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Abstract
Rapid climate change is placing many marine species at risk of local extinction. Recent 
studies show that epigenetic mechanisms (e.g. DNA methylation, histone modifica-
tions) can facilitate both within and transgenerational plasticity to cope with changing 
environments. However, epigenetic reprogramming (erasure and re-establishment of 
epigenetic marks) during gamete and early embryo development may hinder transgen-
erational epigenetic inheritance. Most of our knowledge about reprogramming stems 
from mammals and model organisms, whereas the prevalence and extent of repro-
gramming among non-model species from wild populations is rarely investigated. 
Moreover, whether reprogramming dynamics are sensitive to changing environmen-
tal conditions is not well known, representing a key knowledge gap in the pursuit to 
identify mechanisms underlying links between parental exposure to changing climate 
patterns and environmentally adapted offspring phenotypes. Here, we investigated 
epigenetic reprogramming (DNA methylation/hydroxymethylation) and gene expres-
sion across gametogenesis and embryogenesis of marine stickleback (Gasterosteus acu-
leatus) under three ocean warming scenarios (ambient, +1.5 and +4°C). We found that 
parental acclimation to ocean warming led to dynamic and temperature-sensitive re-
programming throughout offspring development. Both global methylation/hydroxym-
ethylation and expression of genes involved in epigenetic modifications were strongly 
and differentially affected by the increased warming scenarios. Comparing transcrip-
tomic profiles from gonads, mature gametes and early embryonic stages showed sex-
specific accumulation and temperature sensitivity of several epigenetic actors. DNA 
methyltransferase induction was primarily maternally inherited (suggesting maternal 
control of remethylation), whereas induction of several histone-modifying enzymes 
was shaped by both parents. Importantly, massive, temperature-specific changes to 
the epigenetic landscape occurred in blastula, a critical stage for successful embryo 
development, which could, thus, translate to substantial consequences for offspring 
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1  |  INTRODUC TION

Rapid ocean warming is driving major shifts in marine biodiversity 
mainly by pushing species to the brink of local extinction (Burrows 
et al., 2019; Smale et al., 2019). For poikilotherms such as teleost 
fishes, thermal performance is directly linked to the environment 
(Alix et al., 2020; Dahlke et al., 2020; Jonsson & Jonsson, 2014). 
Though adult fish can avoid unfavourable conditions by migrating to 
higher latitudes or deeper water, many species depend on specific, 
often coastal environments for reproduction. These environments 
are particularly affected by increasing temperatures and extreme 
events such as marine heatwaves, making spawners and embryos 
the most vulnerable life stages (Alix et al., 2020; Burggren, 2018; 
Dahlke et al., 2020). To cope with unfavourable conditions during re-
production, species need to match their thermal optima to local con-
ditions either from standing genetic variation or from phenotypic 
plasticity (Hoffmann & Sgro, 2011). While adaptation from standing 
genetic variation is commonly thought to be too slow, epigenetic 
mechanisms (e.g. DNA methylation [5mC], DNA hydroxymethylation 
[5hmC], histone modifications, non-coding RNAs) can be a source of 
fast adaptive plasticity (Eirin-Lopez & Putnam, 2019; Norouzitallab 
et al., 2019). Generally defined as heritable changes in gene ex-
pression in the absence of changes in DNA sequence, epigenetic 
modifications reflect genotype–environment interactions that can 
potentially be transmitted across generations (Adrian-Kalchhauser 
et al., 2020; Bonduriansky et al., 2011).

Environmental perturbations induce epigenetic modifications in 
many taxa (e.g. Anastasiadi et al., 2017; Campos et al., 2012, 2013; 
Eirin-Lopez & Putnam, 2019; Fellous et al., 2015; McCaw et al., 2020; 
Norouzitallab et al., 2019; Seebacher & Simmonds, 2019; Wang 
et al., 2020), possibly generating environmentally adapted pheno-
types (Fellous et al., 2018; Liew et al., 2020). Indeed, associations 
between DNA methylation and within (Ryu et al., 2020) and trans-
generational plasticity (TGP) to environmental change have recently 
been shown in a handful of marine species (Eirin-Lopez & Putnam, 
2019; Liew et al., 2020). With TGP, differences in offspring phe-
notype occur due to the interaction between parent and offspring 
environmental conditions (sensu Salinas et al., 2013). More specifi-
cally, one generation of germ cells is involved across the F0 (parent) 
to F1 (offspring) transition (also termed cross generation plasticity 
sensu Byrne et al., 2020). Uncovering the molecular mechanisms 

that link parental exposure to changing environmental conditions 
with environmentally adapted offspring phenotypes is a central goal 
within the emerging field of environmental epigenetics (Eirin-Lopez 
& Putnam, 2019; Putnam, 2021). However, it is essential to remem-
ber that epigenetic modifications involved in TGP must be trans-
mitted through germ and embryonic cell division where epigenetic 
reprogramming occurs (Brumbaugh et al., 2019; Hackett & Surani, 
2013; Nashun et al., 2015; Ortega-Recalde & Hore, 2019; Sun et al., 
2021). Reprogramming (erasure and re-establishment of epigene-
tic marks) returns cells to a pluripotent state, essentially wiping the 
slate clean, which is crucial for the correct development of gametes 
and embryos (Depincé et al., 2021; Fellous et al., 2018; Hackett & 
Surani, 2013; Martin et al., 1999; Riviere et al., 2013). Nevertheless, 
incomplete erasure of epigenetic marks during reprogramming has 
recently been proposed in a few cases, suggestive of transgenera-
tional epigenetic inheritance (Ortega-Recalde & Hore, 2019).

Most of our knowledge about epigenetic reprogramming stems 
from model organisms (especially mammals; Dean et al., 2003; 
Hackett & Surani, 2013; Jiang et al., 2013; Ortega-Recalde & Hore, 
2019; Potok et al., 2013; Sun et al., 2021). In contrast, there are few 
studies investigating reprogramming in non-model species from wild 
populations (but see Fellous et al., 2015, 2018, 2019; Riviere et al., 
2013). Moreover, whether reprogramming dynamics are sensitive to 
changing environmental conditions is not well known, despite the 
potentially pivotal role in generating adaptive phenotypes under 
climate change. In mammals, two reprogramming events occur 
(Adrian-Kalchhauser et al., 2020; Hanson & Skinner, 2016; Ortega-
Recalde & Hore, 2019; Perez & Lehner, 2019). First, during germ cell 
development, active global erasure of methylation (via Ten–Eleven 
Translocation [TET] enzymes) in primordial germ cells is followed by 
sex-specific re-establishment in mature gametes. After fertilization, 
a second event involves demethylation of the paternal (active) and 
maternal (passive) genomes, with subsequent remethylation during 
embryogenesis via DNA methyltransferases (DNMTs; Ortega-
Recalde & Hore, 2019). In teleost fishes, different reprogramming 
patterns were observed in the germline and during embryonic devel-
opment among three investigated species (Figure 1a; Fellous et al., 
2018; Jiang et al., 2013; Ortega-Recalde & Hore, 2019; Potok et al., 
2013; Wang & Bhandari, 2019, 2020). While Medaka reprogramming 
was similar to mammals (Wang & Bhandari, 2019), zebrafish sperm 
did not undergo active demethylation (Jiang et al., 2013; Potok et al., 

phenotype resilience in warming environments. In summary, our study identified key 
stages during gamete and embryo development with temperature-sensitive repro-
gramming and epigenetic gene regulation, reflecting potential ‘windows of opportu-
nity’ for adaptive epigenetic responses under future climate change.
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2013), and mangrove rivulus showed a longer and slower phase 
of remethylation (Fellous et al., 2018). Such variation among spe-
cies in the extent of reprogramming suggests that the propensity 
for transgenerational epigenetic inheritance will also vary (Gavery 
et al., 2019; Le Luyer et al., 2017; Leitwein et al., 2021; Penney et al., 
2021), and might occur more frequently in fish compared to mam-
mals (Ortega-Recalde & Hore, 2019).

