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A B S T R A C T   

Permafrost is warming globally which leads to widespread permafrost thaw. Particularly ice-rich permafrost is 
vulnerable to rapid thaw and erosion, impacting whole landscapes and ecosystems. Retrogressive thaw slumps 
(RTS) are abrupt permafrost disturbances that expand by several meters each year and lead to an increased soil 
organic carbon release. Local Remote Sensing studies identified increasing RTS activity in the last two decades by 
increasing number of RTS or heightened RTS growth rates. However, a large-scale assessment across diverse 
permafrost regions and at high temporal resolution allowing to further determine RTS thaw dynamics and its 
main drivers is still lacking. 

In this study we apply the disturbance detection algorithm LandTrendr for automated large-scale RTS mapping 
and high temporal thaw dynamic assessment to North Siberia (8.1 × 106km2). We adapted and parametrised the 
temporal segmentation algorithm for abrupt disturbance detection to incorporate Landsat+Sentinel-2 mosaics, 
conducted spectral filtering, spatial masking and filtering, and a binary machine-learning object classification of 
the disturbance output to separate between RTS and false positives (F1 score: 0.609). Ground truth data for 
calibration and validation of the workflow was collected from 9 known RTS cluster sites using very high- 
resolution RapidEye and PlanetScope imagery. 

Our study presents the first automated detection and assessment of RTS and their temporal dynamics at large- 
scale for 2001–2019. We identified 50,895 RTS and a steady increase in RTS-affected area from 2001 to 2019 
across North Siberia, with a more abrupt increase from 2016 onward. Overall the RTS-affected area increased by 
331% compared to 2000 (2000: 20,158 ha, 2001–2019: 66,699 ha). Contrary to this, 5 focus sites show spatio- 
temporal variability in their annual RTS dynamics, with alternating periods of increased and decreased RTS 
development, indicating a close relationship to thaw drivers. The majority of identified RTS was active from 
2000 onward and only a small proportion initiated during the assessment period, indicating that the increase in 
RTS-affected area was mainly caused by enlarging existing RTS and not by new RTS. The detected increase in 
RTS dynamics suggests advancing permafrost thaw and underlines the importance of assessing abrupt permafrost 
disturbances with high spatial and temporal resolution at large-scales. Obtaining such consistent disturbance 
products will help to parametrise regional and global climate change models.   

1. Introduction 

Permafrost is warming globally and experiences intensifying rates of 
degradation (Biskaborn et al., 2019; Vasiliev et al., 2020; Farquharson 
et al., 2019). As permafrost is defined by the thermal state of the ground, 
with a temperature at or below 0 ◦C degrees for at least two consecutive 
years, the state and extent of permafrost is highly dependent on the 
prevailing thermal regime of the land surface (Brown et al., 1997). Key 
indicators of Arctic climate change such as increasing air temperatures, 

intensifying precipitation events, declining sea ice thickness and spring 
snow cover extent impact the state of permafrost (Box et al., 2019), 
ultimately leading to increased permafrost temperatures and inducing 
widespread permafrost thaw (Biskaborn et al., 2019). Near-surface 
permafrost loss impacts whole landscapes (Jorgenson and Grosse, 
2016), ecosystems (Schuur and Mack, 2018), hydrological systems 
(Liljedahl et al., 2016), urban infrastructure (Hjort et al., 2018) and soil 
carbon accumulation and decomposition (Hicks Pries et al., 2015; 
Walter Anthony et al., 2018), resulting in increased rates of soil organic 
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carbon release (Schuur and Abbott, 2011; Turetsky et al., 2019). 
Remote sensing cannot directly observe permafrost as it is a sub

surface phenomenon defined by ground temperature only, but it can 
give estimations on the distribution, magnitude and impact of perma
frost thaw by detecting landforms and processes associated with melt of 
excess ground ice. Given the remoteness and vast extent of permafrost 
regions (about 21 × 106km2 (Obu et al., 2019)), remote sensing-based 
data and techniques are the only tools to detect, monitor and assess 
permafrost disturbances at regional to continental scales covering 
diverse and heterogeneous permafrost landscapes with spatial and 
temporal consistency. Open image archives and newly available 
cloud-computing possibilities led to an expanded development of 
remote sensing-based time series and disturbance detection algorithms 
(Zhu, 2017). Especially the Landsat archive, containing the longest 
continuous data set comprising nearly 50 years of multi-spectral high 
resolution (30 m) images acquired with a 16-day revisit cycle, has been 
used for large-scale time series assessments (Wulder et al., 2019). 
Prominent examples are the annual global forest maps (Hansen et al., 
2013) and global surface water changes (Pekel et al., 2016). Advanced 
disturbance algorithms differ in targeted observed change (gradual vs. 
abrupt), temporal input data frequency, and whether they detect past 
changes or conduct near real-time monitoring (Zhu, 2017). The existing 
algorithms provide diverse assessment options. However, change and 
disturbance detection in northern high latitudes are still challenging as 
time series studies with optical remote sensing are restricted due to 
frequent cloud cover, short summer periods, and low illumination an
gles. This confines data availability drastically and limits algorithm 
applications that require high temporal input data. Yet, the combination 
of imagery from similar sensors, such as Landsat and Sentinel-2, in
creases data availability in the northern high latitudes strongly and 
permits change and disturbance detection at high temporal resolution 
(Runge and Grosse, 2019, 2020). 

Permafrost warming is observed to cause widespread gradual active 
layer deepening across the pan-arctic permafrost region (Park et al., 
2016). Ice-rich permafrost is particularly vulnerable to rapid thaw and 
erosion as high ground ice contents may accelerate degradation by 
thermokarst (Kokelj and Jorgenson, 2013) and thermo-erosion pro
cesses (Are, 1988). These processes are often driven by disturbances 
such as strong warming or precipitation events, hydrological changes, 
fires, or direct anthropogenic impacts on the soil thermal regime (Grosse 
et al., 2011). Resulting degradational landforms include 
thermo-erosional gullies and valleys (Morgenstern et al., 2021), 
degrading ice wedge polygons (Liljedahl et al., 2016), thermokarst lakes 
(Grosse et al., 2013), steep permafrost coastal bluff erosion (Günther 
et al., 2013), active layer detachment slides (Lewkowicz, 2007), and 
retrogressive thaw slumps (Burn and Lewkowicz, 1990), all which 
change and impact landscapes more drastically and much faster than 
gradual top-down thaw by active layer deepening (Turetsky et al., 
2020). Despite this, large-scale assessments at high temporal resolution 
are still lacking for abrupt permafrost disturbances although under
standing abrupt thaw is of high concern (Turetsky et al., 2019). 

In this study we focus on the development of a remote sensing 
method to automatically identify and map retrogressive thaw slumps 
(RTS) across large-scale regions. RTS are abrupt permafrost disturbances 
that result from slope failure after thawing of ice-rich permafrost which 
is found either in ice-rich Yedoma regions (Strauss et al., 2017) or 
formerly glaciated areas that still contain permafrost-preserved buried 
glacial ice (Kokelj et al., 2017). Initiated by fluvial processes, 
thermo-erosion or mass wasting following heavy precipitation events 
and the exposure of ice-rich permafrost, RTS expand successively into 
the landscape with retrogressive growth of a steep headwall and the 
increase of a slump floor, rapidly and irreversibly changing the land
scape (Ardelean et al., 2020; Kokelj and Jorgenson, 2013; Séjourné 
et al., 2015). RTS vary in size, ranging from under 0.15 ha to mega 
slumps of 52 ha and more (Ramage et al., 2017; Kokelj et al., 2015; 
Lacelle et al., 2015; Günther et al., 2015). Individual RTS are local, 

small-scale disturbances but often occur in regional clusters that then 
impact the surrounding landscape drastically by affecting topographic 
gradients and sediment transport (Kokelj et al., 2013; Mu et al., 2020), 
water quality (Kokelj et al., 2005), coastal erosion (Lantuit and Pollard, 
2008; Ramage et al., 2017) and carbon cycling (Cassidy et al., 2017; 
Turetsky et al., 2020). Commonly observed RTS growth rates range from 
meters to tens of meters per year (Kokelj and Jorgenson, 2013). 
Increasing permafrost thaw due to climate change is predicted to 
intensify their thaw dynamics (Lantuit and Pollard, 2008; Segal et al., 
2016; Lantz and Kokelj, 2008). Their combined impact on landscapes 
and biogeochemical cycling and the abruptness of their rapid develop
ment make RTS a highly important permafrost disturbance feature that 
require better monitoring and prediction capabilities. 

