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Abstract: In a warming Arctic, permafrost-related disturbances, such as retrogressive thaw slumps
(RTS), are becoming more abundant and dynamic, with serious implications for permafrost stability
and bio-geochemical cycles on local to regional scales. Despite recent advances in the field of
earth observation, many of these have remained undetected as RTS are highly dynamic, small,
and scattered across the remote permafrost region. Here, we assessed the potential strengths and
limitations of using deep learning for the automatic segmentation of RTS using PlanetScope satellite
imagery, ArcticDEM and auxiliary datasets. We analyzed the transferability and potential for pan-
Arctic upscaling and regional cross-validation, with independent training and validation regions,
in six different thaw slump-affected regions in Canada and Russia. We further tested state-of-
the-art model architectures (UNet, UNet++, DeepLabv3) and encoder networks to find optimal
model configurations for potential upscaling to continental scales. The best deep learning models
achieved mixed results from good to very good agreement in four of the six regions (maxIoU: 0.39 to
0.58; Lena River, Horton Delta, Herschel Island, Kolguev Island), while they failed in two regions
(Banks Island, Tuktoyaktuk). Of the tested architectures, UNet++ performed the best. The large
variance in regional performance highlights the requirement for a sufficient quantity, quality and
spatial variability in the training data used for segmenting RTS across diverse permafrost landscapes,
in varying environmental conditions. With our highly automated and configurable workflow,
we see great potential for the transfer to active RTS clusters (e.g., Peel Plateau) and upscaling to
much larger regions.

Keywords: deep learning; image segmentation; permafrost thaw; semantic segmentation; disturbances;
computer vision; automation; PlanetScope; thermo-erosion; ArcticDEM; landslides

1. Introduction

The changing climate of the Arctic, with both measured and projected air temperatures
and precipitation rapidly increasing [1,2], has a significant impact on permafrost [3–5].
As permafrost soils store about twice the amount of carbon as that found in the atmo-
sphere [6,7], permafrost thaw and resulting carbon feedbacks are expected to have a
significant impact on the global climate [8]. Rising permafrost ground temperatures have
been observed across almost the entire Arctic permafrost region [3]. As a result of warming,
permafrost becomes more vulnerable to disturbances of [9] and degradation in ground
ice-rich landscapes due to thermokarst and thermo-erosion.

Retrogressive thaw slumps (RTS) are typical landforms related to processes of rapidly
thawing and degrading hillslope permafrost [10]. Although these mass-wasting processes
have been observed in different Arctic regions in the past decades [11–13], many recent
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field and remote sensing studies found increasing occurrence and faster progression in
various permafrost regions [12,14–18].

As RTS typically have a small size (<10 ha, with a few exceptions reaching up to
~1 km2), as well as a wide range of appearances and dynamics, their detection and mon-
itoring on the regional to continental scale would require globally available imagery at
sufficiently high spatial and temporal resolutions. Their formation is bound to specific
environmental and permafrost conditions, such as ice-rich permafrost and sloped ter-
rains [10,12,19], thus limiting their presence to regional clusters. Particularly, regions with
massive amounts of buried ice, as preserved in the moraines of former glaciations [17,20,21],
or regions with thick syngenetic ice-wedges in yedoma permafrost [22,23], or with very fine
grained marine deposits that were raised above sea level following deglaciation and thus
formed very icy epigenetic permafrost, can be prone to RTS development [18]. Furthermore,
increasing temperatures and precipitation have likely caused the increased formation and
growth of RTS [21,24].

Fairly well-studied regions for the occurrence of thaw slumps are typically clustered
and located in former ice-marginal regions of the Laurentide Ice Sheet in NW Canada,
most notably the Peel Plateau [17,21] and Banks Island [16], or moraines of formerly
glaciated mountain ranges, e.g., the Brooks Range in northern Alaska [20,25]. Intensively
studied regions in Siberia include the Yamal Peninsula [13,26], Kolguev Island [27], Bolshoy
Lyakhovsky Island [22] and the Yana Basin with its famous Batagaika mega slump [14,28].
However, the latter is, atypically, not part of a larger cluster of RTS. The total quantity and
distribution of RTS in the Arctic remains unknown.

Several remote sensing studies have used very high-resolution (VHR) satellite data,
but RTS are typically delineated manually, which is a labor-intensive task and therefore
prohibitive for larger regions. The use of airborne [29,30] or UAV data [31] to survey
small areas with RTS is becoming more popular. These datasets allow for the creation
of elevation data and multiple observations, thus providing a basis for more automated
approaches [29–31]. Highly automated approaches, which will be required to map RTS
across larger regions and multiple time steps, are fairly scarce so far. Nitze et al. [32] used a
random forest machine learning approach to map RTS and other permafrost disturbances,
such as lake dynamics and wildfire, on Landsat data across four large north–south transects
in the Arctic covering ~2.2 million km2. For the indirect detection of RTS and thaw-related
erosion features, Lara et al. [33] measured changes in lake color as a proxy for rapid thermo-
erosion dynamics in a watershed-scale study in NW Alaska using Landsat. However,
the coarse resolution of Landsat (30 m) proved to be a highly limiting factor in detecting
RTS features accurately [32]. A combination of Landsat and Sentinel-2 imagery was used
to assess RTS dynamics with the LandTrendr disturbance detection algorithm over a
~8 million km2 region of East Siberia for a 20-year period from 2000 to 2019 [34].