Adaptive TGP has been shown in several marine fish spe-
cies (Donelson et al., 2018) including three-spined stickleback 
(Gasterosteus aculeatus; Heckwolf et al., 2018; Shama et al., 2014), 
but the contribution of epigenetic mechanisms to phenotypic ob-
servations often remains elusive. In stickleback, DNA methylation 
likely contributes to developmental acclimation and TGP in response 
to environmental change (e.g. temperature and salinity; Heckwolf 
et al., 2020; Shama et al., 2016), as well as local adaptation and phe-
notypic divergence between freshwater and marine populations 
(Artemov et al., 2017; Fellous & Shama, 2019; Metzger & Schulte, 
2017; Rastorg et al., 2017). However, studies explicitly investigating 

epigenetic reprogramming are lacking, and whether reprogramming 
dynamics are sensitive to changing environmental conditions is 
currently not known. In this context, DNA methylation plays mul-
tiple roles during early development, including the establishment 
of long-term gene silencing. DNA hydroxymethylation has also 
recently received attention as an epigenetic regulator of gene ex-
pression (Tahiliani et al., 2009), particularly during reprogramming, 
because it is an indicator for active demethylation (via TET enzymes; 
Bogdanović et al., 2016; Zhao & Chen, 2013). Characterization of 
both 5mC and 5hmC dynamics in non-model species such as stick-
leback is needed to further our understanding of reprogramming 
conservation among teleost species (Fellous et al., 2018; Fellous & 
Shama, 2019; Kamstra et al., 2015; Wang & Bhandari, 2019).

In this study, we investigated temperature-sensitive epigenetic 
reprogramming and gene expression across stickleback early de-
velopment encompassing the parent (gametogenesis) to offspring 
(embryogenesis) generation transition, and potential links be-
tween regulation of genes involved in epigenetic mechanisms (e.g. 

F I G U R E  1  Investigating epigenetic reprogramming and its sensitivity to ocean warming scenarios in stickleback. (a) DNA methylation 
reprogramming patterns during embryogenesis in teleost fishes and mouse (adapted from Fellous et al., 2018; Wang & Bhandari, 2019). 
(b) Stickleback (Gasterosteus aculeatus) experiment design and sample acquisition during thermal acclimation of adults (gametogenesis), 
gametes, and offspring throughout embryogenesis under three ocean warming scenarios: ambient (17°C), +1.5°C (18.5°C) and +4°C (21°C). 
(c) Hatching success (% ±SE) of stickleback embryos within each matching parental acclimation and embryo hatching temperature. * denotes 
significantly higher hatching success at 18.5°C. §only 5 of the 24 embryonic stages are shown (drawings adapted from Swarup, 1958)
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methylation, de-methylation, histone modifications, non-coding 
RNAs; hereafter referred to as epigenetic actors) and thermal 
plasticity of embryo hatching success, a direct measure of fitness. 
Specifically, we examined DNA methylation/hydroxymethylation 
and transcriptomic patterns in parental gonads, mature gametes and 
across embryogenesis under three ocean warming scenarios (ambi-
ent, +1.5 and +4°C; Figure 1b). By focussing on key reprogramming 
stages showing temperature-specific variation in DNA methylation/
hydroxymethylation and epigenetic gene regulation, our study can 
identify crucial stages of early development where epigenetic mech-
anisms may shape adaptive windows to future climate change.

2  |  MATERIAL S AND METHODS

2.1  |  Experimental design and sampling

Wild adult marine three-spined stickleback were caught by trawl-
ing in the Sylt-Rømø Bight, Germany (55°05 N, 8°41 E; Shama et al., 
2014) in winter 2018, when water temperatures ranged between 
5 and 7°C (Boersma et al., 2016). Fish were brought to the labora-
tory and maintained at 7°C in replicate 25 L aquaria (n  =  20 fish 
per aquaria) prior to the start of the experiment. Adults were then 
acclimated incrementally (1°C per day) to spring conditions (15°C), 
and held at this temperature for 15 days to minimize any potential 
temperature stress effects (see also Shama, 2017; Shama et al., 
2014). After this initial acclimation period, adults were randomly 
split among three experimental temperatures (17, 18.5 and 21°C 
reflecting ambient, +1.5 and +4°C ocean warming scenarios). The 
two ocean warming scenario temperatures were chosen based on 
recent IPCC global warming projections, with +1.5°C reflecting 
SSP1—1.9 and the current goal of the Paris Agreement, and +4°C 
reflecting SSP5—8.5 (IPCC, 2021). Furthermore, previous experi-
ments with this population showed that 21°C (+4°C) had negative 
effects on several traits, for example, development (Ramler et al., 
2014), growth (Shama, 2015, 2017; Shama & Wegner, 2014; Shama 
et al., 2014) and survival (Schade et al., 2014).

Adult fish were maintained at the three experimental tempera-
tures for 8 weeks. This time period encompassed the last phases of 
reproductive conditioning (see also Shama et al., 2014), and allowed 
for sampling of adult gonads at regular intervals of increasing matu-
rity. At T0 (7°C), T1 (spring; 15°C), and after 2, 4 and 6 weeks acclima-
tion (at each of the three experimental temperatures; Figure 1b), at 
least three males and three females were randomly selected, euth-
anized, and brain and gonads removed for later molecular analyses. 
While genetic variation among individuals may influence 5mC pat-
terns at specific sites (Biwer et al., 2020), wild-caught adult fish from 
the study population were randomly allocated to experimental tem-
peratures, so any potential bias due to genetic sequence variation 
among individuals was likely evenly distributed among treatments. 
After 8  weeks acclimation, controlled crosses were made within 
each experimental temperature (as in Shama et al., 2014). Sperm 
mobility and egg quality were assessed visually under a microscope. 

A subsample of mature gametes (sperm, 1 μl and eggs, n = 6) from 
each cross was used in later molecular analyses, and the remaining 
gametes used for artificial fertilizations (Figure 1b). Throughout the 
experiment, adult stickleback were fed daily with chironomid larvae 
ad libitum.

Separate crosses were performed for phenotypic assays (egg 
size, clutch size, fertilization success and hatching success) and for 
sampling embryonic stages during development. For phenotypic 
assays, each egg clutch was photographed for determination of 
egg size and clutch size (total number of eggs). Mean egg size (di-
ameter ± 0.01 mm) was measured on a random sample of 10 eggs 
per clutch (using Leica Qwin imaging software; Leica Microsystems 
Imaging Solutions Ltd.). After fertilization, these clutches were 
again divided among the three experimental temperatures (result-
ing in nine parent × offspring temperature combinations; Figure S1), 
placed into 1 L glass beakers containing filtered seawater and an air 
supply, and allowed to hatch. Fertilization success was estimated as 
the number of fertilized eggs out of viable eggs, and hatching suc-
cess as the number of hatched larvae out of fertilized eggs (Figure 
S1). Mean egg size and clutch size were analysed as linear models, 
with female size and egg size or clutch size as covariates, female ac-
climation temperature as a fixed effect, plus the egg trait by female 
temperature interaction term. Fertilization and overall hatching suc-
cess were modelled with the same effects (egg size and female tem-
perature), but as binomial generalized linear models (glm) with a logit 
link function. Hatching success within the nine parent × offspring 
temperature combinations was modelled as a binomial generalized 
linear random effect model with a logit link function. Egg size was 
included as a covariate, female acclimation temperature, embryo 
hatching temperature and the female × embryo (parent × offspring) 
temperature interaction as fixed effects, and female identity as a 
random effect (Table S1). Hatching success within each maternal ac-
climation temperature was then analysed (using the same model as 
above) to disentangle the significant female °C × embryo °C interac-
tion found in the full model (Table S1). All analyses were performed 
using the package ‘lme4’ in the R statistical environment (Bates et al., 
2015).