Several local remote sensing studies found an acceleration of RTS 
dynamics by increasing numbers of active RTS, increasing sizes of RTS, 
and faster headwall retreat rates (Lewkowicz and Way, 2019; Ramage 
et al., 2017; Ward Jones et al., 2019), developments indicating inten
sified permafrost thaw and landscape degradation. Previous RTS studies 
covered a range of local to regional spatial extents and annual to decadal 
temporal resolutions. Commonly, RTS dynamics were estimated using 
very high resolution remote sensing imagery for limited local spatial 
extents from a selected number of points in time, restricted by avail
ability of very high resolution imagery, allowing assessment of indi
vidual or a cluster of few RTS (Ardelean et al., 2020; Balser et al., 2014; 
Lantuit and Pollard, 2005, 2008; Lantz and Kokelj, 2008; Luo et al., 
2019; Segal et al., 2016; Séjourné et al., 2015; Mu et al., 2020). Based on 
manually digitised RTS extents and limited fieldwork, these studies 
found increasing rates of RTS activity for varying time periods. Manual 
mapping using high resolution SPOT imagery provided a first regional 
insight into RTS distribution across a 1.27 × 106km2 region in NW 
Canada (Kokelj et al., 2017). Advancing these approaches, RTS distur
bance trends were derived from multi-decadal Landsat image stacks, 
which helped mapping the distribution of active RTS at regional scales 
(Brooker et al., 2014; Kokelj et al., 2015; Nitze et al., 2018) or by 
applying a deep learning algorithm to map RTS from very 
high-resolution images in the Tibetan Plateau (Huang et al., 2020). 
These first automated mapping approaches enabled assessments of RTS 
dynamics at larger scales and results suggest that local permafrost dis
turbances occurring in regional clusters may have a significant impact 
on the landscape-scale. Ward Jones et al. (2019) and Lewkowicz and 
Way (2019) conducted the first high temporal resolution RTS assess
ments from annual input data. Their results indicate the increase in 
occurrence and thaw dynamics of RTS at high temporal resolution from 
manual RTS digitisation and image assessments and linked these to 
climatic drivers. Despite this, it still remains unknown how high tem
poral RTS dynamics are caused and may shift with climate change at a 
larger scale, as both studies are restricted to local study sites in the High 
Arctic. To achieve a better understanding of RTS temporal dynamics and 
their potential contribution to the global carbon cycle, more represen
tative, large-scale, high temporal RTS assessments are necessary. 

The aim of this study is to combine two key elements from the pre
vious RTS assessments: firstly, to apply an automated RTS mapping 
approach for large-scale assessments, taking into account the diversity of 
permafrost regions; secondly, to conduct a high temporal resolution 
assessment, which captures the year-to-year dynamics of RTS. Our main 
objective is to assess RTS disturbance dynamics at high temporal reso
lution in North Siberia. For this, we developed an adaptation of Land
Trendr, an algorithm for automated time series disturbance mapping 
and analysis (Kennedy et al., 2010), and designed a tailored algorithm 
parametrisation specifically for the assessment of RTS. The algorithm 
captures abrupt disturbances from annual Landsat mosaics, enabling the 
quantification and assessment of annual change. An annual resolution of 
data is appropriate to detect RTS dynamics related to annual thaw cycles 
and the 30 m spatial resolution is also sufficient to map RTS (Brooker 
et al., 2014; Nitze et al., 2018). However, for an enhanced spatial and 
temporal coverage at northern high latitude coastal areas we combine 
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Landsat + Sentinel-2 mosaics as input data for LandTrendr, overcoming 
some of the restrictions of optical remote sensing due to frequent cloud 
cover in Arctic regions (Runge and Grosse, 2020). We assess the appli
cability and accuracy of our method at local focus sites and derive 
quantitative annual disturbance dynamics of RTS from 2000 to 2019. 
Further, we upscale this method to an approximate 8.1 × 106km2 study 
region to map the occurrence and distribution of RTS and determine 
their annual disturbance dynamics for North Siberia. 

2. Study area and methods 

2.1. Study area 

The study area covers the terrestrial northern high latitudes of 
Siberia, Russia, ranging from Taymyr Peninsula in the West (80◦ E) to 
Chukotka in the East (170◦ W) and roughly from 77◦ N to 55◦ N, 
comprising an area of approximately 8.1 × 106km2, here referred to as 
North Siberia. The majority of this area is characterised by continuous 
permafrost, discontinuous permafrost is found only in Chukotka as well 
as along the southern margins of the study area, where permafrost extent 
further declines to a sporadic or isolated coverage (Fig. 1). Unglaciated 
areas experienced long-term syngenetic freezing and continuous sedi
mentation during the Pleistocene, which led to the accumulation of ice- 
rich periglacial deposits (Kanevskiy et al., 2011). Ground ice volume 
varies across North Siberia but can reach more than 40% as in the 
southern part of the Lena Delta or even up to 80% in the Yedoma ice 
complex (Stolbovoi and McCallum, 2002; Strauss et al., 2017). The 
climate regions are broadly defined by the Arctic and Boreal zones and 
varying maritime and continental influences, resulting in a range of 
sub-regional climatic characteristics (Sayre et al., 2020). Bioclimatic 
zones in the region range from polar desert to tundra and taiga (Olson 
et al., 2001). Furthermore, the study area is defined by interior and 

coastal lowlands and several mountain ranges such as the Central Si
berian Plateau, Verkhoyansk and Cherskiy, as well as major river sys
tems such as the Lena, Yana, and Kolyma (Fig. 1). 

Nine focus sites are used for the methodological set-up, especially 
calibration and validation, but also for in-depth result analysis. The 
focus sites cover the extent of the study area and represent varying 
geologic, geomorphologic, climatic and vegetational conditions, as 
specified in Table 1. Therefore, the selected focus sites cover a wide 
variability of ecosystems and represent the heterogeneous landscapes of 
North Siberia (Ali, 2020). 

2.2. Ground truth data 

LandTrendr was originally developed and designed to detect and 
capture forest disturbances. Therefore, we parametrised the algorithm 
to be applicable for RTS disturbance dynamics, comprising several in
dividual steps, which required continuous calibration and validation. 
Ground truth (GT) data is sparse in North Siberia and only few RTS 
clusters are known so far. Therefore we concentrated on these as focus 
sites and collected as much GT data as available for calibration and 
validation. To achieve robust results we assessed every parametrisation 
step individually. Fig. 2 shows the general workflow to adapt Land
Trendr to LT-LS2 (LandTrendr Landsat + Sentinel-2) and to parametrise 
LT-LS2 to be applicable to RTS. 

We collected GT data for six focus sites across North Siberia to assess 
the temporal dynamics of RTS. We obtained very high-resolution (VHR) 
multi-spectral RapidEye images (5 m spatial resolution) (Krischke et al., 
2000) as well as PlanetScope images (3 m spatial resolution) (Planet 
Team, 2017) for as many years as available for the focus sites (Table 2). 
There are only images available from 2013 onward, which implies that 
the period 1999–2012 cannot be assessed with RapidEye, PlanetScope 
or other data from other missions such as SPOT, Pléiades, WorldView or 

Fig. 1. Overview of the study area and focus sites across North Siberia. From West to East: a. West Taymyr, b. East Taymyr, c. Lower Lena, d. Southwest Verkhoyansk 
Mountain Range, e. Batagay, f. Chokurdakh, g. Iultinsky, h. Kolyuchinskaya, and i. Chukotka. Permafrost zones according to Obu et al. (2019), Yedoma extent 
according to Strauss et al. (2016) ecosystem according to Olson et al. (2001) and rivers from Natural Earth Data (Kelso and Patterson, 2010). 
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GeoEye. This lack of VHR data is a general limitation for North Siberia 
and unfortunately reflects how infrequent qualitatively sufficient VHR 
data is available. We manually digitised multi-temporal RTS extents 
from the VHR images by visualising false-colour composites for better 
RTS identification and with additional guidance of the permafrost re
gion disturbance trend product (PRD) of the ESA GlobPermafrost project 
(Nitze et al., 2018) and ESRI’s VHR satellite basemap (ESRI, 2017). The 
PRD is a Landsat-based multi-spectral trend product, indicated changes 
in the landscape. The collection of RTS extents shows the RTS size at 
different times and depicts the RTS development over several years at 
the six focus sites. Following the development of RTS as indicated by the 
digitised extents, we defined observation points along central transects 
through individual RTS, which are representative for different distur
bance years of the slump (Fig. A.9) (Brooker et al., 2014). 

Additionally, we used TimeSync for calibration and validation of the 
run parameters for the temporal segmentation of LT-LS2 (Cohen et al., 
2010) with yearly Landsat+Sentinel-2 mosaics as input (Runge and 
Grosse, 2020). For every transect point (Fig. A.9) we assessed Time
Sync’s annual image chips and spectral trajectory to visually identify the 
timing of RTS disturbance, greatest disturbance segment, and the tem
poral segmentation of the overall spectral trajectory. As output of the 
manual TimeSync assessment, we recorded the year of disturbance (GT 
YOD) for every observation point (Table 2). 