Automated approaches applied to higher-resolution data (better than 5 m ground
resolution), such as high-resolution RapidEye and PlanetScope imagery or very high-
resolution DigitalGlobe/Maxar imagery, pose specific challenges for image classification
and specifically object detection. On such data, pixel-based approaches are no more
feasible, and object-based image approaches (OBIA) need to be applied [35]. Traditionally,
this has been accomplished with the segmentation followed by classification of image
objects. Over the past few years, deep learning (DL) techniques have grown in popularity
for object detection or segmentation in imagery of any kind, e.g., bio-medical images
or everyday photography.

In remote sensing, DL approaches are also growing in popularity [36] for typical
applications such as image segmentation and classification, due to their ability to take
spatial context into account. This includes, e.g., the mapping of landslides [37–39]. Further-
more, DL-based image segmentation has been particularly applied on VHR data, such as
Worldview, GeoEye, etc., to automatically detect comparably small objects, such as build-
ings [40–42] or individual trees [43]. Due to many DL algorithms, such as Mask R-CNN,
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requiring a fixed amount of input bands, e.g., one or three, and to avoid overfitting, several
studies have focused on input band selection and optimization [44–46].

In permafrost remote sensing, deep learning applications are very scarce so far. They
have been applied for mapping and segmenting ice-wedge polygons [47–49] and for detect-
ing infrastructure across the Arctic permafrost region [50]. DL for detecting and tracking
RTS was used by Huang et al. [51,52], who tested the applicability of the DeepLabv3+ DL
architecture for detecting and monitoring RTS on the Tibetan Plateau using Planet data.
They received a high detection quality similar to manual digitization [52], which enabled
them to track RTS in space and time within a confined region.

Based on these promising achievements, we here aim to:
(1) test the feasibility of applying DL methods on PlanetScope and auxiliary data to

detect and map RTS across different Arctic permafrost regions;
(2) identify the particular advantages and challenges;
(3) discuss the further requirements for using AI-based techniques to eventually map

RTS across the circum-Arctic permafrost zone.

2. Materials and Methods
2.1. Study Regions

We selected six different sites across the Arctic in Canada and Russia that are affected
by RTS (Figure 1; Table 1). These locations were chosen to contain a sufficient number
of RTS, and to represent a broad variety of environmental conditions (sparse tundra to
taiga) and geographic settings (RTS at coast, river, or lake shores, hillslopes, and moraines).
Study sites with a spatially extensive occurrence of RTS (e.g., Horton Delta, Banks Island,
Kolguev Island) were each split into two subsets. All sites/subsets have an area of 100 km2

(10 × 10 km) to ensure the best possible comparison and normalization to each other.
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Table 1. Study sites with center coordinates, region, and number of used Planet images.

Study Site Center Coordinates Region # of
Images

# of Image
Dates

Banks Island 01 119.50◦ W; 72.84◦ N; NW Canada 12 5
Banks Island 02 118.20◦ W; 73.04◦ N NW Canada 15 4
Herschel Island 139.00◦ W; 69.60◦ N NW Canada 10 5
Horton Delta 01 126.75◦ W; 69.75◦ N; NW Canada 10 4
Horton Delta 02 126.60◦ W; 69.64◦ N NW Canada 13 6

Kolguev Island 01 48.35◦ E; 69.22◦ N NW Siberia 29 14
Kolguev Island 02 48.51◦ E; 69.35◦ N NW Siberia 20 8

Lena River 124.40◦ E; 69.12◦ N E Siberia 47 22
Tuktoyaktuk Pen. 133.80◦ W; 69.12◦ N NW Canada 19 9

2.1.1. Banks Island

The Banks Island study site consists of two subsets and is located in the eastern
RTS-rich part of Banks Island in NW Canada (see Figures A1 and A2). This region is
characterized by glacial moraine deposits (Jesse Moraine) of the former Laurentide Ice
Sheet, which contains buried massive ground ice [16,53]. The region is subject to massive
permafrost degradation as indicated by strong ice-wedge degradation [54] and abundant
RTS [16], which mostly form along lake shores and valley slopes. The vegetation is sparse
tundra according to the Circum-Arctic Vegetation Map (CAVM) subzone C [55]. The
selected site has some of the largest and most active RTS known globally (see Figure A1d).
The region has rolling terrain with an abundance of lakes and river valleys. Modeled
ground temperatures are −14 to −15 ◦C [56].

2.1.2. Herschel Island

This study site covers large parts of Herschel Island in NW Canada (see Figure A3).
The Herschel Island site contains large highly active RTS, which have been frequently
studied over the past decade [12,57]. Similar to many other RTS-rich sites in NW Canada,
Herschel Island is located along the margins of the Laurentide Ice Sheet. The substrate is
dominated by permafrost with massive buried glacial ice remnants [58]. The vegetation
is dominated by shrubby tundra (erect dwarf shrub tundra) of CAVM Zone E [55]. Due
to the rolling hilly nature of the island, there are many small stream catchments, but only
a few smaller lakes and ponds. Thaw slumps are predominantly located on the SE shore.
Modeled ground temperatures are −5 to −6 ◦C [56].