For embryogenesis assays, separate crosses were made within 
each acclimation temperature (n = 21 at 17°C, n = 12 at 18.5°C and 
n = 16 at 21°C), and sampling of embryonic stages was conducted 
by microscopic observation of morphological and mobility criteria at 
each stage based on detailed descriptions and drawings in Swarup 
(1958). In all, 18 embryonic stages covering development from one-
cell to stage 24 (just prior to hatching) were sampled at each exper-
imental temperature (see Figure 2c). Note: full-factorial sampling of 
18 embryonic stages from nine parent–offspring temperature com-
binations was not possible due to logistic constraints. At least 50 
eggs from each of the 18 embryonic stages were collected by pool-
ing embryos across multiple clutches (minimum three crosses) within 
each temperature. In doing so, we reduced any potential genetic 
variation bias among temperatures within the epigenetic mechanism 
assays. Adult tissues, gametes and embryonic stage samples for 
DNA methylation/hydroxymethylation assays and transcriptomic 
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analyses were preserved in RNA later (Qiagen) and stored at −80°C 
for later molecular analyses.

2.2  |  DNA methylation and hydroxymethylation 
quantification

Genomic DNA and total RNA were simultaneously purified from 
adult tissues, gametes and embryos using AllPrep DNA/RNA Mini 
and Micro kits (Qiagen) according to the manufacturer's protocol. 
DNA quality and integrity were assessed using 1.5% agarose gel 
electrophoresis. DNA samples were selected for further analyses if 
a clear band of high molecular weight on the gel (>30 kbp) was de-
tected (see also Fellous et al., 2018). DNA and RNA quantities and 
purity were measured by spectrophotometry using a NanoDrop ND-
1000 spectrophotometer (Peqlab [VWR]), and followed the stand-
ard quality criteria of 260:280 nm values of ~1.6–1.8 for DNA and 
260:230 nm values >1.5 for RNA. As previously described (see Riviere 
et al., 2013), 100 ng of purified genomic DNA from each sample was 
used for DNA methylation/hydroxymethylation (5-methylcytosine 

[5mC] and 5-hydroxymethylcytosine [5hmC]) fluorometric ELISA 
using the Methylflash methylated DNA Fluorometric Quantification 
Kit and the Methylflash Hydoxymethylated DNA Fluorometric 
Quantification Kit (Epigentek P-1035 and P-1037) following the 
manufacturer's instructions. Briefly, samples were incubated with a 
5mC or 5hmC antibody coated on a multi-well plate (90 min, 37°C). 
After binding and multiple washing steps, samples were incubated 
with a second antibody. The binding of this antibody was then quan-
tified by the addition of a fluorogenic substrate, and fluorescence 
measurement using a Cytation 3 plate reader (Biotek) set to an exci-
tation wavelength of 530 nm and emission at 590 nm. The amount of 
5mC or 5hmC was quantified using a 5mC or 5hmC standard curve 
established in parallel within the same assay.

The relative percent (relative %  =  (((Sample RFU (Relative 
Fluorescence Units) − Negative control RFU)/S (Amount of Sample 
DNA))/((Positive control RFU − Negative control RFU)*2/P (amount 
of Positive control)))*100) methylated/hydroxymethylated DNA (see 
also Riviere et al., 2013) in gonads and embryonic stages was ana-
lysed as general linear models using the R package ‘nlme’ (Pinheiro 
et al., 2021), and adjusted p values were estimated following 

F I G U R E  2  Dynamic and temperature-sensitive global DNA methylation (5mC) and hydroxymethylation (5hmC) during stickleback 
gametogenesis and embryogenesis. (a) Plots show relative percent (±SE) DNA methylation and (b) hydroxymethylation in testes and ovaries 
at winter (T0, 7°C), spring (T1, 15°C) and over 6 weeks gonad acclimation (gametogenesis) at the three experimental temperatures. (c) DNA 
methylation and (d) hydroxymethylation (±SE) in mature gametes and across the 24 embryonic stages at each experimental temperature. 
* indicates significant (adjusted p values) differences among temperatures (or between sexes) within specific acclimation time points or 
embryonic stages
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(Benjamini & Hochberg, 2014) to account for multiple testing. For 
gonads, sex, temperature, acclimation time and all interaction terms 
were first analysed in a full model. T0 and T1 were then analysed 
separately testing only for effects of sex, whereas gonads at 2, 4 
and 6  weeks acclimation were analysed separately by sex, testing 
for effects of experimental temperature within each time point. For 
embryos, stage, temperature and their interaction were first ana-
lysed in a full model, followed by tests for effects of experimental 
temperature within each stage.

2.3  |  Transcriptome analyses

As described in a previous study (Shama et al., 2016), RNA con-
centration and quality were checked for each sample using the 
Agilent RNA 6000 Nano Kit (Agilent Technologies). Libraries 
were prepared from 125  ng RNA per sample with the TrueSeq 
Stranded mRNA HT Sample Prep Kit (Illumina). The concentra-
tion and quality of the generated libraries were checked with an 
Agilent 2100 Bioanalyzer using the Agilent DNA 7500 Nano Kit 
(Agilent Technologies). All kits were used according to the manu-
facturers' instructions. The molarity of each individual library was 
calculated using the obtained concentration. Then, all libraries 
were pooled equimolarly (10  nM) and sequenced (75  bp single 
end) on an Illumina NextSeq500 sequencer at the Alfred Wegener 
Institute, Bremerhaven, Germany. Proprietary Illumina BCL files 
were converted to fastq files and de-multiplexed using bcl2fastq 
(v2.17, Illumina) using default settings. Short (<36  bp) and low-
quality reads (sliding window option) as well as adapters (if still 
present) were removed with Trimmomatic (Bolger et al., 2014). 
FastQC (Andrews, 2010) was used to analyse and confirm the 
quality of the trimmed data. Fastq files containing reads from the 
same sample but different lanes were combined into a single file 
before proceeding to the mapping step.

