolene-class; [156], Phycopsis sp. Bisabolene-class; [157], and Theonella cf. swinhoei
Bisabolene-class; [158], with this being the only ever report from a sponge not part of the
former order of Halichondrida. However, there should be some caution in regards to the
assignment of certain sesquiterpenes as phylogenetic markers, since there are also reports
of several cadinane sesquiterpenes, the trichodermaloids, produced by the symbiotic fun-
gus Trichoderma sp. SM16 isolated from the sponge Dysidea sp. [159]. Therefore, it is not
unlikely that in some cases associated microorganisms are the actual producers of the
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detected sesquiterpenes. As discussed in the respective chapter of Erpenbeck and van
Soest [132], similarities in the skeletal morphology of former axinellid and halichondrid
sponges to each other, as well as to some haplosclerid taxa (e.g., Niphatidae), suggest
frequent misidentifications among taxa. Frequently missing identification on species level,
as well as geographical occurrences distant from the type locality, e.g., H. panicea; [155]
further add to this. The current data strongly support both isonitriloid sesquiterpenes and
diterpenes as markers for Bubarida, until the mentioned uncertainties are clarified.

Carbonimidic dichlorides, or dichloroimines, constitute a rare class of isonitriloid
sesquiterpenoids with both nitrogen and carbon moieties known from formerly hali-
chondrid sponges of the genera Axinyssa, e.g., [160,161], Stylissa massa [162], and Ulosa
spongia [163]. Erpenbeck and van Soest [46,132] suggested this compound group as a
potential marker for Halichondrida, but the polyphyly of this order (see Figure 1), as well
as the reassignment of the aforementioned genera to different orders, now contradict their
initial assessment. Aaptamine alkaloids were previously considered as metabolites specific
for the family Suberitidae; however, this has been disregarded due to multiple reports from
sponges of the orders Haplosclerida and Dictyoceratida [45,46]. Nevertheless, all recent
reports are restricted to sponges of the suberitid genus Aaptos, e.g., [164–166].

Díaz-Marrero et al. [167] suggested suberitane sesterterpenoids as found in Suberites
caminatus as taxon-specific metabolite for Suberitida, which is contradicted by recent
findings of Solanki et al. [168] from the poecilosclerid genus Phorbas. Several other related
compounds with an “alotane” carbon skeleton as precursor have been reported from
Poecilosclerida and Suberitida, implying the possibility of a closer biochemical relationship
between these clades [169].

3.2.2. Verongimorpha and Keratosa

Most verongimorph and keratose sponges can be morphologically distinguished from
the taxonomically larger group of heteroscleromorph sponges in their inability to produce
siliceous skeletal elements of macroscopic scale, although there are exceptions like the
aspicular haplosclerid Dactylia [170]. While all Keratosa possess some sort of skeleton
consisting of spongin fibres, Verongimorpha can either have similar structural elements,
microscleric skeletons (Chondrilla), or no type of skeleton at all [68].

Verongiida (Verongimorpha)

Bromotyrosines were disregarded as a marker for Verongiida in Erpenbeck and van
Soest’s [46] review due to sporadic reports from other orders (Poecilosclerida, Agelasida,
Tetractinellida, Haplosclerida, Dictyoceratida). However, all recent reports have been
restricted exclusively to verongiid taxa, e.g., [171,172]. These conflicting reports displayed
structural homologies to the bromotyrosines found in Verongiida but were not sufficiently
checked for misidentifications and sponge-sponge contaminations [173]. Based on the new
data, bromotyrosines can be regarded as phylogenetic markers for Verongiida. Neverthe-
less, a secondary loss of bromotyrosine production has recently been documented: Genus
Narrabeena was classified outside Verongiida due to the absence of bromotyrosines [174],
but molecular holotype data confirm the verongiid nature of this genus, indicating sec-
ondary losses of bromotyrosine production in Verongiida [175].