2.1.3. Horton Delta

This study site consists of two subsets and is located just south of the Horton River
delta in NW Canada at a steep cliff on the Beaufort Sea coast (see Figures A4 and A5).
This region was located at the front of a Laurentide Ice Sheet lobe and is known to be
affected by RTS [21]. The site is characterized by rolling terrain with steep coastal cliffs
and partially deeply incised valleys. Vegetation here is classified as dwarf shrub tundra of
CAVM subzone D/E [55]. Lakes are very sparse, but larger valleys with rivers are present
within this site. Thaw slumps are predominantly located on top of the coastal cliffs. Smaller
RTS are also found along steep valley slopes in close proximity to the coast. Modeled
ground temperatures are −7 to −8 ◦C [56].

2.1.4. Kolguev Island

Kolguev is an island off the coast of Arctic European Russia. It is characterized by
ice-rich permafrost with tabular ice [27]. Vegetation here is dominated by Tundra of CAVM
Zone D [55]. The study site has a rolling terrain with steep coastal bluffs. RTS are most
abundant on these coastal bluffs in the NW of the island. Lakes are very sparse in this
region (see Figures A6 and A7). Modeled ground temperatures are 0 to 1 ◦C [56], though
the presence of RTS and therefore ground-ice suggests lower temperatures.
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2.1.5. Lena River

This study site is located in the lower reaches of the Lena River on the east side of
the river close to the foothills west of the Verkhoyansk Mountain Range in northeastern
Siberia. This site is likely a terminal moraine of an ancient outlet glacier from the mountain
range, which underwent several glaciations during the Quaternary period [59]. The glacial
history of this region is not documented in detail. Vegetation here is boreal forest, and
the region is lake-rich. RTS typically formed along the lake’s shores. Former stabilized
RTS are also abundant and mostly covered by dense shrubs (see Figure A8). The presence
of RTS in this region is only sparsely documented in the literature [32]. Modeled ground
temperatures are −7 to −8 ◦C [56].

2.1.6. Tuktoyaktuk Peninsula

This region is located on the Tuktoyaktuk Peninsula in NW Canada. It is a rolling,
glacially (Laurentide Ice Sheet) shaped lowland with massive ground ice [19,60]. The
vegetation here is shrubby tundra of CAVM Zone E [55] close to the tundra–taiga ecotone.
This region has a large abundance of lakes [61,62]. Thaw slumps typically form along lake
shores (see Figure A9). Modeled ground temperatures are −6 to −7 ◦C [56].

2.2. Data

For training data collection, as well as model training, validation and inference, we
used a variety of data. Our primary data source was the PlanetScope [63] multispectral
optical data for the years 2018 and 2019. We further used additional datasets, such as the
ArcticDEM [64] and Tasseled Cap Landsat Trends [32]. Furthermore, for collecting ground
truth, we additionally used the ESRI and Google Satellite layers.

2.2.1. PlanetScope

We used PlanetScope satellite images [63] as our primary data source. PlanetScope
data are acquired by a constellation of more than 120 satellites in orbit. They have a spatial
resolution of 3.15 m and four spectral bands in the visual (red, green, blue; RGB) and
near-infrared (NIR) wavelengths. The high number of satellites in orbit allows for sub-daily
temporal resolution, particularly at high-latitudes, where data overlap becomes increas-
ingly dense for satellites following a polar orbit [65]. However, non-obstructed views of the
ground are severely limited, particularly in high-latitude coastal regions, due to persistent
cloud cover and cloud shadows, haze, and long snow periods. Furthermore, the generally
low sun elevations in high-latitude environments can lead to low signal-to-noise ratios.

For data selection, we applied the following selection criteria: maximum 10% cloud
cover, 90% area coverage, and an observation period from 1 June until 30 September during
the years 2018 and 2019. Furthermore, we selected image dates by visual inspection to
ensure consistent temporal sampling, where possible. As cloud-free periods (the main
limiting factor) tended to be temporally clustered, we omitted several clear sky image dates
within short periods (e.g., five consecutive days with clear skies), as these will not provide
additional value for training the model. The image dates and IDs are indicated in Figure 2
and Supplementary Table S1. Due to further satellite launches, the number of PlanetScope
images increased significantly over our observation period. Thus, available imagery was
rather sparse before 2019, but became increasingly abundant after that.
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Finally, we downloaded data through the porder download program [66] and Planet
Explorer interface. We chose the “analytic_sr,udm2” bundle, which includes surface
reflectance data, udm (unusable data mask), udm2 and metadata files. We chose to clip
output data automatically to the respective AOI extents, which allowed us to optimize
the allocated data quota and to ensure the completeness of all ground truth datasets.
Finally, we calculated the Normalized Difference Vegetation Index (NDVI) for each scene
as an additional input layer. We used the udm2 data mask to mask out remaining clouds,
shadows and snow/ice in the PlanetScope and all auxiliary datasets.