Prior to mapping, an additional trimming step was performed 
to remove short sequences (<50  bp). Reads were then mapped 
against the ensembl BROADS S1 stickleback genome assembly 
v82 using the RNAseq workflow of CLC Genomics workbench 
v8.5.1 (CLC bio). Only uniquely mapped reads were retained 
for downstream analysis using the DESeq2 package (Love et al., 
2014). Differentially expressed genes (DEGs) were identified using 
DESeq2 by calculating log2 fold change (LFC) per gene as a func-
tion of experimental temperature (testes and ovaries at 6 weeks), 
sex (sperm vs. oocytes) and during embryogenesis (one-cell, blas-
tula and stage 24), testing 17°C versus 18.5°C and 17°C versus 
21°C in all cases. Statistical significance was determined based 
on false discovery rate adjusted p < 0.05 (Benjamini & Hochberg, 
2014) and a minimum up- or downward LFC of 1. Biological pro-
cesses significantly enriched within each contrast were iden-
tified using GO seq (v1.22.0; Young et al., 2010) and topGO 
(Alexa & Rahnenfuhrer, 2020) packages. RPKM values (Read Per 
Kilo base per Million mapped reads; Wagner et al., 2012) were 
calculated using the following formula (RPKM  =  numREADs/

genelength/1000*TotalNumReads/1,000,000; numREADs [num-
ber of reads mapped to a gene sequence], genelength [length of 
the gene sequences], totalnumREADS [total number of mapped 
reads of a sample]) to estimate transcript abundance for different 
chromatin-modifying enzymes (e.g. DNMTs, TETs, kdms/kmts, 
kats/histone deacetlyases/Sirtuins) during gametogenesis and em-
bryonic development. To visualize relative differences between 
treatments, we plotted the first two components of a principal 
component analysis based on the log2 transformed RPKM values. 
All analyses were conducted within the R statistical environment 
(R Core Team, 2017).

3  |  RESULTS

3.1  |  Thermal plasticity of reproductive output 
traits

Acclimation temperature of stickleback mothers influenced several 
components of female fitness (Figure S1; Table S1). Under ambient 
conditions (17°C), mothers produced the largest eggs and the larg-
est clutches, whereas females acclimated to a +4°C climate scenario 
(21°C, reflecting stressful high temperature conditions for this popu-
lation; Shama et al., 2014) produced the smallest eggs and smallest 
clutches. At 18.5°C (+1.5°C climate scenario), egg sizes and clutch 
sizes were intermediate, demonstrating that the magnitude of our 
future climate warming scenarios (+1.5°C vs. +4°C) had differen-
tial effects on maternal fitness (Figure S1). Overall, hatching suc-
cess was highest at 18.5°C (binomial glm estimate = 0.912 ± 0.323, 
z value = 2.822, p = 0.005), and was not significantly lower at 21°C 
compared to 17°C (estimate = −0.223 ± 0.248, z value = −0.900, 
p = 0.368; Figure 1c). In our hatching success experiment with the 
full-factorial nine parent–offspring temperature combinations, 
we found a significant parent (female) °C × embryo °C interaction 
(Table S1), indicative of potentially adaptive TGP effects on hatch-
ing success. Specifically, eggs from mothers acclimated to 21°C had 
significantly higher hatching success at 21°C compared to 17°C 
(Table S1), and this despite the smallest overall egg size (Figure S1). 
To investigate epigenetic mechanisms potentially contributing to 
these phenotypic responses, we detail below the molecular regula-
tion of stickleback gametogenesis and embryogenesis as well as its 
temperature sensitivity under the three ocean warming scenarios 
(Figure 1b).

3.2  |  Global DNA methylation/hydroxymethylation 
dynamics in gonads and gametes

Temperature had pronounced effects on DNA methylation/hydrox-
ymethylation (5mC/5hmC) dynamics during gonad maturation (Table 
S2). Overall, testes were hypermethylated compared to ovaries, es-
pecially in the +4°C scenario (Figure 2a). Ovaries, on the other hand, 
were hyper-hydroxymethylated compared to testes, with higher 
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5hmC levels at +1.5 and +4°C (Figure 2b). The same pattern was 
not observed in sperm and oocytes, however, as sperm was both hy-
permethylated (Figure 2c) and hyper-hydroxymethylated (Figure 2d) 
compared to oocytes.

3.3  |  Temperature-specific transcriptomic changes 
between mature gonads and gametes

Throughout gonad maturation, from winter conditions (T0, 7°C) to 
6  weeks acclimation at the three experimental temperatures, tes-
tes showed transcription profiles that differed from ovaries (Figure 
S2). Furthermore, while gametes exhibited distinct transcriptomes 
compared to gonads in general, this difference was particularly 
pronounced between oocyte and ovary transcriptomes (Figure S2). 
Transcriptomic differences among experimental temperatures were 
evident in gonads after only 6 weeks acclimation, with stronger ef-
fects at +4°C in both testes (36 DEGs) and ovaries (46 DEGs) com-
pared to +1.5°C (testes: four; ovaries: two DEGs; Figure S2). Within 
testes, gene ontology terms (GOs) involved in metabolism (sterol, 
lipid) were enriched at +1.5°C, while at +4°C, processes linked to 
development, reproduction and non-coding RNA activities (e.g. pi-
RNAs) were impacted (Figure S2), suggesting an influence of high 
temperature on sperm maturation and fertility. Specifically, down-
regulation of brdt (testis-specific chromatin remodelling) and up-
regulation of piwil1 (non-coding RNA; Data S1) indicate epigenetic 
consequences for chromatin conformation in sperm. Within ova-
ries, transcriptomic responses were also sensitive to environmen-
tal treatments, with metabolic processes being influenced at both 
temperatures, whereas catalytic activity, transport and cellular pro-
cesses were enriched only at 21°C (Figure S2).

3.4  |  Gamete-specific molecular signatures

Temperature strongly influenced accumulated mRNA in gametes 
(Figure 3). For sperm, of the 1101 DEGs in total, 132 occurred only 
between 17 and 18.5°C, whereas a considerably larger number 
(926) were found only between 17 and 21°C, and 43 DEGs were 
shared between both test temperatures relative to the control 
(Figure 3a). Developmental processes were more represented at 
18.5°C, whereas metabolic, reproduction and germ cell develop-
ment processes were more strongly enriched at 21°C (Figure 3a). 
Within the shared DEGs, Jam2a (spermatogenesis) and Apoea (lipid 
transport) were downregulated, while IGFBP4 (growth factor bind-
ing) and unc45b (developmental protein) were upregulated (Data S1), 
indicating that spermatogenesis is sensitive to temperature increase 
in general. At 21°C, 18 differentially expressed epigenetic actors 
implicated in chromatin remodelling and piRNA were observed in 
sperm (Table 1), again suggesting that sperm chromatin-specific con-
formation might also undergo considerable changes at larger climate 
change (+4°C) magnitudes.

Gene expression in oocytes was more strongly influenced by 
the experimental temperatures applied in our study, showing 63% 
more DEGs than sperm (1876 in total), indicating that substantial 
changes in maternal mRNA accumulated at higher temperatures 
(Figure 3b). This was most pronounced for DEGs between 17 and 
18.5°C (504 in oocytes; 387% more than in sperm) and especially 
for shared DEGs (344 vs. 43 DEGs; 800% more than in sperm), 
whereas a similar number of genes were differentially regulated 
between 17°C and 21°C in both oocytes and sperm (1028 vs. 926 
DEGs), indicating that oocytes expressed stronger, and more uni-
form reactions across environmental change gradients than sperm. 
Functionally, GO terms for germ cell development were enriched 
at both temperatures, but twice as many GO terms affecting 
metabolic processes were enriched at 21°C compared to 18.5°C 
(Figure 3b). Among genes involved in epigenetic modifications, 
temperature influenced transcript levels related to histone modifi-
cations (10 DEGs at 18.5°C, 21 DEGs at 21°C, shared: three DEGs), 
but also DNA methylation (DNMT3Bb.2 at 21°C; Table 1, Data S1), 
indicating that levels of maternally inherited chromatin-modifying 
mRNA were influenced by changing climate conditions, particularly 
the +4°C scenario.