Lastly, we conducted a binary machine-learning classification to 
further remove abundant false positive objects. Based on the LT-LS2 
disturbance detection results, we created a training and validation 
data set, by manually labelling all identified objects into either RTS (id 
1) or no RTS (id 0) for five focus sites. For identification of the distur
bance objects, we used again the PRD and ESRI’s VHR stellite basemap 
(Nitze et al., 2018; ESRI, 2017). Table 3 gives an overview of the 
identified RTS for validation for each focus site. As described in Section 
2.1 and Table 1 these focus sites cover heterogeneous landscapes in 
North Siberia as well as different types of RTS that are expected to occur 
(Table 3) and are therefore as representative as possible from the limited 
available data for ground truthing. Despite this, a level of uncertainty 
remains whether the full scope of RTS and their dynamics can be 
depicted for such a remote and large study area by the focus sites. 

2.3. Data and LandTrendr 

Landsat and Sentinel-2 images are the input for this time series 
assessment as they together have the densest and longest continuous 
multi-spectral high resolution image archive. Their combined increased 
image acquisition frequency ensures good data coverage in northern 
high latitudes despite frequent cloud cover (Li and Roy, 2017), which is 
required for high-temporal time series analysis. In this assessment we 
adapted and applied the LandTrendr (Landsat-based detection of Trends 
in Disturbance and Recovery) algorithm (Kennedy et al., 2010). Land
Trendr captures disturbance dynamics at high temporal resolution while 
only requiring annual mosaics as input, which is attainable in northern 
high latitudes by combining Landsat and Sentinel-2 (Runge and Grosse, 
2020). LandTrendr is a time series segmentation algorithm that de
termines disturbance events and change trends from spectral trajectories 
on a pixel-basis. The sementation of spectral temporal trajectories con
sists of a sequence of break-points and straight segments which describe 
the temporal spectral trajectories more simplistically and eliminates 
noise from the time series (Fig. 3) (Kennedy et al., 2010). The temporal 
segmentation process is controlled by a set of run parameters which 
constrain the algorithm to achieve the best fitted temporal trajectory 
representation of the disturbance. Furthermore, the captured spectral 

Table 1 
Focus site locations and their characteristics. Mean annual air temperature 
(MAAT) and mean annual total precipitation (MATP) are derived from ERA5 
reanalysis data based on a 30km-grid (C3S, 2017).  

Focus site Coordinates 
(centre) 

Site characteristics MAAT 
(2m) Jan 
/Jul [◦C] 

MATP 
[mm] 

Lower Lena 69.1◦ N, 
124.5◦ E 

inland, hilly- 
mountainous, 
Yedoma, Taiga 

-36.5 / 
14.9 

32 

Iultinsky 67.7◦ N, 
176.5◦ W 

coastal, lowland, 
Tundra 

-25.1 / 
7.1 

40 

Chukotka 65.1◦ N, 
172.1◦ W 

coastal, lowland, 
Tundra 

-19.9 / 
9.0 

52 

East Taymyr 75.6◦ N, 
113.6◦ E 

coastal, lowland, 
Yedoma, Tundra 

-28.6 / 
3.8 

28 

West Taymyr 73.3◦ N, 
86.9◦ E 

coastal, hilly, 
Tundra 

-27.1 / 
8.1 

43 

Kolyuchinskaya 
Bay 

66.7◦ N, 
174.4◦ W 

coastal, lowland, 
Tundra 

-21.5 / 
5.2 

48 

Chokurdakh 70.6◦ N, 
147.9◦ E 

coastal, lowland to 
hilly, Yedoma, 
Tundra 

-33.9 / 
10.2 

24 

Batagay 67.6◦ N, 
134.8◦ E 

inland, hilly to 
mountainous, 
Yedoma, Taiga 

-41.9 / 
15.7 

21 

Southwest 
Verkhoyansk 

67.1◦ N, 
125.6◦ E 

inland, lowland, 
Yedoma, Taiga 

-36.2 / 
14.9 

49 

Mountain Range      

Fig. 2. Workflow to adapt LT-GEE to LT-LS2 and parametrise the algorithm for 
retrogressive thaw slump (RTS) assessment. * RTS probability score = 0.33% is 
the optimum threshold for an equilibrium between precision and recall in the 
classification as determined in Section 2.8. 
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change by the temporal segmentation can further be limited to a specific 
disturbance type and source by spectrally filtering the LandTrendr 
temporal segmentation results. LandTrendr is fully integrated on Google 
Earth Engine (GEE) as LT-GEE (Kennedy et al., 2018) and we followed 
the established workflow for adaptation (Fig. 2). 

We relied on the full archives of Landsat (Thematic Mapper (TM), 
Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager 
(OLI)) and Sentinel-2 (MultiSpectral Instrument (MSI)) top-of- 
atmosphere (TOA) image collections for North Siberia from 1999 to 
2020 and used images from the peak-growing season months, July- 
August. This reduces seasonal variations in reflectance values and en
sures spectral comparability of land covers between years independent 
of phenological phases. An initial cloud cover filter of less than 80% was 
included as a first image quality criterion. We masked cloud and cloud 
shadow pixels based on the pre-processed metadata information for both 
image products (Landsat band: BQA (CFMASK), Sentinel-2 band: QA60 
(adapted CFMASK)) to ensure data quality. Lastly, we applied spectral 
band transformations from MSI to OLI (Runge and Grosse, 2019) and 
OLI to ETM+ data (Roy et al., 2016) for spectral harmonisation and 
temporal continuity across the different sensors in the time series. The 
filtered, masked and harmonised image collections were input for a 
combined annual mosaicking process. We applied the medoid 
mosaicking function (Flood, 2013), which produces cloud-free, good 
quality and seasonally representative annual mosaics in Arctic-Boreal 
regions (Runge and Grosse, 2020). With these consistent annual mo
saics we ensured temporal continuity in the time series and therefore 
had robust input for the LT-LS2 assessment. 

2.4. Index selection 

RTS can be mapped from multi-spectral data as there are distinct 
spectral differences between the RTS slump floor dominated by bare or 
sparsely vegetated, disturbed soils and wet mudflows and the sur
rounding undisturbed vegetated landscape (either tundra or forest) 
(Fig. 3). To determine the multi-spectral index, which captures the 
spectral change in the time series most reliably, we conducted a 
comparative analysis of six indices: the normalized difference vegetation 

index (NDVI) (Rouse et al., 1974), normalized burn ratio (NBR) (Key and 
Benson, 2005), normalized difference moisture index (NDMI) (Wilson 
and Sader, 2002), and the tasseled cap transformation indices greenness 
(TCG), brightness (TCB), and wetness (TCW) (Huang et al., 2002). At 
three focus sites, Lower Lena, Batagay and Iultinsky, we assessed the 
sensitivity of the indices to distinguish between pre-disturbance, RTS 
disturbance and post-disturbance in a time series (Quintero et al., 2019; 
Yang et al., 2018). The TCG and NDVI showed the clearest differentia
tion between the three stages in a spectral time series (Fig. 4). TCG 
showed more significant differences between pre-, post- and the RTS 
disturbance year compared to more subtle variation in NDVI. We 
therefore proceeded with TCG as the assessment index, which is also in 
accordance with Brooker et al. (2014). 

2.5. LT-LS2 temporal segmentation 

To identify the most suitable run parameters for RTS disturbances we 
defined the range of possible values for each parameter based on rec
ommendations defined by the algorithm developers and previous ad
aptations (Table 4) and compared the different temporal segmentation 
outputs to the GT data (Section 2.2). In total we ran 48 LT-LS2 temporal 
segmentations for each calibration site and extracted the year of 
disturbance (LT-LS2 YOD) for the greatest loss segment for each transect 
observation point (Table 2). We calculated the error matrix between the 
GT YOD and LT-LS2 YOD for all temporal segmentation runs at each 
focus site and recorded the overall accuracy and Pearson’s correlation 
coefficient to determine the best fitting temporal segmentation run and 
its corresponding run parameters. The segmentation results with the 
highest Pearson’s correlation coefficient and overall accuracy were not 
the same for each focus site but showed tendencies for individual pa
rameters. We therefore compared the runs with the highest scores and 
picked the run parameters with the highest agreement between sites and 
run options (Table 4). The selection of run parameters are in agreement 
with recommendations from Kennedy et al. (2010) and their sensitivity 
assessment for a successful LandTrendr set-up. With this parametrisation 
we ran LT-LS2 for the full study area of North Siberia and generated 
LT-LS2 change images for the greatest change segment. Six bands 
describe the disturbance at every pixel: 1) magnitude of spectral change, 
2) year of disturbance, 3) duration of disturbance, 4) pre-change spectral 
value, 5) rate of spectral change, and 6) DSNR as a fit metric. 

2.6. LT-LS2 spectral filtering 

The majority of spectral change captured by LT-LS2 in the temporal 
segmentation is not RTS disturbance but due to general spectral change 
and trend, other landscape disturbances such as wildfires or lake 
drainage, erroneous pixels (cloud, haze, fire smoke) or other artefacts. 
To remove spectral change not associated to RTS disturbances, we 
filtered the temporal segmentation result by applying thresholds to the 
LT-LS2 image bands. We determined filter thresholds for magnitude of 
spectral change (mag) and duration in years (dur) that still map RTS but 
remove other spectral change. Spectral filtering disturbance mapping 
resultsfrom a range of possible threshold values (mag: 200, 400, 600, 

Table 2 
Ground truth data at the focus sites from very high-resolution image data used for calibration and validation of the temporal segmentation and the spatial mapping step 
for LT-LS2 parametrisation. R = RapidEye, P = PlanetScope.  