2.2.2. Arctic DEM

We used the ArcticDEM [64] (version 3, Google Earth Engine Dataset: “UMN/PGC/
ArcticDEM/V3/2m_mosaic”) to calculate slope and detrended elevation data. The Arctic-
DEM is available for all land areas north of 60◦ latitude, but contains minor data gaps. We
calculated the relative (detrended) elevation by subtracting the mean elevation within a
circular window (structuring element) with a diameter of 50 pixels (100 m). The relative
elevation was used to determine the local pixel position within the surroundings and to
remove the influence of the regional elevation. Finally, we rescaled the relative elevation
values with an offset of 50 and factor of 300 to minimize the size of data of the unsigned
Integer16 type. Furthermore, we calculated the slope in degrees. For both calculations we
used the ee.Terrain.slope function in the Google Earth Engine (GEE).

We downloaded the data (relative elevation and slope) for the training sites (buffered
by 5 km) from GEE with the native projection (NSIDC Sea Ice Polar Stereographic North,
EPSG: 3413) and a spatial resolution of 2 m. We chose GEE over the original data portal
due to the simpler accessibility of data, as well as its capacity for slope calculation and
process automation. After downloading, all individual tiles were merged into virtual
mosaics using gdalbuildvrt to simplify data handling and permit efficient data storage. We
later reprojected both datasets, elevation and slope, to the projection, spatial resolution
and image extent of individual PlanetScope scenes using gdalwarp within our automated
processing pipeline (see Figure 3).

2.2.3. TCVIS

To introduce a decadal-scale multi-temporal dataset into the analysis, we used the
temporal trend datasets of Tasseled Cap indices of Landsat data (Collection 1, Tier 1, Surface
Reflectance), based on previous work [67,68]. For the period from 2000 to 2019, we filtered
Landsat data to scenes with a cloud cover of less than 70% and masked clouds, shadows
and snow/ice based on available masking data.

We calculated the Tasseled Cap indices [69], brightness (TCB), greenness (TCG), and
wetness (TCW) for each individual scene. Then we calculated the linear trend for each
index over time, scaled to 10 years. Finally, we truncated the slope values of all three indices
to a range of −0.12 to 0.12 and transformed the data to an unsigned integer data range
(0 to 255) to minimize storage use. The resulting data were stored as a publicly readable
GEE ImageCollection asset (“users/ingmarnitze/TCTrend_SR_2000-2019_TCVIS”).
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2.3. Methods
2.3.1. Slump Digitization

We created ground truth datasets for training and validation by manual digitization
in QGIS 3.10 [70]. We used the individual PlanetScope scenes (see Section 2.2.1) as the
primary data source. We digitized each available image individually. Accordingly, we have
multi-temporal information of RTS in all study regions. The same physical RTS may have
different polygon shapes on different dates due to the physical change of the RTS (e.g.,
growth), presence of snow, its location on the edge of the imagery, geolocation inaccuracies,
or slightly inconsistent digitization (see below).

Furthermore, we used auxiliary data to better understand landscape morphology
and landscape dynamics, when interpreting potential RTS features. These auxiliary
data are the ArcticDEM and multitemporal TCVIS (Landsat Tasseled Cap Trend) data,
streamed through the Google Earth Engine Plugin (https://github.com/gee-community/
qgis-earthengine-plugin, v0.0.2) in QGIS. Furthermore, additional VHR imagery publicly
available in ESRI and Google satellite base layers was accessed and used for mapping
through the QuickMapServices Plugin in QGIS [71]. The VHR imagery was used solely for
guidance in order to better identify the ground objects at a higher resolution than the 3 m
PlanetScope imagery.

Labeling went through two iterations to ensure the highest data quality. In the first
step, a trained person manually digitized potential thaw slumps that matched selected
criteria. During this iteration, unclear cases were discussed with a second trained person.
The criteria for manually outlining RTS in the data were:

1. little or no vegetation, surrounded by vegetation;
2. presence of a headwall;
3. “blue” signature of TCVIS layer, a transition from vegetation to wet soil;
4. visible depression in ArcticDEM and derived slope dataset;
5. visible thaw slump disturbance in VHR imagery;
6. snow was considered as not being part of the RTS.

https://github.com/gee-community/qgis-earthengine-plugin
https://github.com/gee-community/qgis-earthengine-plugin
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In the next step the second person checked each individual thaw slump object and
confirmed, edited, removed or added new polygons. In this procedure, we closely follow
the RTS digitizing guidelines set out by Segal et al. [72].

Although the datasets went through several iterations, oftentimes it was challenging
to determine whether the slumps were still active or already stabilized, and therefore
whether they needed to be included in or excluded from the process. Furthermore, while
actively eroding upper parts of thaw slumps were easy to delineate due to the presence
of a headwall, the lower scar zone and debris tongues were typically more challenging
to delineate due to unclear boundaries. Overall we digitized 2172 thaw slump polygons.
Please find more details in Table 2. The digitized polygons are made freely accessible (see
Data Availability Statement).

Table 2. Study sites with total number of detected RTS and number of individual RTS per date.