3.5  |  Maternal and paternal contributions to 
epigenetic actors in gametes

Many epigenetic actors showed sex-specific induction in gam-
etes, with a stronger bias towards oocytes than sperm (Figure 3c; 
Data S1). This bias was particularly acute for DNA methylation 
and histone phosphorylation transcripts, whereas sperm-biased 
expression was more marked for histone ubiquitination, histone 
glycosylation and H2A variant transcripts (Figure 3c). Maternal 
inheritance of DNMTs based on their exclusive accumulation in 
oocytes (Figure 3c) indicates that initial remethylation—starting in 
morula (Figure 2c) before Zygotic Gene Activation (ZGA; Andersen 
et al., 2013)—is likely under maternal control, whereas both parents 
likely contribute to histone reprogramming as suggested by the ac-
cumulation of specific histone–chromatin enzyme transcripts and 
histone variant transcripts in predominantly oocytes and/or sperm 
(Figure 3c). In general, oocyte-biased expression was more stable 
across environments, with the number of genes consistently accu-
mulated across all temperatures being higher in oocytes than sperm 
(except for ‘other histone modifications’; Figure 3c). Nevertheless, 
at 18.5°C, the proportion of induced epigenetic genes increased in 
both sperm and oocytes, whereas at 21°C, induction of epigenetic 
genes decreased in sperm and increased in oocytes (Figure 3c). 
Overall, our results show that the magnitude of changing climate 
conditions influenced epigenetic transcript accumulation in gam-
etes, and highlight specific maternal and paternal contributions to 
reprogramming and the presence of transcripts or the expression 
of genes involved in multiple epigenetic processes within develop-
ing sperm and oocytes.
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3.6  |  Dynamic and environment sensitive 
reprogramming during embryogenesis

DNA methylation/hydroxymethylation levels across embryogen-
esis responded dynamically to experimental temperature at several 
developmental stages. In all climate scenarios, 5mC/5hmC levels 
of one-cell embryos were similar to those of oocytes, not sperm 
(Figure 2c,d), indicating that stickleback sperm methylomes were 
passively demethylated immediately after fertilization. Under ambi-
ent conditions (17°C), remethylation began in morula and increased 
between blastula and stage 19, after which methylation levels 
dropped and remained stable until hatching (Figure 2c). In both cli-
mate warming scenarios, however, methylation increased starting in 
morula, but was dynamically and differentially regulated depending 
on temperature until stage 24, where levels were similarly high as 

those in sperm (Figure 2c). Interestingly, the blastula–gastrula tran-
sition showed a reversal from hypo- to hypermethylation at 21°C. 
Overall, hypermethylation occurred later and more consistently at 
18.5°C, whereas patterns at 21°C were more similar to 17°C be-
tween stages 16 and 23 (Figure 2c). However, a reversal of dem-
ethylation and re-establishment of hypermethylation occurred in 
Stage 24 embryos at 21°C. Taken together, our results demonstrate 
that specific embryonic stages were highly sensitive to even small 
changes in climate conditions.

DNA hydroxymethylation also responded to differing tempera-
tures, but at lower levels and later developmental stages as seen 
for methylation (Figure 2d). At 17°C, 5hmC was barely detectable 
until stage 17 and showed an irregular increase to the sperm level 
by stage 24, whereas patterns generally reflected increased hy-
droxymethylation at 18.5°C and decreased hydroxymethylation at 

F I G U R E  3  Temperature and gamete-specific transcriptomes and epigenetic actor expression. (a, b) Proportionate number of differentially 
expressed genes and major categories of enriched gene ontology terms observed for temperature contrasts (17°C vs. 18.5°C and 21°C, 
and shared between both temperatures) in (a) sperm and (b) oocytes. (c) Sex bias in the expression of epigenetic actors in sperm and 
oocytes expressed as log2-fold change (LFC) towards either oocytes (upper panel) or sperm (lower panel). Colours show the mean LFC 
per temperature ± SD for different groups of epigenetic actors, while light grey shows sex-specific induction of single genes. Numbers at 
the top and bottom give the percentage of genes induced at each temperature for oocytes and sperm, respectively. The right panel gives 
the percentage of genes consistently regulated across temperatures (crg), that is, genes that showed significant sex-biased induction at all 
temperatures. Genes within each category can be found in Data S1
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21°C. Just prior to hatching, however, hydroxymethylation levels 
were similar among temperatures (Figure 2d). An inverse correlation 
between 5mC/5hmC patterns (reflecting putative active demethyl-
ation dynamics) was not apparent, indicating that 5hmC might play 
an independent role compared to 5mC. In general, DNA methyla-
tion/hydroxymethylation dynamics showed similar patterns, with 
temperature-specific increases over the course of embryonic devel-
opment, but with 5mC levels approximately three times higher than 
5hmC just prior to hatching.

3.7  |  Differential temperature sensitivity of 
embryonic stage transcriptomes

Our ocean warming scenarios differentially influenced transcrip-
tomic profiles of specific embryo stages (Figure 4). In one-cell 

embryos, three times as many genes were differentially regulated 
at 21°C than 18.5°C (332 vs. 87 specific DEGs), with enriched GO 
terms mainly involved in cellular processes at 18.5°C, whereas meta-
bolic processes and regulation of epigenetic gene expression were 
enriched at 21°C (Figure 4a). Enriched metabolic processes at 21°C 
aligns with the patterns found in ovaries and oocytes, in part, likely 
reflecting maternal regulation of mitochondrial respiration and gene 
expression as demonstrated in our previous experiments (Shama 
et al., 2014, 2016). Most interesting, epigenetic changes might al-
ready have occurred at this stage, as histone methylation (18.5°C) 
and regulation of epigenetic genes (21°C) were enriched, and 11 
chromatin-modifying enzymes were differentially expressed (five at 
18.5°C, four at 21°C and two shared; Table 1), with, for example, 
DNMT1 downregulated only at 18.5°C, whereas DNMT3Bb.2 was 
downregulated at both 18.5 and 21°C (Data S1). Furthermore, differ-
ential expression of H3.3B (18.5°C) and H2AZ (21°C) together with 

F I G U R E  4  Differential gene expression of stickleback embryonic stages under ocean warming scenarios. (a) Venn diagrams showing 
the proportionate number of differentially expressed genes (DEGs) and horizontal bar charts showing major categories of enriched gene 
ontology terms observed for temperature contrasts (17°C vs. 18.5°C and 21°C, and shared between both temperatures) in one-cell, blastula 
and stage 24 embryos. (b) Heatmaps of shared DEGs (log2-fold change, padj < 0.05) showing temperature-specific regulation patterns 
for single temperature contrasts in one-cell, blastula and stage 24 embryos. Red boxes outline groups of specific genes within heatmaps 
showing opposite expression patterns at 18.5°C versus 21°C. For instance, the vast majority of genes showing opposite regulation between 
temperatures occurred in blastula (see also Data S1)

(a) (b)
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WRAD complex transcripts (Wrd5/Ash2l; at 18.5 and 21°C) indicates 
putative temperature effects on ‘placeholder’ nucleosomes (Murphy 
et al., 2018) necessary for 5mC reprogramming and ZGA.