Site Temporal segmentation Years VHR images (R) RTS transects Observation points Spatial mapping Year RTS extent (R/P) 

Chukotka Calibration 2013, 2014, 2016, 4 18 Calibration 2019 (R)   
2017, 2018, 2019     

Batagay Calibration 2013, 2016, 2017 4 19 Validation 2018 (P) 
Lower Lena Calibration 2013, 2014, 2016, 2018 4 24 Calibration 2019 (P) 
Iultinsky Validation 2014, 2016, 2018 3 20 Calibration 2018 (R) 
Kolyuchinskaya Bay Validation 2013, 2014, 2015, 2016, 4 25 Validation 2019 (R)   

2017, 2018, 2019     
Southwest VMR     Validation 2019 (P)  

Table 3 
The identified RTS in the disturbance data set for training of the machine- 
learning algorithm.  

Study Site RTS/Site characteristics Number of RTS 

Chukotka Coast coastal RTS, discontinuous 53  
permafrost  

Iultinsky lakeshore RTS, 2-3 RTS per lake 66    

Lower Lena lakeshore RTS, 2-3 RTS per lake, 71  
LGM glacial ice extent  

West Taymyr lakeshore RTS, >3 RTS per lake, 116  
pre-glacial moraine deposits  

Chokurdakh lakeshore RTS, >3 RTS per lake, 206  
Yedoma   

Total  512  
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800; dur: 1, 2, 4) were compared to GT data (Section 2.2). We compared 
the mapped area size of RTS from the 36 spectral filtering options to the 
GT area size (RTS extents 2019) and chose the threshold combination, 
which showed the highest correlation to the GT based on the Pearsons’ 
correlation coefficient. With the exception of Chukotka Coast and East 
Taymyr, the Pearsons’ correlation coefficients show high agreement 
between a dur value of 2 and mag values of 400, 600, and 800 (Table 5). 
A dur threshold of 2 ensures the inclusion of disturbance events that last 
at least 2 years which can be expected for RTS. At the same time this 
threshold excludes short term spectral disturbances, which are most 
likely related to anomalies, such as longer or earlier snow cover, as well 
as pixel artefacts. The best fitting mag threshold varied across the focus 
sites but there is a high correlation with several mag values (Table 5). 
The mag threshold is critical to ensure full spatial coverage of the RTS 
objects. We therefore chose the lower mag threshold of 400. While this 
enhances the RTS object coverage it also leads to high commission er
rors, including more non-RTS disturbance pixels and noise which has to 

be removed in the following steps. 

2.7. Spatial masking and object filtering 

The LT-LS2 disturbance map after spectral filtering, despite its 
explicit parametrisation to RTS disturbances, does not only depict thaw 
slumping features but includes other, spectrally similar disturbances, 
such as wildfires, active layer detachment slides, changes in river water 
levels. To further narrow the LT-LS2 disturbance map to RTS, we applied 
several environmental spatial masks (Table 6). 

Following this, we performed object-oriented spatial filters to further 
exclude false positive disturbances and to restrict the subsequent anal
ysis to RTS disturbances (Table 7). We identified disturbance objects 
with scikit-image’s connected component algorithm in a 2-connectivity 
neighbourhood (Van der Walt et al., 2014) and extracted for every 
labelled object feature properties. Based on the LT-LS2 year of distur
bance band, we derived the minimum year and maximum year of 

Fig. 3. Retrogressive thaw slump detection by LandTrendr. a. LandTrendr temporal segmentation schematic, indicating the year of detected disturbance from change 
in spectral magnitude and disturbance duration. b. Picture of coastal thaw slumping at Bykovsky Peninsula (129.2◦ E, 71.5◦ N) in 2014 (G. Grosse). Note persons for 
scale. c. Thumbnails indicating the development of RTS (white arrows in 2020) at the coast of Chukotka (172.2◦ W, 64.6◦ N) 2000–2020. Illustration based on a TCB/ 
TCG/TCW visualisation in the LT-GEE Time Series Animator App (Justin, 2020). 
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disturbance for every labelled object, representing the disturbance 
period of that object. The minimum mapping unit (mmu), maximum 
mapping unit (maxmu) (Lacelle et al., 2015; Lewkowicz and Way, 2019; 
Kokelj et al., 2015; Lantz and Kokelj, 2008; Segal et al., 2016; Ramage 
et al., 2017), object eccentricity, and disturbance period are used to 
differentiate between RTS, which evolve over multiple years and have a 
certain typical size, and other disturbances such as 2020 fire scars, 
remnants of previous fire scars or other extensive disturbances. 

2.8. Machine-learning object filter 

After spatial masking and filtering the disturbance data set still 
contained a high amount of commission errors (false positives). There
fore we applied a binary classification step to classify the disturbance 
object either as a RTS or other. The training and validation data set was 

introduced in Section 2.2 and Table 3. Based on the available GT RTS 
data only 13% (F1 score) of the identified disturbances were correctly 
identified RTS before the binary classification step (Table 9). Omission 
and commission scores cannot be assessed at this point, as only the 
disturbance objects identified up until the previous processing step were 
included for the five focus sites. There is no additional GT data available 
that could possibly specify missed RTS by our method. We used the 
pycaret (version 2.3) package in python to setup a classification pipe
line. As input data we used basic statistics (min, mean, max values) of all 
LT-LS2 output bands, except “year of disturbance”, and Landsat Tasseled 
Cap Index Trends (slopes of TC brightness, greenness and wetness) per 
polygon object. In the model comparison Light Gradient Boosting Ma
chine (Ke et al., 2017) came out as the best model, where we used the F1 

Fig. 4. Spectral indices for pre-disturbance (2010), disturbance (2012) and post-disturbance (2013–2016) years for the focus site Lower Lena. Boxplots illustrate the 
spectral reflectance dynamics from representative RTS disturbance pixels. 

Table 4 
List of necessary LT-LS2 run parameters for the temporal segmen
tation algorithm, indicating all tested values and eventually 
selected values (in bold and italic) for processing. Standard values 
were chosen for vertex count overshoot, minimum observations 
needed and one year recovery prevention. See Kennedy et al. 
(2010) for detailed parameter description.  

Run parameter Values 

Max segments 3, 4, 6 
Spike threshold 0.75, 0.9 
Vertex count overshoot 3 
Recovery threshold 0.25, 0.5 
Best model proportion 0.75, 1.0 
Pval 0.05, 0.1 
Minimum observations needed 6 
Prevent one year recovery True  

Table 5 
The tested mag and dur values for spectral filtering with the highest Pearson’s 
correlation coefficient for the calibration and validation focus sites.  

Site Magnitude Duration Pearson’s correlation coefficient 

Lower Lena 400 2 0.98  
600 2 0.92 

Chukotka 800 2 0.51  
600 2 0.26  
400 2 0.24 

Iultinsky 800 2 0.94  
600 2 0.70  
400 2 0.56 

East Taymyr 200 2 0.37  
400 2 0.28 

Southwest VMR 400 2 0.99 
Kolyuchinskaya Bay 800 1 0.99  

600 2 0.97  
400 2 0.95  
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score as the primary estimator metric. To deal with the extreme class 
imbalance we used the Synthetic Minority Oversampling Technique 
(SMOTE) resampling algorithm (Chawla et al., 2002), which is imple
mented in pycaret. Furthermore we calculated overall classification 
metrics Accuracy and Kappa as well as binary and class specific metrics 
area under curve (AUC), precision and recall. We optimised the model 
and performed a 10-fold stratified cross-validation on the input data set. 
We used pycaret’s built-in model evaluation functionality to determine 
the best separation threshold between classes, as the initial discrimi
nation was strongly imbalanced with a bias towards the no-slump class. 
We repeated the cross-validation on a regional basis, training on four 
tiles and validating on the fifth, rotating through all tiles. We added the 
regional validation to test the transferability to unseen regions. Finally, 
we trained the production model on all five ground-truth tiles and ran 
the inference on the entire study area. The output data set contains final 
class labels (0 or 1) and class specific probability scores. With this we 
reduced the false positives of LT-LS2 drastically, which improved the 
RTS disturbance mapping greatly compared to the purely LT-LS2 auto
mated algorithm. 