3.2.3. Keratosa

The defining morphological differences between the two Keratosa orders Dendro-
ceratida and Dictyoceratida are the eponymous dendritic fiber skeletons, present only in
dendroceratid sponges, and their higher tissue-to-fiber ratio, making them softer and more
delicate in comparison to the resilient or even hard species of Dictyoceratida [176,177].

Within Dictyoceratida, the family Dysideidae is molecularly distinct and can be
morphologically distinguished from the other three families by their choanocyte chamber
type [61,178]. Likewise, Irciniidae can be differentiated from thorectid and spongiid
sponges by molecular data and the presence of collagenous fibres in the mesohyl [179].
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Thorectidae and Spongiidae, however, cannot be recovered as monophyletic [61,178]. These
patterns are also apparent when considering the biochemical data.

Terpene lactones and furans are compounds only found in the keratose orders of Dic-
tyoceratida and Dendroceratida (Figure 3). In many cases, these two types of compounds
are found simultaneously, and therefore, lactones and furans will be treated as a singular
marker for their respective terpene classes.

Diterpene lactones and furans, including spongiane diterpenes, are the only lactonoid
and furanoid metabolites found in both Dictyoceratida and Dendroceratida. While they
are inconsistently present in several genera of Dictyoceratida (e.g., Hippospongia, Spongia,
Luffariella), especially in the family Spongiidae, they are mainly found in all investigated
specimens of Dendroceratida, e.g., [180,181].

Sesquiterpene lactones and furans are mostly restricted to the family Dysideidae
with various recent reports strongly supporting this marker’s validity, although singular
conflicting reports outside of this clade (e.g., Dendroceratida, Axinellida) remain to be
investigated for possible misidentifications or other inconsistencies, e.g., [182,183].

Sesterterpene lactones and furans, on the other hand, are mainly known from the
dictyoceratid families of Thorectidae, Spongiidae, and Irciniidae. Although few studies
have reported these compounds in dendroceratid genera [184–187], the increased presence
of these metabolites in the aforementioned families makes these findings more likely to be
misidentifications, which can be a common issue among the morphologically often hard to
distinguish Keratosa sponges [61].

Scalarane merosesterterpenes, or sesterterpene hydroquinones, are rare metabolites
only found in Dysidea (Dysideidae) [188,189] and more recently in Acanthodendrilla (clas-
sified as Dendroceratida: Dictyodendrillidae). This supports molecular data that recover
Acanthodendrilla type material among the Dysideidae [61].

Naturally occurring polybrominated diphenyl ethers are rare and in sponges can
only be found in the family Dysideidae, produced by its bacterial symbionts, e.g., [190].
Compounds with microbial origin should generally be considered with caution, due to
uncertain host specificity, as well as complex metabolite production pathways and host-
symbiont interactions [46,191]. In this regard, polybrominated diphenyl ethers represent a
unique case, as both their biosynthetic pathways and cyanobacterial origin could be shown,
while still being host-specific to sponges of Dysideidae [192].

Scalarane-type sesterterpenes are limited to the families of Thorectidae, Spongiidae,
and Irciniidae within Dictyoceratida, although their distribution is more biased towards
specific clades within these complex groups instead of being more evenly distributed like
the terpene lactones and furans (see Figure 1) [193].

Polyprenylated benzo- and hydroquinones, despite also being known from the brown
algae Taonia atomaria [194], are possible markers specific for Irciniidae, with several recent
reports from the genera Ircinia and Sarcotragus, e.g., [194,195].

Similarly rare and specific are thiazole polyketides, currently limited to the genera
Cacospongia, Petrosaspongia, and Smenospongia within Thorectidae, e.g., [196–198].
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Figure 3. Further exemplary sponge-derived secondary metabolites with potential for taxon specificity. The value and
validity of the investigated compound groups is discussed in their respective sections of the text.