In blastula, the pattern was reversed, with an order of magni-
tude more specific DEGs at 18.5°C than 21°C (4394 vs. 310). At both 
temperatures, the majority of enriched GO terms were involved in 
developmental and metabolic processes, together with reproduc-
tion and importantly, germ cell development (Figure 4a). Most inter-
esting, blastula had the highest number of shared DEGs (617) that 
showed opposite expression patterns depending on experimental 
temperature (Figure 4b). For instance, 80 DEGs were upregulated at 
18.5°C and downregulated at 21°C, while 201 DEGs were downreg-
ulated at 18.5°C and upregulated at 21°C. Moreover, 109 chromatin-
modifying enzymes were differentially regulated depending on 
temperature (88 at 18.5°C, nine at 21°C and 12 shared; Table 1; Data 
S1), indicating massive changes to the overall epigenetic landscape at 
the blastula stage, especially in the +1.5°C scenario. Also, duplicated 
genes did not react uniformly to different temperatures, potentially 
reflecting underlying specificities and functional compensation. For 
instance, genes conferring de novo methylation were upregulated 
at one (DNMT3Bb.2 at 18.5°C) or both temperatures (DNMT3Bb.1, 
DNMT3Ba), whereas DNMT1 (methylation maintenance) was down-
regulated at both 18.5 and 21°C.

At embryonic stage 24 (formation of mouth and tail), the number 
of DEGs remained higher at 18.5 than 21°C (652 vs. 266), but the dis-
tribution of enriched GO terms was strongly skewed towards met-
abolic processes at 21°C, as opposed to developmental and cellular 
processes at 18.5°C (Figure 4a). Among the 163 shared DEGs, seven 
were upregulated at 18.5°C, but downregulated at 21°C (Figure 4b). 
Also, 19 chromatin-modifying enzymes were differentially regu-
lated depending on temperature (12 at 18.5°C, seven at 21°C and 
one shared; Table 1; Data S1). Here, upregulation of TET3 at 18.5°C 
might reflect the pattern of increased hydroxymethylation observed 
(Figure 2d), whereas several histone-modifying enzymes were exclu-
sively differentially regulated at 21°C (Table 1). Taken together, our 
results show environmental (temperature) sensitivity of embryonic 
transcriptomes in general, and epigenetic gene regulation specifi-
cally. Overall, a +1.5°C temperature increase during embryogenesis 
led to changes in cellular and developmental processes, whereas a 
+4°C increase shifted gene regulation towards metabolic processes. 
However, both climate change scenarios induced changes in multi-
ple epigenetic actors (e.g. 5mC/5hmC, chromatin-modifying mRNA) 
involved in reprogramming, and also potentially play a role in embry-
onic thermal plasticity.

3.8  |  Regulation of epigenetic actors 
across offspring development

Using RPKM values, we further disentangled how relative levels of 
284 epigenetic transcripts changed during gametogenesis and em-
bryogenesis (Figure 5). The 36 epigenetic actors explaining most 
of the variation (Figure S3) show a highly complex and dynamic 

interplay between environment and developmental transitions. 
During gametogenesis (Figure 5a), patterns were very specific for 
each sex. Oocytes were clearly different from ovaries, while this was 
less obvious for testes and sperm. However, for both sexes, specific 
chromatin regulations (H2A/H1m) occurred together with maternal 
accumulation of transcripts such as DNMT1/DNMT3bb.2 (5mC), 
gtf3c2/gtf3C4 (histone acetylation) or Jmjd6 (histone demethylation; 
Figure 5a; Figure S3). Maternal inheritance of DNMTs suggests that 
both maintenance and de novo methylation occur early in embryo 
development to correctly reprogram to sperm levels. After fertiliza-
tion, one-cell embryo transcript levels were more similar to oocytes 
than sperm, and reflect DNA remethylation via maternally inher-
ited DNMTs. In addition, high chromatin dynamism is likely to occur 
through paternally inherited histone methyltransferases and kinases 
(Figure 5b). Overall, only small temperature effects were observed 
during gametogenesis. At fertilization, the strongest environmental 
effects were detected in sperm and to a lesser degree in one-cell 
embryos.

During embryogenesis, each stage was characterized by specific 
transcript levels of chromatin-modifying enzymes and histone vari-
ants (Figure 5c). Relative abundances of H1m (Histone linker H1), 
parp1 (Histone poly-AD ribosylation) and ogt.1 (Histone glycosyla-
tion) suggest that important chromatin changes occurred between 
one-cell embryos and the blastula stage. From blastula to stage 24, 
transcripts levels, particularly KATs (crebbpa, kat8, taf1; Figure 5c), 
indicate that complex chromatin remodelling might be necessary 
for correct gastrulation and organogenesis. Important contributions 
of DNMT3Aa and TET3 (Figure 5c; Figure S3) align with 5mC/5hmC 
profiles described in Figure 2, in that they only responded dynam-
ically after both ZGA and blastula formation. Temperature effects 
were small for most embryonic developmental stages except blas-
tula, which clearly clustered by environment (Figure 5c), indicating 
whole transcriptome sensitivity of this stage (Figure 4b) coupled 
with strong temperature-specific responses of epigenetic actors.

4  |  DISCUSSION

While climate change already has important consequences for biodi-
versity (Burrows et al., 2019; Smale et al., 2019), spawning adults and 
embryos were recently identified as the most endangered life stages 
in teleosts (Dahlke et al., 2020). Epigenetic mechanisms can play a 
key role in generating phenotypic plasticity necessary for marine 
species persistence in changing environments (Adrian-Kalchhauser 
et al., 2020; Burggren, 2018; Eirin-Lopez & Putnam, 2019; Fellous 
et al., 2018). However, epigenetic marks must pass through two 
reprogramming phases to be inherited across generations (Fellous 
et al., 2018; Hanson & Skinner, 2016; Ortega-Recalde & Hore, 2019; 
Xia & Xie, 2020). Here, we detailed reprogramming (DNA methyla-
tion/hydroxymethylation) across stickleback offspring development, 
and tested whether epigenetic reprogramming itself is environment 
sensitive. Our study characterizes how gametogenesis and embryo-
genesis are regulated at the molecular level, and shows that large 
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differences in reprogramming dynamics and regulation of genes in-
volved in epigenetic modifications (Fellous & Shama, 2019) occurred 
between +1.5 and +4°C ocean warming scenarios. Our most striking 
findings are that reprogramming in stickleback appears to be shaped 
by both parents via sex-specific accumulation of transcript induc-
tion, that regulation of epigenetic actors in gametes is highly sensi-
tive to ocean warming, and the blastula embryonic stage may be a 
key window for adaptive responses to climate change. Importantly, 
substantial changes to gamete and embryo epigenetic reprogram-
ming and gene regulation already at +1.5°C suggest that even mod-
erate climate forecasts (IPCC, 2021) may underestimate impacts on 
reproduction, recruitment and adaptive potential of populations.

4.1  |  Parental thermal environment effects on 
gametes and embryos

Warmer temperatures are known to greatly impact fish reproduc-
tion (behaviour, spawning time, fecundity, oogenesis, spermatogen-
esis and gamete quality; Alix et al., 2020; Jonsson & Jonsson, 2014). 
Thermal plasticity of reproductive traits allows parents to adjust 
how resources are allocated to offspring, and thus, maintain fitness 
across different environments. At the phenotypic level, changes to 
offspring size are usually traded off against offspring number, but 

the underlying molecular mechanisms and potential consequences 
for embryos under climate change are mostly unknown (Alix et al., 
2020). Here, maternal acclimation to increased temperatures had 
direct effects on reproductive output (egg size/number), fertiliza-
tion and embryo hatching success, possibly due to differences in 
egg quality in the different warming scenarios (see also Shama et al., 
2014, 2016). However, consequences for offspring will also depend 
on paternal contributions (e.g. sperm quality; Macartney et al., 2018) 
and offspring developmental environment. In our study, embryo 
hatching success, a key fitness trait, was (relatively) higher in the 
matching +4°C (21°C) parent–offspring climate warming scenario, 
suggesting that TGP, particularly under thermal stress, may have 
led to more robust embryos. The temperature at which gametes de-
velop is known to influence thermal optima for embryo and larvae 
development, and direct parental provisioning and/or epigenetic 
modifications often underlie cross-generational benefits of paren-
tal thermal history on offspring performance (Byrne et al., 2020). 
Specific epigenetic modifications occurring during gametogenesis 
are crucial for gamete production and play essential roles in the cor-
rect development of embryos (Depincé et al., 2020, 2021; Fellous 
et al., 2019; Labbé et al., 2017; Martin et al., 1999; Riviere et al., 
2013), and these modifications may also be sensitive to environ-
mental conditions. Nevertheless, any across-generation epigenetic 
marks influencing offspring performance must (potentially) endure 