2.9. Method accuracy 

2.9.1. LT-LS2 temporal segmentation accuracy 
The results from the comparison between GT YOD and LT-LS2 YOD 

showed that the LT-LS2 temporal segmentation depicts the progression 
of annual temporal dynamics of RTS well. The Pearson’s correlation 
coefficient between GT YOD and LT-LS2 YOD show an agreement of up 
to 0.98 for individual RTS transects (Chukotka 1 and 4, Iultinsky 2, 3 and 
Kolyuchinskaya Bay 1), which verifies that the LT-LS2 temporal seg
mentation parametrisation captures the progression of RTS thaw dy
namics at an annual temporal resolution (Table 8). Individual transects 
show little agreement between the GT YOD and LT-LS2 YOD data (Lower 
Lena 1 and 2, Iultinsky 1, Kolyuchinskaya Bay 2 and 3). A visual 
assessment showed that this is mainly due to individual faulty data 
points in the temporal spectral trajectories, which resulted from irreg
ularities in the mosaics, for example from ETM+ scan-line errors or from 
individual invalid pixels, which deviated from the expected temporal 
trajectory. Hence, overall LT-LS2 captures and depicts the dynamic 
development of RTS well. Further, we derived the mean deviation and 
standard deviation between absolute GT and LT-LS2 identified year of 
disturbance for the transect observation points to evaluate the precision 
of detected disturbance year (Table 8). The mean deviation ranges from 
-4.4 to +3 years for Kolyuchinskaya Bay transect 3 and Lower Lena 
transect 1, respectively. Half of the mean values demonstrate that LT- 
LS2 YOD values are later compared to the GT YOD, which shows a 
delay in disturbance recognition in the LT-LS2 analysis. Contrary to this, 
negative mean values illustrate that LT-LS2 implies a disturbance earlier 
than the GT YOD data set. An issue is probably that with a spatial res
olution of 30 m we have to account for mixed pixels, which delay the 
detection of a disturbance, as the multi-spectral data only recognises the 
disturbance when bare soil dominates the mixed pixel. The assessment 
shows no clear trend on whether LT-LS2 identifies RTS disturbances 
rather too early or delayed but that we have to account for inaccuracies 
of approximately ±2 years for the disturbance year of LT-LS2. 

2.9.2. Machine-learning object filter accuracy 
The validation results prove the challenging task of mapping RTS at 

large-scale. 10-fold cross-validation (CV) on the full GT data set without 
regional differentiation revealed a mean accuracy (statistics of all 10 
folds) of 0.9479±0.0106 and kappa of 0.5452±0.1042 (Table 9). The 
class specific performance for RTS (id 1) metrics revealed a mediocre 
performance with a F1 score of 0.609. The higher precision (0.655) 
compared to recall (0.569) shows a slight bias towards an “under
detection” of RTS. To overcome this bias and to receive a balanced 
classification we used the “threshold” estimator in pycaret. This 

Table 6 
Overview of spatial masks applied.  

Mask Data set Threshold Reference 

Water Global surface water 
data set  

Pekel et al. 
(2016) 

Fire Global forest cover 
change  

Hansen et al. 
(2013) 

Slope ArcticDEM 3–15 ◦ Porter et al. 
(2021) 

Elevation ArcticDEM <250 m a.s.l. Porter et al. 
(2021) 

Water 
buffer 

Global surface water 
data set 

300 m buffer Pekel et al. 
(2016) 

Permafrost Extent and Ground 
Temperature 

Continuous, 
discontinuous 

Obu et al. 
(2019)  

Table 7 
Overview of object-oriented spatial filters applied.  

Filter Threshold Reference 

Eccentricity >0.75 empirically derived   
(Lower Lena, Chukotka, Iultinsky) 

Minimum mapping unit 0.36 ha 2*2 30 m pixels, 
(mmu)  Brooker et al. (2014) 
Maximum mapping unit 15 ha  
(maxmu)   
Disturbance period <2 years unlikely RTS, but likely 2020 fires,   

remnant fire scars, ALDS, artefacts  

Table 8 
Assessment of the LT-LS2 temporal segmentation based on the GT YOD and LT-LS2 YOD transect observation points. The first value is the Pearson’s correlation 
coefficient indicating the general level of agreement between GT and LT-LS2. The second value is the mean deviation between the absolute GT YOD and LT-LS2 YOD 
value and the third the standard deviation, demonstrating the error in absolute year of disturbance in the temporal segmentation. For transects marked with an asterisk 
we excluded the earliest transect point for the mean and standard deviation.  

Step Site All Transect Transect Transect Transect   
transects 1 2 3 4 

Calibration Chukotka Coast 0.63 / -0.3 / 2.6 0.65 / 1* / 1.4 0.40 / -1.3 / 2.8 0.98 / -2 / 2.1 0.95 / 2* / 1.2  
Batagay 0.78 / 0.8 / 3.3 0.8 / 1.7* / 0.9 0.66 / 2.8* / 1.9 0.81 / -2.8 / 3.4 0.76 / 2.5* / 1.2  
Lower Lena 0.23 / 0 / 3.9 0.22 / 3* / 5.1 0.14 / 1.5 / 1.4 0.81 / 1.8 / 0.7 0.59 / -1.7* / 4.6 

Validation Iultinsky 0.49 / -0.13 / 3.9 0.06 / -1.5* / 6.2 0.90 / 2.3* / 1.8 0.92 / -0.7 / 1.8   
Kolyuchinskaya 0.40 / -2.1 / 5.3 0.97 / -0.4 / 1.0 0.05 / -1.4* / 5.4 0.05 / -4.4 / 6.7   
Bay       

Table 9 
Overall 10 fold cross-validation. Mean and standard deviation of scores from all 
10 folds. *Accuracy assessment of the RTS training data set before the binary 
classification. AUC = Area Under the Curve.   

Accuracy AUC Recall Precision F1 Kappa 

Mean* 0.07    0.13  
Mean 0.9479 0.9014 0.4846 0.6765 0.5622 0.5355 
Standard 

Deviation 
0.0106 0.0172 0.1025 0.1034 0.1013 0.1061  
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revealed an optimum threshold (probability score for class 1) of 0.33 to 
maximize the F1 score and a threshold of  0.25 for an equilibrium of 
precision and recall (Fig. A.10). The regional cross-validation (five sites) 
revealed the challenges of model transferability. RTS class specific F1 
score ranged from 0.07 (Lower Lena) to 0.37 (West Taymyr) and 
therefore lower than a CV on the entire data set (Table 10). The classi
fication bias, as observed on the full CV, was more diverse in the regional 
CV. Three of five regions have a higher recall, while only two exhibit an 
excess in precision. 

3. Results 

3.1. Focus sites 

For five focus sites we mapped RTS and assessed their annual thaw 
dynamics in detail to demonstrate the capability and applicability of our 
method. The focus sites comprise a square area of 625 km2 and represent 
known RTS clusters, with varying RTS and densities (Table 11). Chu
kotka presents a coastal site with many active RTS along the coastline. 
Here, as the RTS grow retrogressively, neighbouring RTS merge together 
and form bigger RTS objects with time. At Iultinsky and Lower Lena we 
identified RTS at lake shores and often 2–3 RTS at one lake. Both focus 
sites are located at the border of the Last Glacial Maximum (LGM) glacial 
ice extent in Siberia and are close to areas with ice-rich Yedoma deposits 
(Fig. 7). The other two focus sites, West Taymyr and Chokurdakh, also 
feature RTS at lake shores but often with more than 3 RTS at a lake. 
Chokurdakh is special, as not only individual RTS developed but com
plete lake shores erode. Here, LT-LS2 often identified multiple individ
ual RTS, for the more active erosion parts of the shore. Chokurdakh is 
characterised by extensive Yedoma deposits, whereas West Taymyr is 
located within pre-LGM glacial moraine complexes. The minimum RTS 
size with 0.45 ha was found at Iultinsky, Chukotka and Chokurdakh, the 
predefined mmu. The biggest identified RTS is in Chukotka with 
14.94 ha, the maxmu. The mean RTS size for the sites ranges from 1.4 to 
4.8 ha. In West Taymyr the average RTS activity duration is 11.8 years 
compared to 15.2 years in Chukotka. The initial RTS-affected area in 
2000 per focus site varies greatly (Iultinsky: 5.9 ha, West Taymyr: 69 ha) 
and likewise does the increase in RTS-affected area from 2001 to 2019. 
The RTS-affected area in Iultinsky, West Taymyr and Lower Lena 
increased by 188%, 144% and 141%, respectively. In contrast, the area 
increase of 73% was much lower for Chokurdakh. 

The first and last year of slump activity for each identified RTS and 
the summarised RTS-affected area per year, indicating the annual RTS 
growth, show the dynamic progression of RTS (Fig. 5) as visually 
depicted in Fig. 6. The first year in the assessment period, 2000, com
prises not only newly disturbed RTS area in 2000 but also the accu
mulated dynamics from previous years before our time series starts 
(approximately 1997–2000) (Fig. 5). The annual RTS area analysis 
shows that the increase in RTS area is not uniformly during the obser
vation period but that distinct years with accelerated RTS area growth 
can be determined. Iultinsky had two periods of increased slump ac
tivity, 2008–2010 and 2015–2018, with the highest RTS area growth in 
2008 (Fig. 5d). Similarly, West Taymyr also showed two periods with 
increased slump activity, 2005–2006 and 2012–2017. The RTS-affected 
area in Lower Lena increased in 2008 and lasted until 2017, with the 
exception of 2014. About 60% of the RTS in West Taymyr showed their 

last activity in 2016–2017 (Fig. 5c), which is either the peak slump year 
(2016) or one year later (2017). This suggests that the accelerated slump 
activity was caused by a temporary trigger. There is little new RTS 
initiation during the assessment period in Iultinsky and Lower Lena alike 
and more than 80% of the identified RTS were active since 2000. Most of 
the RTS had their last activity in the second half of the time series, 
specifying higher slump activity during the last two decades in Iultinsky 
and Lower Lena compared to West Taymyr. Chokurdakh und Chukotka 
show very similar annual RTS-affected area trends as Iultinsky and 
Lower Lena. The results show an alternation between time periods of 
high RTS activity and less RTS development during the observation 
period (Fig. A.12). 