3.3. Hexactinellida

Glass sponges (Class Hexactinellida) are among the least studied sponge taxa, even
more so in terms of biochemistry, owing to their mostly deep-sea habitats and thus compar-
ative scarcity of animal material, as well as the generally low amounts of tissue [45,199].
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Blumenberg et al. [200] found a number of “simplistic” sterols (cholesterol and deriva-
tives), which were lacking certain modifications of rings and side-chains of sterols typically
found in Demospongiae, thus making them specific for Hexactinellida. While the simplicity
of these molecules allows for delimitation from other sponge classes, the missing specificity
also makes them unsuitable for use on intraclass levels.

Another lipidoid metabolite exclusive to Hexactinellida was identified by Núñez-Pons
et al. [201], who found glycosphingolipids with a specific composition of ceramides, called
glycoceramides, which appear to be only present in glass sponges.

The biochemistry of Hexactinellida, especially their biosynthetic pathways and evo-
lutionary history, still remain largely unknown. They appear to be mostly independent
from the other sponge classes, although lipid composition and microbiome put them into a
closer relationship to Demospongiae [202].

3.4. Homoscleromorpha

The unique feature differentiating sponges of the class Homoscleromorpha from
the other sponge classes is the possession of a true basement membrane of collagen IV,
typically found in all Metazoa except sponges [203,204]. They constitute the sister group
to Calcarea. Like Demospongiae and Hexactinellida, they are able to produce siliceous
spicules, however with distinct differences in the biosynthesis [205].

Homoscleromorph sponges are known producers of compounds from the classes of
steroidal alkaloids and peroxy-polyketides. Steroidal alkaloids were acknowledged as
Homoscleromorpha diagnostic by van Soest and Braekman [45], which is now supported by
recent studies, e.g., [206]. Peroxy-polyketides were disregarded as markers by Erpenbeck
and van Soest [46] due to multiple reports from other sponge taxa. Despite some recent
studies claiming to have found polyketide peroxide metabolites in single taxa such as Agelas
and Hippospongia, the majority of reports originate from homoscleromorph sponges [207],
making them potential markers for Homoscleromorpha. Sponge-sponge associations of
Homoscleromorpha might constitute a further source for misidentified compound origin
(e.g., Plakortis and Agelas; see [208]).

3.5. Calcarea

Similarly to Hexactinellida, reports of new secondary metabolites from calcareous
sponges are scarce, due to lacking research focus and unprofitable perspectives. Conse-
quently, there is hardly evidence for any kind of biochemical synapomorphies.

The only exceptions to this are C27 to C29∆5,7,22 sterols and C27 to C29∆5,7,9(11),22

sterols found in Calcarea, which were identified by Hagemann et al. [209]. They em-
phasize that these steroids are different from hexactinellid sterols, while sharing struc-
tural similarity with demospongian sterols, making them unsuitable for the resolution
of intraclass relationships.

A further calcarean marker, as previously reviewed in Erpenbeck and van Soest [46],
is amino alcohols over C29 chain lengths for the families Clathrinidae and Leucettidae
(both Clathrinida).

4. The Legacy of Chemosystematics–Perspectives on Phylogenetics and Biochemistry

Although the initial concept of chemotaxonomy in sponges could not fulfill its original
expectations, which was resolving the complex classification of sponges, its continuous
growing data source based on comprehensive records on metabolite distribution across
all sponge classes complements other taxonomic methods. With rapid advancements and
increasing versatility of molecular methods, modern sponge systematics substantially rely
on the precision of complex genomic phylogenetic reconstruction models, the still present
conflicts with phylogenies based on morphological characters notwithstanding, e.g., [178].
Detailed metabolite distribution patterns are a valuable asset in the resolution of such
conflicting phylogenies, as the taxonomic allocation of “apomorphic” compounds often fits
the topologies of molecular phylogenies well (see Figure 1). This genomically supported
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specificity of complex compounds furthermore makes convergent evolution of different
metabolite groups increasingly unlikely.