F I G U R E  5  Expression of epigenetic actors during gametogenesis, fertilization and embryogenesis. Principal components analyses based 
on RPKM values of all chromatin-modifying genes during (a) gametogenesis (gonads and gametes), (b) after fertilization (gametes and one-
cell stages) and (c) embryogenesis (one-cell, blastula and stage 24 embryos). Points represent single libraries, symbols show the different 
stages and colours depict experimental temperatures. Arrows show the coordinates of the three genes per category explaining the most 
variation. Symbol size shows how well the library is represented in the ordination. RPKM, Read Per Kilo base per Million mapped reads
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reprogramming (Hackett & Surani, 2013; Ortega-Recalde & Hore, 
2019; Sun et al., 2021).

4.2  |  Epigenetic reprogramming dynamics in 
stickleback

Reprogramming in mammals is thought to be a strong barrier to 
transgenerational epigenetic inheritance (Hanson & Skinner, 2016; 
Ortega-Recalde & Hore, 2019). In teleosts, sufficient data only exist 
for a few species (Figure 1a) and reprogramming remains highly con-
troversial (Ortega-Recalde & Hore, 2019; Wang & Bhandari, 2019). 
Incomplete (or lack of) erasure of methylation may enable persis-
tence of epigenetic marks associated with adaptive phenotypes 
and might explain fast responses to environmental perturbations 
(Fellous et al., 2018; Liew et al., 2020; Ortega-Recalde & Hore, 
2019; Ryu et al., 2018), as also suggested by our previous experi-
ments with stickleback (Shama et al., 2014, 2016). In general, our 
results confirm the patterns found in other vertebrates, despite an 
accelerated maturation time between T0 and T1 in our experiment 
(Figure 1b; Fellous et al., 2018; Labbé et al., 2017; Ortega-Recalde & 
Hore, 2019). Thus, sperm hypermethylation appears to be acquired 
early during spermatogenesis (Wang & Bhandari, 2020), and likely 
reflects the extreme packaging of sperm chromatin characterized by 
the replacement of somatic histones with sperm nuclear basic pro-
teins (SNBPs) such as sperm-specific histones, protamine-like pro-
teins and protamines (Eirin-Lopez & Ausio, 2009; Loppin & Berger, 
2020). Hypomethylation in oocytes, on the other hand, likely reflects 
less methylation of nuclear DNA in combination with global hypo-
methylation of abundant mitochondrial DNA (Labbé et al., 2017). 
DNA hydroxymethylation patterns observed during stickleback 
spermatogenesis putatively reflect a conserved crucial function in 
sperm maturation (Gan et al., 2013), whereas the lack of an inverse 
relationship between 5mC (methylation) and 5hmC (demethylation) 
suggests a conserved, independent role for 5hmC in oocyte matura-
tion during teleost oogenesis that is also sensitive to environmental 
temperature. In mammals, an increase of 5hmC is indeed observed 
during meiotic entry in mouse oogenesis (Fu et al., 2017).

Within embryos, stickleback reprogramming patterns appear 
similar to other fish species (Fellous et al., 2018; Kamstra et al., 2015; 
Wang & Bhandari, 2019), but also point to specificities seen in man-
grove rivulus (Fellous et al., 2018) and Medaka (Wang & Bhandari, 
2019). The absence of 5hmC and TET mRNA in stickleback early de-
velopmental stages, associated with dynamic hydroxymethylation 
levels later in development, is reminiscent of zebrafish and mangrove 
rivulus (Fellous et al., 2018; Kamstra et al., 2015), but differ from 
medaka (Wang & Bhandari, 2019) and mammals (Hackett & Surani, 
2013). In stickleback, the re-establishment of hypermethylation at 
21°C for stage 24 embryos may be associated with a loss of TET 
enzymatic activities at 21°C, metabolic adjustment to high tempera-
ture and/or interactions among multiple epigenetic actors (e.g. inter-
actions within the chromatin landscape sensu Adrian-Kalchhauser 
et al., 2020). Indeed, we show that reprogramming is not limited to 

methylation (Fellous et al., 2019a, 2019b; Xia & Xie, 2020; Zhu et al., 
2019), as our transcriptional data suggest an important role for sev-
eral types of histone-modifying enzymes and histone variants during 
gamete and embryo development. Histone modifications such as 
methylation or acetylation as well as histone variants are crucial to 
gametogenesis and development across taxa from flowering plants 
to humans, and are known to be extensively replaced within gam-
etes and reprogrammed in embryos in a species-dependent manner 
(Eckersley-Maslin et al., 2018; Eirin-Lopez & Ausio, 2009; Fellous 
et al., 2019; Horsfield, 2019; Ishiuchi et al., 2021; Larose et al., 2019; 
Loppin & Berger, 2020; Zhu et al., 2019). However, proteomic and 
specific enzymatic analyses are needed to describe and estimate 
the extent of reprogramming of epigenetic modifications outside 
of 5mC/5hmC together with the biochemical roles of the different 
chromatin-modifying enzymes, which have currently not yet been 
investigated in stickleback (Fellous & Shama, 2019).

Notably, our study shows that reprogramming in stickleback 
seems to be shaped by both parents. In particular, we show that 
DNMT expression patterns are exclusively maternally inherited, 
suggesting that DNA remethylation in embryos is under maternal 
control, with remethylation increasing 5mC levels over time (start-
ing from levels similar to oocytes) to reach DNA methylation levels 
observed in sperm (Potok et al., 2013). Induction of genes involved 
in histone modifications, however, is inherited via both the mater-
nal and paternal route, as reflected by the differing parental con-
tributions of specific histone modifying enzyme transcripts found 
(Fellous et al., 2019a, 2019b; Zhu et al., 2019). Still, while histones 
are extensively reprogrammed early in development (Labbé et al., 
2017; Zhu et al., 2019), parental contributions might be highly con-
text dependent (e.g. particular mark, species and/or environment; 
Depincé et al., 2020; Larose et al., 2019; Loppin & Berger, 2020; 
Tabuchi et al., 2018), and parental imprinting in fish gametes has still 
not been conclusively shown (Labbé et al., 2017). Our study, thus, 
highlights the variation among species and need for more studies in 
non-model organisms to allow generalizations and unifying princi-
ples of epigenetic reprogramming to be identified (Ortega-Recalde & 
Hore, 2019). Doing so will allow better predictions of the occurrence 
and magnitude of transgenerational epigenetic inheritance and its 
role in promoting environmentally adapted offspring phenotypes.