Study Site # of Total Individual
RTS Objects

# of Individual RTS
per Date 1, 2

Median Object
Size (m2)

Banks Island 01 397 65–103 22,032
Banks Island 02 151 24–53 22,203
Herschel Island 148 15–40 5175
Horton Delta 01 180 36–52 5562
Horton Delta 02 354 35–67 7981

Kolguev Island 01 44 3–5 78,786
Kolguev Island 02 275 25–41 13,840

Lena River 238 5–13 14,470
Tuktoyaktuk Pen. 385 30–55 2229

1 Total image size may be different between dates, e.g., incomplete coverage. 2 PlanetScope data have some image
overlap, which may lead to (partially) duplicated vectors.

2.3.2. Deep Learning Model
General Setup

For the data preprocessing, model training, validation, and inference we developed a
highly automated processing pipeline to ensure the highest possible level of automation,
reproducibility and transferability (see Figure 3). It is easily configurable with configuration
files, which allow us to define the key processing parameters, such as dataset (train, val,
test), data sources (see Table 3), DL model architecture and encoder, model depth, and
many more. Our processing chain is based on the pytorch deep learning framework [73]
within the python programming language. Furthermore, we relied on several additional
packages for specific tasks (see below).

Table 3. List of model input data layers, with preprocessing status, native resolution and number
of bands.

Input Data Raw/Derived Native
Resolution (m) # Bands

PlanetScope Scene (SR) Raw 3 3
PlanetScope NDVI Derived 3 1

ArcticDEM relative elevation Derived 2 1
ArcticDEM slope Derived 2 1

TCVIS Derived 30 3

The processing was split into three main steps: first, data preprocessing; second,
model training and validation; third, model inference.

The code is tracked and documented in a git repository (see code). We used version
0.4.1 for the training and validation. We performed the inference on version 0.5.2, which
included bug fixes related to inference, compared to version 0.4.1.
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Hardware

We ran our model training and inference on virtual machines equipped with a shared
and virtualized NVIDIA GV100GL GPU (Tesla V100 PCIe 32 GB). The VM was allocated
with 16 GB GPU RAM, 8x Intel(R) Xeon(R) Gold 6230 CPU, 128 GB RAM and fast storage.

Augmentation

In order to increase its size and to introduce more variety into the training dataset,
the input imagery was augmented in several ways. Since satellite imagery is largely
independent of orientation, the images were randomly mirrored along their horizontal and
vertical axes, as well as being rotated by multiples of 90◦. Randomly blurring some input
images during training further improved model robustness. Augmentation increased the
training set size eight-fold. Image augmentation was conducted and implemented using
the Albumentations python library [74]. Each augmentation type was randomly applied
with a probability of 50% per image.

Model Architecture

For the pixel-wise classification of images, semantic segmentation models offer an
efficient approach to combining local information and contextual clues. For our model
architecture we evaluated some network architectures commonly used for semantic seg-
mentation. These segmentation architectures consist of an encoder network and a decoder.
Successful image classification architectures are commonly used as encoders, as these
can efficiently extract general image features. Therefore, we evaluated three ResNet [75]
architectures (Resnet34, Resnet50 and Resnet101) as possible encoders for our network.
Decoders are currently undergoing the most innovation in semantic segmentation, and
thus vary a lot from architecture to architecture. Here, we evaluated three approaches,
namely, UNet [76], UNet++ [77] and DeepLabv3 [78]. The model architectures are based
on the implementation of the segmentation_models_pytorch package (https://github.com/
qubvel/segmentation_models.pytorch, v0.2.0).

Training Details and Hyperparameters

All trained models were initialized randomly. For optimizing the training loss, the
Adam optimizer was used, setting the hyperparameters as suggested by Kingma and
Ba [79], namely β1 = 0.9, β2 = 0.999 and ε = 10−8. We used a learning rate of 0.001 and
batch size of 256 × 256 pixels with a 25 pixel overlap. The stack height was set to 6. We
used Focal Loss as the loss function after testing different options.

Cross-Validation: Data Setup

We performed a thorough regional cross-validation (CV), where we used 5 regions
for training and the 1 remaining region for validation. We rotated through all regions so
that each region was used as the validation set once, which totals six folds. Regions with
multiple subsets (Banks Island, Horton, Kolguev) were treated as one for validation. For
each regional fold we performed a parameter grid search over each of the three model
architectures and three encoders. Each model has nine input layers in total (see Table 3).
The complete dataset consists of 11863 image tiles, of which 1317 contain RTS.

For computing the classification and segmentation performance, we used the follow-
ing pixel-wise metrics: overall accuracy and Cohen’s kappa for the overall classification
performance. Furthermore, we used the class-specific metrics Intersection over Union
(IoU), precision, recall, and F1 for only the positive class (RTS) to determine the class-
specific performance and balance. We calculated all metrics for each individual epoch for
the training and validation set, which provided information about the model’s gradual
performance improvement. Validation was automatically carried out during the model
training phase. Training and validation metrics for each epoch are automatically stored
in the output logs. Model performance evaluation was carried out in this configuration.

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
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Furthermore, for the final model evaluation and inter-comparison, we also sorted each run
by performance from best to worst.