3.2. North Siberia 

Within our study area of approximately 8.1 × 106 km2 covering 
North Siberia, a total number of 50,895 RTS were identified and map
ped. The majority of RTS was found between 61 to 73◦ N (Fig. 8b). This 
RTS abundance is highly related to the uneven latitudinal land mass 
distribution in the study area, with less land area north of 72◦ N reducing 
the number of RTS. Similarly to this, the lower latitudes in the East of the 
study area (140◦ E, 55–60◦ N) cover less land mass, which explains the 
lower geographic boundary of identified RTS. Fig. 7 shows the 
geographic density of identified RTS for 40km × 40km grid cells. The 
majority of RTS were identified in the continuous permafrost zone, more 
than 70% of the RTS (Fig. A.11c). Where the permafrost extent becomes 
discontinuous, sporadic or isolated permafrost, RTS occurrence and 
density decrease as well. Furthermore, the RTS density map reveals 
clusters of RTS between 80 to 90◦ E in the West of the study area, be
tween 140 to 160◦ E and north of 65◦ N and along the border of the LGM 
glacial ice extent in Siberia (Ehlers and Gibbard, 2003). The abundance 
of RTS along the margins of the LGM glaciation is most likely associated 
to degrading buried glacial ice in moraines (Barr and Clark, 2012; Kokelj 
et al., 2017). Moreover, the occurrence and density of RTS correlates 
closely with the distribution of thick ice-rich Yedoma permafrost de
posits that are particularly vulnerable to thermokarst and 
thermo-erosion processes such as RTS (Fig. 7) (Strauss et al., 2017, 
2016). About 14% of the RTS are within Yedoma deposits and almost 
70% in close vicinity (<10km) (Fig. A.11d). A high density of RTS can be 
found in central Yakutia near Yakutsk, a known hot spot region for 
permafrost degradation and thermokarst development (Séjourné et al., 
2015; Ulrich et al., 2017). In contrast to this, we also identified vast 
areas with no or low RTS densities across North Siberia, most notably in 
mountainous regions and the central West of the study area. 

Assessing the mapped RTS in relation to elevation and slope showed, 
that the majority of RTS were found in a sloped terrain of 2–4 ◦ (about 
30%) (Fig. A.11b). The occurrence of RTS decreased with increased 
elevation but is also cut-off by the elevation threshold of 250 m a.s.l 
(Fig. A.11a). 

The normalised area frequency plot (Fig. 8d) illustrates that the vast 
majority of identified RTS are small and close to the predefined mmu. 
About 50% of all identified RTS are smaller than 1.17 ha and 90% of the 
RTS are smaller than 3.42 ha, which indicates that the normalised area 
frequency is positively skewed. The proportion of bigger slumps is much 
lower. The distribution is positively skewed because RTS are rather 
small-scale disturbance features, with commonly reported sizes of 
0.4–5.3 ha (Lacelle et al., 2015; Segal et al., 2016), which our results 
show as well. RTS exceeding this size by far, so-called mega slumps, 
occur but are less common. Secondly, RTS are polycyclic which is 
another reason for the predominance of smaller identified RTS objects. 
RTS often alternate between periods of active degradation and periods 
of stabilised dormancy, which can differ spatially with only part of a 
stabilised RTS re-initiating, depending on slumping drivers and envi
ronmental factors such as remaining ice content, exposure of the ice, the 
sloped terrain, drainage and sediment transport, and climatological 
conditions (Balser et al., 2014; Kokelj et al., 2009). The stabilised part of 

Table 10 
Regional Cross-validation (RTS class only).  

Site Precision Recall F1 Support (n objects) 

Chukotka 0.45 0.27 0.34 48 
Iultinsky 0.28 0.34 0.30 56 
Lower Lena 0.04 0.44 0.07 61 
Chokurdakh 0.38 0.18 0.24 212 
West Taymyr 0.63 0.26 0.37 110  
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a RTS cannot be detected by LT-LS2 as the temporal spectral signature of 
these areas does not resemble a disturbance trajectory. LT-LS2 only 
detects the actively degrading RTS areas, capturing only disturbances 
occurring within the assessment period (1999–2000), which might not 
represent the full RTS extent. Therefore, we consider our findings of RTS 
numbers and areas conservative low. 

Most slumps had their first active year at the start of the assessment 
period with almost 50% and 25% in 2000 and 2001, respectively 
(Fig. 8a). The remaining RTS had their first activity year in the course of 
the time series until 2016 but no RTS initiations were detected in 
2017–2018. About 25% of the RTS had their last slump activity in 2019, 
which is the end of the time series. However, a bigger proportion of 
about 30% of the RTS deceased slumping already before the end of the 
assessment period, namely in 2016–2018. The overall summarised RTS- 
affected area increases steadily during the time series, illustrating 
extended annual RTS growth and development (Fig. 8c). The years 2000 
and 2001 show particularly high annual RTS areas. As these are the first 
years in the time series, we expect them to contain the accumulated 

disturbance history of recent years. Results for 2000 and 2001 are 
therefore strongly influenced by an accumulative effect of first de
tections at the time series beginning and thus are more difficult to 
interpret. Accordingly, the trend line was only calculated for data from 
2002 to 2019 (Fig. 8c). Heightened increase rates were determined for 
2016, 2017 and 2019. From 2001 to 2019 the RTS-affected area 
increased by 331% compared to 2000, which shows a drastic increase in 
area affected by permafrost degradation in only 19 years (Table 11). 

Combining these results, we can determine, that the increase in RTS- 
affected area at the end of the time series is not caused by newly or re- 
initiated RTS but most likely by RTS growth of already existing and 
active RTS. Furthermore, the high number of inactive RTS in 2016–2018 
(last year of activity), suggests that the increase in RTS area is not 
necessarily caused by successive thaw, which would prevail for a longer 
time period, but by explicit triggers in those years. Whether these RTS 
remain inactive and stabilise for a longer period cannot be derived from 
this assessment. 

Table 11 
Overview of identified RTS for the focus sites (625 km2) and all of North Siberia. The number of identified RTS, average slump size and the average slump activity 
duration (last - first year of disturbance pixel) are based on the identified RTS objects. The summarised slump area for 2000 and the summarised slump area from 2001 
to 2019 are compiled from all RTS pixels in a focus site. The summarised area from 2001 to 2019 percentage indicates the area growth compared to the RTS area in 
2000. The peak growth years are the two years with the highest RTS area in the time series. *The initial RTS area was derived from 2000 to 2001.   

Number RTS Average slump RTS area RTS area from Average Average Peak growth 
Site of min/mean/max activity in 2000 2001–2019 growth/year growth/RTS years  

RTS [ha] duration [yr] [ha] [ha]/[%] [%] [%] ([ha]) 

Lower Lena 18 0.72 / 2.34 / 6.2 13.7 17.5 24.6 / 141 7.4 7.8 2013 (3.9),         
2015 (3.7) 

Iultinsky 9 0.45 / 1.9 / 8.46 11.9 5.9 11.16 / 188 9.9 20.9 2008 (2.61),         
2009 (1.53) 

Chukotka 9 0.45 / 4.83 / 14.94 15.2 19.5 23.9 / 123 6.5 13.6 2016 (5.4),         
2007 (2.97) 

Chokurdakh 64 0.45 / 1.4 / 7.56 12.3 50.9 36.9 / 73 3.8 1.1 2009 (6.03),         
2011 (5.58) 

West Taymyr 88 0.45 / 1.9 / 11.8 11.8 69.0* 99.5 / 144 7.6 1.6 2016 (43.2),         
2013 (20.5) 

North Siberia 50,895 0.45 / 1.7 / 14.94 12.3 20,158 66,699 / 331 17.4 0.007 2019 (9,669),         
2016 (7,136)  

Fig. 5. The first year of RTS activity (red bar) and last year of RTS activity (blue bar) for Iultinsky, Lower Lena and West Taymyr on the top panel (a–c) and the 
annually summarised RTS areas for the same sites below (d–f). 
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4. Discussion 

4.1. Mapping of RTS 

Our results are overall in agreement with previous studies. The mean 
size of identified RTS ranges between 1.4 ha (Chukordakh) to 4.8 ha 
(Chukotka), which slightly exceeds the RTS sizes recorded by previous 
studies stating average RTS sizes of 0.15–1.63 ha (Ramage et al., 2017; 
Lewkowicz and Way, 2019). The range of previously published mega 
slump sizes, 3.8–9.9 ha, as described by Kokelj et al. (2015) for NW 
Canada, is comparable with the maximum RTS sizes in our study of 
6.2–11.8 ha (Chukotka even 14.94 ha). LT-LS2 might be biased towards 
larger features due to the lower resolution, whereas other studies use 
much higher resolution aerial and and satellite imagery to quantify 
average RTS size. But overall the agreement between studies indicates 
that LT-LS2 is well suited to identify RTS across very large regions. 