4.3  |  Temperature-sensitive reprogramming at key 
windows during development

One of our most salient findings is that epigenetic reprogramming 
itself may be environment sensitive, with potential consequences 
for critical early developmental stages under climate change (Fellous 
et al., 2018; Fellous & Shama, 2019). Here, both ocean warming sce-
narios induced modifications in 5mC/5hmC levels and in multiple 
epigenetic actors (e.g. histones, chromatin-modifying mRNA) across 
gametogenesis, within mature gametes, and at several developmen-
tal stages, potentially reflecting epigenetic mechanisms that play 
a role in gametogenesis and embryonic thermal plasticity (Fellous 
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et al., 2015, 2018; Loughland et al., 2021; Seebacher & Simmonds, 
2019). Environmental consequences for gametes and embryos were 
dependent on the magnitude of warming, which complicates gen-
eralizations of plasticity impacts. Differing patterns between +1.5 
and +4°C might reflect stochastic adjustment of epigenetic marks 
depending on the metabolic status of embryos, potentially contrib-
uting to robust individuals at hatching. Nevertheless, dynamic pat-
terns of 5mC/5hmC may reflect brief developmental windows that 
allow for phenotypic ‘corrections’ within embryos to the current 
developmental thermal environment (Burggren, 2020). However, 
persistence of these epigenetic states and their consequences veri-
fied through functional studies and whole genome sequencing of 
the potentially modified phenotypes should be evaluated (Burggren, 
2020, 2021). In our study, many of the observed changes are likely 
associated with metabolic perturbations (especially at +4°C), but 
our results showing hypermethylation, hyper-hydroxymethylation 
and reverse patterns for particular stages in terms of temperature-
specific differential expression of reproduction, developmental and 
epigenetic genes make a strong case for reprogramming plasticity 
both early and late in stickleback development. Interestingly, early 
life epigenetic–metabolism interactions can potentially drive ben-
eficial (or detrimental) changes into adulthood (Spyrou et al., 2019; 
Treviño et al., 2020), outlining a promising future research direction, 
particularly in the context of rapid global change.

Regulation of epigenetic actors in gametes and one-cell stage 
embryos was highly sensitive to ocean warming. We found that chro-
matin conformation in both sperm and oocytes (Labbé et al., 2017) 
might be sensitive to even small changes in environmental tempera-
ture, suggesting potential consequences for gametes and fertiliza-
tion under climate change. Specifically, differential expression of 
Brdt and piwil1 in testes after 6 weeks acclimation at 21°C suggests 
that warming may have an influence on the spermatogenesis pro-
cess (Alix et al., 2020), shaping final sperm chromatin conformation 
(SNPBs, remaining histones and chromatin accessibility differences) 
and sperm-specific transcript accumulation (SSTA; Ben Maamar 
et al., 2020; Eirin-Lopez & Ausio, 2009; Labbé et al., 2017; Raz, 
2003; Robles et al., 2017). However, consequences for replacement 
of somatic histones by SNBPs, chromatin conformation and SSTA 
may be species- and environment-specific (Depincé et al., 2020), and 
remain to be elucidated. In ovaries, temperature increase might have 
consequences for oogenesis through 5hmC (Fu et al., 2017), and 
on maternal mRNA provisioning of chromatin-modifying enzymes 
and histone variants necessary in mature oocytes for development 
(Xia & Xie, 2020; Xu, 2021). Interestingly, specific changes in Hira 
(downregulation at 18.5°C; role in promoting sperm chromatin re-
modelling following fertilization) and Hinfp (downregulation at 21°C; 
promotes histone H4 gene expression) together with upregulation of 
histone variants H2AZ (21°C) and H3.3 (18.5°C) at the one-cell stage 
suggest that protamine-histone exchanges and ‘minor ZGA’ (Xia & 
Xie, 2020) might be plastic and influenced by temperature (Strobino 
et al., 2020). Thus, epigenetic differences between eggs and sperm 
generated by environmental conditions can have implications for 
gamete recognition, compatibility and fertilization success, as well as 

the maternal to zygotic transition, ultimately influencing successful 
offspring development (Putnam, 2021). In our study, overall gene ex-
pression (transcriptome profiles) as well as many epigenetic actors in 
gonads, sperm and oocytes were influenced by higher temperatures, 
particularly the +4°C scenario, indicating that ocean temperatures 
predicted to occur in the near future could have substantial impacts 
on gamete quality, with ultimate consequences for reproductive suc-
cess and, thus, fitness.

Most striking, we show that massive changes to the epigenetic 
landscape occurred in blastula, identifying this embryonic stage as 
a potential key window during development for adaptive responses 
to climate change. Blastula is a critical stage for successful develop-
ment (Depincé et al., 2021; Martin et al., 1999; Riviere et al., 2013; 
Robinson et al., 2019), associated with ZGA in zebrafish (Andersen 
et al., 2013), which is characterized by intense chromatin remodel-
ling and the start of primordial germ cell specification (Byrne et al., 
2020; Ortega-Recalde & Hore, 2019; Wang & Bhandari, 2019). In our 
study, enriched GO processes for germ cell development together 
with differential expression of genes expressed in primordial germ 
cells (Nanos1, Dazl, Cxcr4b, H1m [all at 18.5°C]; Raz, 2003; Robles 
et al., 2017) became apparent in blastula. The vast majority of dif-
ferential gene regulation occurred in the +1.5°C scenario, indicating 
that even small environmental perturbations can induce large tran-
scriptional changes at this stage. A shift away from larger effects 
seen at +4°C for gonads and gametes from parental fish might also 
reflect differential thermal sensitivity of embryos starting at the ma-
ternal to zygotic transition or ZGA, and a stronger impact of devel-
opmental environment on embryogenesis, but this requires further 
experiments with stickleback. Temperature sensitivity of germ cell 
development at the blastula stage could, thus, have implications for 
the next generation (via primordial germ cell specification at this 
stage; Ortega-Recalde & Hore, 2019), in addition to consequences 
for current generation offspring phenotype resilience to ocean 
warming. Still, the existence of a reprogramming event within pri-
mordial germ cells remains understudied and controversial in tele-
osts (Ortega-Recalde & Hore, 2019; Skvortsova et al., 2019; but see 
Wang & Bhandari, 2020).

5  |  CONCLUSIONS

In a rapidly warming ocean, the ability of parents to pre-condition 
offspring to better cope with thermal stress via transgenerational 
epigenetic inheritance will play a key role in the adaptive poten-
tial of populations (Donelson et al., 2018; Eirin-Lopez & Putnam, 
2019). However, epigenetic reprogramming during offspring de-
velopment can hinder the inheritance of epigenetic marks across 
generations (Hackett & Surani, 2013), and the dynamics of re-
programming itself may be influenced by changing environmen-
tal conditions. Our study shows that functional consequences of 
epigenetic plasticity might depend on the timing (specific stages) 
and magnitude of climate change (here, temperature) in both par-
ent (gametogenesis) and offspring (embryogenesis) environments. 
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We demonstrate that reprogramming in stickleback is shaped by 
both parents, with sex-specific induction of several epigenetic ac-
tors in mature gametes. Importantly, we show that reprogramming 
dynamics are highly sensitive to even small increases in tempera-
ture, with potential consequences for gamete quality and embryo 
resilience. Blastula was identified as the critical embryonic stage 
showing the most temperature-specific changes to the overall epi-
genetic landscape. Given that primordial germ cell differentiation 
also starts at this stage (Ortega-Recalde & Hore, 2019), blastula 
represents a key window of opportunity for environmentally in-
duced epigenetic modifications to influence phenotypes both 
within and across generations. Further studies that consider the 
role of epigenetic reprogramming and its potentially shifting dy-
namics in changing environments are needed to elucidate more 
deeply how epigenetic mechanisms might translate environmental 
perturbations associated with rapid climate change into adaptive 
phenotypes.
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