We carried out the CV training and validation scheme in two steps. First, for each of
the 54 configurations we ran the training for 100 epochs on sparse training sets. To train the
model we only used tiles with targets (RTS), thus undersampling the background/non-RTS
class in order to (1) reduce class imbalance and (2) speed up the training process. Finally,
we added a second training stage of 20 epochs for the best calculated model (highest IoU
score) for the three best regions with the full training set, including a high proportion of
negative/non-slump tiles. Non-slump tiles are all image tiles that do not include any RTS,
and which comprise the vast majority of tiles, due to the sparse occurrence of RTS. This
second step was carried out to place further emphasis on training negative samples, as the
initial tests showed a strong overestimation of slumps in stable regions.

Inference for Spatial Evaluation

We carried out inference runs to determine the spatial patterns and segmentation
capabilities of the trained models. For this purpose, we applied three different strategies.

(1a) We used the best model (highest IoU score) of each cross-validation training
scheme and ran the inference for the validation sites. This strategy provided us with
completely unseen/independent information on the spatial transferability with strengths
and weaknesses of the models.

(1b) We used the fully trained model (sparse and full training) of the best configuration
per region and carried out the inference for each region.

(2) We used the fully trained model (all regions) on the best overall configuration, and
ran inference on all the input images and PlanetScope imagery of the study regions from
2020 and 2021. This recent imagery was not clipped to the 10 × 10 km study site size. Thaw
slumps outside the study site boundaries were therefore unknown to the trained models,
and could serve as independent objects from a different period, yet within the proximity of
the trained region.

For all inference runs, we chose a standard configuration of 1024 × 1024 pixels tile-size
with an overlap of 128 pixels. For merging the tile overlap we selected a soft-margin
approach, wherein the overlapping areas of adjacent tiles are blended linearly.

The model creates three different output layers (Figure 3, Table 4). First, a proba-
bility (p-value) raster layer (GTiff), which contains the probability of each pixel belong-
ing to the RTS class. Second, a binary raster mask (GTiff) with a value of 1 for RTS
locations (p-value > 0.5). Third, a polygon vector file (ESRI Shapefile) with predicted RTS,
converted from the binary raster mask.

Table 4. List of model inference output data layers.

Output Data Format Resolution (m)

Polygon vector ESRI Shapefile -
Binary raster GTiff 3

Probability raster GTiff 3

3. Results
3.1. AI Model Performance
3.1.1. Train/Test/Cross-Validation Performance

The applied AI segmentation models performed similarly, but with certain differ-
ences and slightly diverging performances. In all configurations, the training performance
increased with increasing epochs (Figures 9a and A10). Furthermore, the validation perfor-
mance exceeded training metrics from the beginning, and typically plateaued from around
50 epochs. The good early validation performance compared to the training shows the
effect of augmentation and indicates low overfitting.
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3.1.2. Regional Comparison

The regionally stratified cross-validation on the sparse training sets highlighted the re-
gional differences in thaw slumps across the Arctic with regard to environmental conditions,
data quality and data availability. Overall, regional differences were more pronounced
than model specifics or configurations, such as architecture and encoder. In the following,
named regions indicate the validation (unseen) dataset, while the remaining regions were
used for training (regionally stratified cross-validation).

The Lena validation set achieved the best results (best model, see Table 5) with maxi-
mum IoU scores of 0.58 (UNet++ Resnet34), followed by Horton (0.55, UNet++ Resnet101),
Kolguev (0.48, UNet++ Resnet101) and Herschel (0.38, DeepLabv3 Resnet34). Banks Is-
land (UNet++ Resnet50) achieved a maximum IoU of 0.39, but this deteriorated quickly,
seemingly due to strong overfitting. Tuktoyaktuk (UNet++ Resnet101) only achieved a
maximum IoU of 0.15, with very little improvement even after several epochs (Figure 4a).

Table 5. Regional performance of best sparse models. U++: UNet++; DLv3: DeepLabv3; Rn34:
Resnet34; Rn50: Resnet50; Rn101: Resnet101. IoU1/Prec1/Recall1/F11: Metrics of best sparse
regional CV model. IoU5: 5th best model of 100. IoU10: 10th best model of 100.

Study Site Model Config. IoU1 IoU5 IoU10 Prec1 Recall1 F11

Banks Island U++Rn50 0.39 0.13 0.08 0.80 0.38 0.52
Herschel DLv3Rn34 0.39 0.33 0.32 0.50 0.63 0.56
Horton U++Rn101 0.55 0.54 0.51 0.78 0.77 0.71

Kolguev U++Rn101 0.48 0.45 0.43 0.67 0.63 0.64
Lena U++Rn34 0.58 0.51 0.50 0.83 0.65 0.73

Tuktoyaktuk U++Rn50 0.15 0.09 0.08 0.42 0.18 0.25
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Although the best models per region performed similarly, the mean/ensemble perfor-
mance of all models per region typically differed much more significantly (Figure 4). For many
regions, individual models behaved differently in terms of volatility and learning success.