Despite bacterial and fungal sources having taken the lead in reports of newly discov-
ered marine natural products in the past few years, sponges remain the most prolific source
of secondary metabolites and an important keystone in compound research [32]. Suitable
and robust compound markers specific to sponge clades are, however, heavily reliant on
the availability and reliability of information on these metabolites, hence causing a poten-
tial dynamic of applicability of markers over time (see Table 1). Substances prominently
named after sponge species, like Latrunculin, Aaptamine, or Mycalolide, later on also
being found in other (non-)Porifera clades, are just a few examples of mistakenly assumed
exclusivity being revised on the basis of new findings, e.g., [164,210,211]. Although the
overall number of “apomorphic” metabolite classes has increased since the reviews of van
Soest and Braekman [45] and Erpenbeck and van Soest [46], many of the initial obstacles
preventing correct metabolite allocation still persist in the present day.

The most concerning problem, lacking or potential misidentifications, could be greatly
alleviated by mandatory provision of DNA barcodes of frequently used marker regions
(e.g., CO1, 28S, ITS) for studies on extraction and identification of novel marine natural
products from sponges, in addition to detailed morphological descriptions and taxonomic
identifications of the studied sponge specimens, conducted by experts on sponge taxon-
omy. As a consequence, compounds could be assigned to the correct species with more
reliability and could quickly be checked for incongruences with morphological identifi-
cations. This would in turn also provide advantages for biochemical applications and
metabolite screening, as more precise chemo-molecular phylogenies might provide further
insights into the evolutionary pathways of metabolite classes and potentially promising
taxa. This concept has however further room for improvement, as many biosynthetic
pathways, involved genes, and the role of microbial symbionts are often not thoroughly
understood yet, and might help to further comprehend the complex distribution patterns
and evolution of secondary metabolites among sponge clades [212]. Investigations of the
sponge microbiome have shown that microbial associations in sponges are to a large extent
species specific [213–215]. Knowing the associated microbiome, potential function, and
biosynthetic potential might help to identify if compounds are likely of microbial origin or
produced by the sponge host [216]. This could be another approach for future studies to de-
termine if compounds present in specific sponges could be used as phylogenetic markers.

Additional support in defining phylogenetic markers can be provided by metabolomic
studies. The recent advances in nuclear magnetic resonance (NMR) technology and high-
resolution mass spectrometry (HRMS) provides powerful resources for fast and exact struc-
ture determination of secondary metabolites. The increasing publication efforts on natural
products by chemists and chemical ecologists have contributed to many different com-
mercial databases like SciFinder (www.scifinder.cas.org, accessed on 29 July 2021), natural
products libraries such as AntiBase (www.wiley-vch.de/stmdata/antibase.php, accessed
on 29 July 2021) or Dictionary of Natural Products (dnp.chemnetbase.com, accessed on 29
July 2021). In addition, there are non-commercial, free of use databases such as ChemSpider
(www.chemspider.com, accessed on 29 July 2021), PubChem (pubchem.ncbi.nlm.nih.gov,
accessed on 29 July 2021), or Metlin (metlin.scripps.edu, accessed on 29 July 2021). Another
approach is based on tandem mass spectrometry, where molecular ions are fragmented via
MS/MS and resulting data analyzed via molecular networking. The crowdsourced Global
Natural Products Social (GNPS) molecular networking website (http://gnps.ucsd.edu,
accessed on 29 July 2021) is an open-access knowledge base. It enables natural product
chemists to share their MS/MS spectrometry data for dereplication of known compounds
and identification of potential new compounds [217–220]. These metabolomic approaches
will surely accelerate compound assignment in sponges [221] and, combined with the
latest DNA barcoding technology for sponge phylogeny, increase the list of natural product
classes/compounds for phylogenetic markers in sponges.

www.scifinder.cas.org
www.wiley-vch.de/stmdata/antibase.php
dnp.chemnetbase.com
www.chemspider.com
pubchem.ncbi.nlm.nih.gov
metlin.scripps.edu
http://gnps.ucsd.edu
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