Furthermore, we found a strong correlation between the detection of 
RTS and environmental factors. RTS generally occur in ice-rich perma
frost areas, mostly from glaciogenic deposits or syngenetic permafrost, 
along sloped terrain and in proximity to lakes, rivers and coasts, where 
climatic conditions drive their development (Kokelj and Jorgenson, 
2013; Kokelj et al., 2017; Ardelean et al., 2020). Our results also show 
that the majority of the RTS and the highest RTS density can be found in 
the proximity to the LGM glacial ice extent (moraine complexes) and in 
areas with thick ice-rich Yedoma deposits. This agrees with prior find
ings of increased RTS occurrence in such areas in local and regional 
studies from Canada (Ward Jones et al., 2019; Lewkowicz and Way, 
2019; Lacelle et al., 2010) and Alaska (Balser et al., 2014), emphasising 
that very ice-rich permafrost is a determining factor for RTS. Addition
ally, the close fit between detected RTS and ice-rich permafrost in this 
study verifies that our applied automated method identifies RTS 
correctly. The RTS density distribution underlines the vulnerability of 
ice-rich permafrost to abrupt thaw and furthermore, the threat of rapidly 
mobilizing increased amounts of sediment and organic carbon over 
short periods of time (years) in icy permafrost regions experiencing 

thaw. 
However, these RTS mapping results were constrained by the mmu 

and maxmu which we applied to obtain reliable results regarding the 
spatial resolution (30 m), temporal resolution (annual), GT data avail
ability for this large-scale assessment and to avoid confusion with other 
land cover disturbances and changes such as fires or active layer 
detachment slides, which have shorter disturbance dynamic periods, as 
described in Section 2. Mapping RTS smaller than the mmu is not 
feasible at this spatial resolution as the volume of false positives would 
have been increased and the limited available GT data set would not be 
sufficient to mask or filter these in the post-processing steps. Applying a 
similar workflow to VHR data such as RapidEye or PlanetScope would 
improve identification and mapping of smaller RTS but we currently 
lack the temporal coverage of VHR data in the northern high latitudes 
(Table 2). 

Additionally, the maxmu prevented to detect large RTS or mega 
slumps, such as Batagay (67◦ N, 134◦ E) which is the largest mapped RTS 
(>70 ha) in Northeast Siberia with a headwall retreat rate of up to 30 m 
per year (Günther et al., 2016). Since the ancillary data sets were not 
sufficient to differentiate reliably between large RTS and other bigger 
disturbances and land cover changes, as for example Hansen et al. 
(2013) forest change currently lacks fires from 2020, we opted to 
exclude larger disturbance patches due to heightened uncertainties. 
While this is a limitation, the amount of large RTS or mega slumps is 
much smaller compared to the average RTS (Kokelj et al., 2015) and 
should therefore not affect our results greatly as we capture the most 
relevant range of RTS sizes. Therefore, the method presented here is a 
compromise between mapping RTS reliably (constrained between mmu 
and maxmu) with an automated algorithm at large-scale and being able 
to validate the results with limited GT data. Hence, we consider our 
mapping results as conservatively low and expect an actually higher 
number of RTS in North Siberia than identified in this study. 

Fig. 6. Annual progression of RTS in Chukotka (172.2◦ W, 64.6◦ N), showing the year of disturbance for every pixel. Digitised yearly RTS extents from RapidEye 
images are indicated. RTS outline in pink from 2019, in white from 2016, and in yellow from 2013. Background is Esri Satellite Basemap (ESRI, 2017). 
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4.2. Spatio-temporal variability of RTS dynamics 

Between 2000 to 2019 we detected a steady increase in RTS-affected 
area for North Siberia with heightened thaw slump dynamics at the end 
of the observation period. Overall, the RTS-affected area increased by 

331% between 2001 to 2019 (from 20,158 ha in 2000 to 66,699 ha), 
confirming the projected intensification and growing impact of abrupt 
permafrost thaw (Nitzbon et al., 2020; Turetsky et al., 2020). The ma
jority of RTS was active at the beginning of the time series, 2000–2001, 
and only a smaller number of newly initiated RTS was detected in the 

Fig. 7. a) Density map of identified RTS per 40km × 40km grids in North Siberia. b) The permafrost zones are according to Obu et al. (2019), the Last Glacial 
Maximum (LGM) glaciation ice extent according to Ehlers and Gibbard (2003) and the Yedoma distribution according to Strauss et al. (2016). 
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course of the observation period. This suggests that the increase in 
RTS-affected area is predominantly driven by growth of existing RTS 
and not by initiation of new slumps, as also shown by Lewkowicz and 
Way (2019) for the Canadian High Arctic. However, the spatial resolu
tion of 30 m and the applied mmu prevent to detect small-scale changes, 
such as RTS initiation. Therefore, we emphasise again that most likely 
we underestimate the number of actual RTS as well as the RTS-affected 
area. In contrast to this, the focus sites showed differing annual vari
ability in the RTS thaw dynamics, indicating spatio-temporal variability 
of RTS thaw dynamics. All five focus sites do not show a uniform 
year-by-year development of RTS area but distinct periods of increased 
and decreased thaw dynamics. The peak slump years and periods vary 
between focus sites, which further confirms a strong connection to 
spatio-temporal varying slump drivers and environmental triggers, 
which lead to exposure of ice-rich ground, increased thaw, drainage and 
sediment transport during the thaw period. Such assessments of a high 
spatial variability in RTS activity and dynamics could only be addressed 
in limited ways by previous high temporal resolution assessments 
focusing more on local to regional study extents in the Canadian High 
Arctic or on the Qinghai-Tibet Plateau (Lewkowicz and Way, 2019; 
Ward Jones et al., 2019; Luo et al., 2019). 

Lewkowicz and Way (2019) correlated their annual detection of 
growing RTS and newly initiated RTS mainly to warm summer years on 
Banks Island. A similar relationship was found by Ward Jones et al. 
(2019) for their Canadian High Arctic study sites on Ellesmere and Axel 
Heiberg Islands. Besides this, Kokelj et al. (2015) linked increased 
slumping activity to heavy precipitation events and downward sediment 
fluxes for the more southern study area of the Peel Plateau, in NW 
Canada. All these studies point towards a strong correlation between 
climatic and environmental drivers and RTS activity. Following this, we 
correlated the yearly affected RTS area of the focus sites to climate 
variables. We derived the mean temperature, the total annual precipi
tation, the total precipitation for July and August and the number of 
thawing days from ERA5 reanalysis data (C3S, 2017). However, we 

found no significant correlation between these climate variables and the 
annual RTS area, but only varying tendencies for the different focus 
sites. Lewkowicz and Way (2019) and Kokelj et al. (2015) pointed out a 
temporal lag of one or two years between the occurrence of reinforcing 
thaw drivers and actual increased permafrost thaw and RTS develop
ment. Therefore, a closer analysis of possible climate drivers and annual 
RTS dynamics is required to identify the spatio-temporal RTS drivers at 
the different focus sites, but this is outside the scope of this study. 

Overall, combining the results from the focus sites and North Siberia, 
we can imply that the steady increase in RTS-affected area in North 
Siberia results from spatio-temporal variability of RTS thaw dynamics at 
local to regional scale. This emphasises the heightened relevance of 
abrupt permafrost disturbances at the large-scale but without under
estimating the importance of local to regional assessments when it 
comes, for example, to infrastructure planning or other site-specific 
analyses. The impact of advancing permafrost degradation by rapid 
RTS development on local-scale is very pronounced in changing topo
graphic gradients, hydrological systems, and biogeochemical cycling 
and can largely be considered irreversible. Most numerical permafrost 
models do not yet include rapid thaw processes. However, in a recent 
modeling study for the cold and ice-rich permafrost regions of Northeast 
Siberia, which were previously thought to remain largely stable despite 
gradual warming, Nitzbon et al. (2020) included thermokarst dynamics 
and found the landscape to be considerably affected by permafrost 
degradation already by 2100. Current carbon models also show that by 
2300 abrupt permafrost thaw disturbances will occur on less than 20% 
of the permafrost region, but their carbon contribution will be of global 
relevance due to their rapid and deep erosion of ice-rich permafrost 
(Turetsky et al., 2020). The combination of this high carbon release 
potential and the abrupt and widespread thaw process by RTS, also 
discovered in this assessment for North Siberia, make RTS a highly 
important disturbance feature. 