The maximum accuracies/scores of validation sets typically plateaued after around
40 epochs with almost all configurations (Figure 4a), except for Banks Island. Banks Island
achieved individual IoU scores > 0.2 during early epochs, and these converged quickly
towards zero during later epochs, which suggests insufficient spatial transferability likely
due to overfitting. Tuktoyaktuk suffered from low scores throughout the entire training
period, with only little variation in its IoU of around <0.1. The difference in segmentation
performance between the best and next models was typically small, except for Banks Island,
as shown in the sorted model performance illustrations (Figure 4b).

3.1.3. Model Configurations

Among the tested configurations, including architectures and encoders, we only
observed little differences in segmentation performance. However, overall, UNet++ outper-
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formed UNet and DeepLabv3 consistently in this particular area (Figure 5). The choice of en-
coder only produced minor differences, but overall, simpler models (Resnet 34 > Resnet50
> Resnet101) resulted in slightly better IoU scores than more complex encoders (Resnet34:
meanIoU = 0.33; Resnet50: meanIoU = 0.32; Resnet101: meanIoU = 0.31). In some individ-
ual cases, complex encoders (Resnet101) outperformed simpler encoders (e.g., Horton or
Kolguev) (see Figure A10).
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3.1.4. Computation Performance

In all configurations, UNet was the fastest model with the least hardware requirements.
UNet++ was ~60% slower (factor 1.6) than UNet, while DeepLabv3 improved training
times by a factor of ~2.3 compared to UNet. The hardware requirements for GPU memory
were in line with those for processing times, with UNet requiring the least resources,
followed by UNet++ and DeepLabv3.

3.2. Inference/Spatial Model Output

Regional Cross-Validation
(1a) Sparse models: The sparse trained models, using only image tiles with positive

samples (RTS), produced results ranging from unsatisfactory to acceptable (see Figure 4),
depending on region and model used. Figures 6–8 (left column) show that the detection of
thaw slumps produces mixed results, with strong variation depending on the input image.
Decision boundaries are often fuzzy, with probability values (p-values) between 20 and
80% of being an RTS, as predicted by the model. Many non-slump areas, e.g., flat uplands
or water bodies, were classified as thaw slumps in numerous instances, thus creating an
abundance of false-positives in these settings.

(1b) Fully trained models: After adding further training epochs with the entire dataset,
using predominantly negative samples, the results were visually improved, with more
distinct decision boundaries. This manifests in the improved precision but reduced recall
(see Figure 9). However, the full accuracy metrics IoU and F1 increased (sparse/full;
Horton Delta: IoU:0.62/ 0.55, F1: 0.76/0.71), stayed the same (Lena River: IoU:0.65/0.66,
F1: 0.73/0.74) or even decreased (Kolguev Island: IoU:0.48/0.38, F1: 0.64/0.55) depending
on the specific site.
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the approximate location of the subset within the study region.
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Figure 7. Detection results in the subset of the Horton Delta 02 study site with the modeled RTS probability on two different
image dates ((a–c): 14 July 2019; (d–f): 03 August 2019) and the mean of all dates (g–i) as well as three different models
((a,d,g): sparse cross-validation model; (b,e,h): full cross-validation model; (c,f,i): full model trained on all regions). The
subset of a multispectral false-color PlanetScope image (NIR-R-G) with ground truth is shown in panel (j). Panel (k) shows
the approximate location of the subset within the study region.
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the approximate location of the subset within the study region.
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Non-slump/disturbed areas were closer to 0% probability, while thaw slumps typically
showed p-values close to 100%. The stability of classifications was significantly improved
after the full training, as seen in Figures 6–8, with comparable results between different
dates (e.g., July and August).

However, misclassifications still occurred. False-positives occurred in rugged non-
vegetated terrain (see Figures 6b,e,h and 7b,e,h) or silty water bodies (see Figure 8b,e,h). As
these false-positives are inconsistent between different images dates, taking into account
multiple images dates can help to detect and minimize false-positive objects (see Figure 8
bottom row).

False-negatives are prevalent in many classified datasets. In most cases, parts of thaw
slumps were not detected. As seen in Figures 6–8, the slump area in proximity to the head-
wall was detected, whereas the distal parts remained undetected. This behavior suggests
that the model is rather sensitive to the presence of headwall and thus steep slopes.

(2) The models trained on the full dataset, including the analyzed area, e.g., Horton
(Figures 6c,f,i and 7c,f,i) or Lena (Figure 8c,f,i), performed well. When the model was
trained on these datasets, the performance was high, as expected. The model also classified
well when used for periods (2020, 2021) outside of the training data period (2018, 2019).
Furthermore, RTS just outside the specific 10 × 10 km training sites, which were unknown
to the model, were successfully identified.

The models also detected features that we did not define as RTS, but which have a
similar appearance in remote sensing imagery. These are, e.g., borderline cases, where the
distinction of slumps vs. non-slumps was difficult during the digitization processes, or
other vegetation-less land surface types appeared. This further highlights the difficulties of
manual thaw slump annotation/classification.

4. Discussion

The presented methodology provides a highly automated and reproducible proof of
concept for the application of the novel deep learning-based segmentation of retrogressive
thaw slumps across Arctic permafrost regions.

The results are promising, showing good agreement for some regions, with IoU scores
of 0.55 and 0.58 for the best configurations. However, the performances for some of
the regions, e.g., Tuktoyaktuk or Banks Island, were unsatisfactory and likely prone to
overfitting. The comparison of model performance here to other studies and methods is
hardly possible due to the different input data and regions and the lack of standardized
training datasets. Still, many studies depend on manual or at least semi-automated meth-
ods [18,21] for detecting and segmenting RTS. Only Huang et al. [51] used a very similar
deep learning methodology in the Beiluhe Region on the Tibetan Plateau. They achieved
cross-validated F-scores of ~0.85, higher than our analysis with F-scores of 0.25 to 0.73.
However, Huang et al. applied cross-validation within a single comparably homogeneous
region, in contrast to the regional cross-validation approach across strongly varying land-
scapes in our study. High training accuracies and visual inference tests suggest a good
model performance at least in proximity to the trained regions.

We tested different architectures, including UNet++, UNet, and DeepLabv3. The
different model architectures performed similarly, but UNet++ produced on average the
best results compared to UNet and DepLabV3, as shown in the original UNet++ paper [80].

The choice of encoders influenced the results only slightly, but on average, simpler en-
coders (Resnet34 > Resnet50 > Resnet101) achieved slightly better performances, although
the original paper achieved higher accuracies with the more complex version [75]. We
hypothesize that a simpler network might be slightly more resilient to overfitting. With a
higher quantity and variability of training data across an even broader spatial extent, more
complex and deeper architectures may become more favorable for segmenting RTS. As
the technology is constantly evolving, with new DL architectures, packages and hardware,
there is the potential for much further improvement in the near future.
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The large range in the model performance between study sites compared to the per-
formance between different model parameters suggests that regional landscape differences
are by far the most influential factor in the successful delineation of RTS across permafrost
landscapes. This magnifies the pressing need for representative and large training/ground
truth datasets for specific geospatial targets, such as RTS in this case. Such a database does
not exist yet for permafrost-specific features, in contrast to general remote sensing-based
targets such as PatternNet [81] or EuroSat [82], or the standard photography databases,
such as ImageNet [83]. Sufficiently large and spatially extensive ground truth data are
particularly hard to find. The ArcticNet database [84] is the first remote sensing image
database with a spatial focus on the Arctic, but this is limited to wetlands. For RTS, most
openly accessible high-resolution polygon datasets are available for NW Canada [17,57],
Alaska [25] and China [51,85]. For other studies, only RTS centroid coordinates are often
made available in public archives [16], or detailed data are not accessible. Therefore, we
want to propose the creation of an openly accessible pan-Arctic database for RTS and other
important permafrost landscape features for the training of future DL-based applications
aimed at detecting permafrost features and landscape change due to thaw and erosion.

However, such a database requires consistent data quality and standard procedures.
During our manual ground truth creation, we encountered severe difficulty in delineat-
ing RTS. While the headwall was often clearly visible, the lower part of RTS was often
highly ambiguous and hardly discernible. This difficulty makes the creation of consistent
datasets, across different spatial regions and teams, even more challenging, thus requiring
standardized protocols and a common effort among researchers.

The workflow is openly available (see code) and highly automated, and the data
processing approach is transferable and reusable. However, access to VHR input data
is required, which are largely only commercially available and/or accessible under very
restricted licensing rules at this stage. This is a major limitation in transferability and
scalability at the moment. Recently, Planet data are becoming more and more accessible to
large groups of researchers free of charge through government-funded research programs,
which allows their broader application in Big Data AI test cases such as our study.

The requirement for sufficiently powered hardware is very important. However, with
the increasing level of GPU processing capacities, either in institutional systems or even
freely accessible cloud services (e.g., Google colab), barriers against using AI-based systems
will become increasingly lower for geoscientific object detection purposes.

The presented methodology has the potential to be used on a much larger spatial scale.
However, such scaling to large regions requires more training data across different regions
and better access to Planet data. Alternatively, free data sources, such as Sentinel-2, might
be used as alternatives, but are limited by their lower spatial resolution used for small- to
medium-sized landscape features.

5. Conclusions

With our study, we have laid the foundation for using deep learning-based methods to
detect and segment RTS across the Arctic. Using a highly automated workflow in conjunc-
tion with state-of-the art DL model architectures, we were able to create sufficiently good
and transferable models for several regions, as proven by regional cross-validation. Re-
gional models worked sufficiently well, but spatial transferability is still an issue for some
regions. Additionally, the creation of training datasets proved to be highly challenging
due to the difficulties in delineating RTS. For scaling DL-based segmentation models to the
entire pan-Arctic region, we propose a common effort to create large and high-quality train-
ing datasets to train and benchmark RTS detection models. With rapidly growing hardware
capabilities and expanding data availability, the automated mapping and segmentation
of RTS and other permafrost-related landscape features may be realized soon in order to
better understand and predict the impact of climate change in the permafrost region.
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Figure A1. Study site Banks Island 01. (a) ESRI satellite layer, (b) ArcticDEM superimposed with hillshade, (c) Tasseled Cap
trend visualization, (d) PlanetScope satellite image (NIR-R-G) acquired on 26 July 2019. Blue box, 10 × 10 km study site.
Red box detailed view of (d).
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