Fig. 8. Identified and mapped RTS in North Siberia: a. First year (red bar) and last year (blue bar) of RTS object activity; b. Normalised frequency of RTS by 
geographic latitude; c. Summarised annual RTS area [ha] with trend line indicating an increase in area from 2002 to 2019 with a slope of 374 ha per year; d. 
Normalised frequency of RTS object sizes. 
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4.3. LT-LS2 capabilities and limitations 

LT-LS2 identifies disturbances from temporal segmentation of spec
tral trajectories. The accuracy of the temporal segmentation showed that 
the progression of the year-to-year thaw dynamics of RTS are captured 
well (Table 8), with an estimated year of disturbance accuracy of ±2 
years (Section 2.9). Yet, this correlation varies and depends on good 
quality input data as seen for few GT transects. By using medoid mosaics 
combining both Landsat and Sentinel-2 we enhanced the input database 
greatly (Runge and Grosse, 2020), similarly to approaches for MODIS 
time series ingesting both Aqua and Terra images (Sulla-Menashe et al., 
2014). However, even Landsat and Sentinel-2 mosaics might not suc
ceed in providing full spatial and temporal coverage in cloud-prone 
areas, such as northern coastal and high Arctic areas. Besides this, 
Sentinel-2 images are only available since 2016 for Siberia and before 
that we rely on Landsat-only mosaics. Thus, we assessed a possible 
correlation between input data and affected RTS area. For the focus sites 
we derived the average number of cloud-free pixels for each year, which 
is an indicator for the input mosaic quality as the likelihood of obtaining 
consistent and gap-free mosaics increases with the number of cloud-free 
pixels. Although the number of clear pixels increased drastically with 
Sentinel-2 in 2016 for all focus sites, we did not find a correlation be
tween the average yearly clear-pixel count and identified RTS-affected 
area. This suggests that there is no bias between detected RTS area 
and enhanced mosaic coverage at the end of the time series, but it rather 
implies reliable disturbance detection throughout the assessment 
period. This is in contrast to findings from a study on cropland change, 
where the image availability and detection of cropland changes showed 
a correlation (Dara et al., 2018). However, cropland changes and 
abandonment are gradual changes, which are further distorted by land 
cover phenology and outliers that are more likely and pronounced in low 
quality input mosaics (Dara et al., 2018). Compared to this, the detec
tion of RTS disturbances is based on determining and extracting the 
biggest disturbance segment, following abrupt, drastic spectral change. 
This method is more robust to shifts in phenology and outliers, which 
might arise in Landsat-only mosaics in years with few cloud-free images 
and affirms reliable disturbance detection also for the first 15 years in 
the time series. 

Insecurities on the definite year of disturbance identification remain 
with a deviation of approximately ±2 years. While this lowers the 
confidence for explicit year of disturbance associations, the 20-year time 
series assessment is still able to depict peak periods of abrupt thaw. 
Furthermore, the accuracy of the annual dynamics is affected by the 
30 m spatial resolution of the input data. Small-scale initial disturbances 
of only a few meters width will not be captured by 30 m spatial reso
lution, which will result in a delay of detecting RTS initiation and early 
growth and is therefore considered a low-resolution bias (Sulla-Menashe 
et al., 2014). A delay of detection can further be perpetuated by thaw 
slumping processes where the vegetation cover and hence the spectral 
land cover reflectance remains intact while the soil column already 
subsides or erodes underneath. Contrary to this, the identification of a 
disturbance can be premature if other changes precede the RTS distur
bance, such as vegetation change, active layer detachment slides or 
flooding of lake or river shores. 

In spite of the reliable detection of temporal RTS dynamics with LT- 
LS2 at local-scale, the application at large-scale required further atten
tion as we encountered high commission errors. The spectral-temporal 
segmentation included a variety of false positives, such as remnants of 
fire scars, lake change and drainage, changing water levels and sediment 
transport in rivers, shadows in mountains and other commissions. The 
difficulty to detect and map RTS at large-scale and to separate from false 
positives has been discussed before (Nitze et al., 2018). Manual RTS 
confirmation was possible at the focus sites but not for the large-scale 
North Siberian application. Hence, a rigorous post-classification of the 
identified disturbance objects was necessary to reduce the amount of 
false positives and narrow the analysis to RTS disturbances. Considering 

that RTS are very local, small-scale features, the amount of training and 
validation data, compared to the false positives was very low and 
sparsely scattered across North Siberia as qualitative VHR data is only 
infrequently available for North Siberia. Also, prior studies of detailed 
local RTS assessments are very sparse in this large study region (e.g., 
Séjourné et al., 2015; Günther et al., 2016). This sparseness in 
high-resolution data decreases the LT-LS2 RTS classification accuracy to 
a F1 score of 0.609 for RTS. At the same time, the LT-LS2 classification 
reduced the overall number of identified disturbance objects drastically. 
We are confident that final RTS mapping and analysis of RTS across 
North Siberia, represents a reasonable and fitting framework for a first 
large-scale assessment at high temporal resolution. However, we cannot 
completely rule out the false inclusion of fire scar remnants, multi-year 
active layer detachment slides or regular landslides, or other disturbance 
artefacts as indicated by the classification accuracy. 

The RTS distribution and density map indicates local and regional 
RTS clusters, closely related to climatic, geologic and topographic con
ditions. The use of VHR imagery and assessment methods can therefore 
now be regionally targeted and used for a high spatial resolution 
assessment of RTS in the future, provided the availability of VHR data. 
Multi-sensor constellations such as RapidEye and PlanetScope acquire 
images at increased rates and high spatial resolution, which increases 
the likelihood of obtaining high quality images. This could confirm and 
narrow the identified RTS objects in conjunction with the high temporal 
resolution assessment presented here as well as enhance the identifica
tion of initiation and small-scale changes. So far, the long time series of 
high temporal high spatial resolution cannot be replaced by VHR data 
but a combination of both will enhance the detection of small-scale 
changes. Similarly, the development of new improved mapping 
methods, such as deep learning algorithms, may help achieving a high 
mapping accuracy. For example, RTS in Tibet were mapped using deep 
learning techniques with CubeSat images at high spatial resolution, 
which ensured a more accurate estimation of RTS-affected area but is 
currently still limited to local study sites and only short assessment pe
riods (Huang et al., 2020). 

5. Conclusion 

Our study includes the adaptation of the LandTrendr algorithm to 
capture the rapid permafrost disturbance dynamics of RTS at high 
temporal resolution in a first large-scale assessment across North Sibe
ria. Parametrisation of LT-LS2 by extending the data input to Landsat 
and Sentinel-2, adjustment of the temporal segmentation, adaptation of 
the spectral and spatial masking parameters, and a binary machine- 
learning classification allowed us to identify and map RTS. While 
ground truth is sparse, we aimed to thoroughly assess and parametrise 
the individual workflow steps with available VHR data, resulting in a 
reliable and robust assessment framework for high temporal RTS anal
ysis. Our assessment showed an overall steady increase in RTS-affected 
area in the 8.1 × 106km2 study area and highlights the abundance and 
rapid dynamics of abrupt permafrost thaw processes in ice-rich perma
frost landscapes. Local focus-site assessments indicated spatio-temporal 
variability of RTS thaw dynamics. These patterns and year-by-year 
processes can only be detected at high temporal resolution and would 
be missed by low temporal resolution assessments and trend analysis. It 
is apparent that RTS do not develop uniformly but are caused by varying 
drivers. The data set with annual resolution of RTS thaw dynamics now 
allows for a detailed assessment of thaw slumping drivers. Our study 
covered heterogeneous permafrost regions with varying climatic, 
geologic, geomorphological and vegetation conditions, which are also 
common in other regions of the pan-arctic. In our rather short time series 
covering 20 years (2000–2019), we observed an increasing impact of 
abrupt permafrost disturbances on the landscape. Considering that nu
merical models project increasing permafrost thaw due to climate 
change and strong Arctic warming also in very ice-rich permafrost re
gions, we assume that this observed trend will further continue. 
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Code and data products 

The LT-LS2 RTS disturbance data set will be provided on PANGAEA 
archive for public access. 
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Appendix A

Fig. A.9. The RTS extents at different years and determined observation transect points for an exemplary retrogressive thaw slump on a lake in Iultinsky. The base 
picture is a false-colour composite of the RapidEye image RE1 11-07-2018. Bluish color of the lake indicates substantial sediment influx from the RTS as opposed to 
other dark lakes in the surrounding. 
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Fig. A.10. “Threshold” estimator in pycaret for the classification model. 

Fig. A.11. Geo-location assessment of mapped RTS in North Siberia. The percentage of RTS a. according to elevation, b. according to slope (both Porter et al. 
(2021)), c. according to permafrost zone (Obu et al., 2019), and d. according to distance to Yedoma (Strauss et al., 2016). 
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Fig. A.12. Specific results of RTS dynamics for the focus sites Iultinsky, Lower Lena, and West Taymyr.  
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