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Linear and Nonlinear Filters

The second-order exact particle filter NETF (nonlinear
ensemble transform filter) is combined with local
ensemble transform Kalman filter (LETKF) to build a
hybrid filter method. The filter combines the stability
of the LETKF with the nonlinear properties of the
NETF to obtain improved assimilation results for
small ensemble sizes. Both filter components are
localized in a consistent way so that the filter can be
applied with high-dimensional models.

The degree of filter nonlinearity is defined by a
hybrid weight which shifts the analysis between the
LETKF and NETF. Since the NETF is more sensitive to
sampling errors than the LETKF, the latter filter
should be preferred in linear cases. Accordingly the
adaptive hybrid weight is defined based on the
nonlinearity of the system so that the adaptivity
yields a good filter performance in linear and
nonlinear situations.

Hybrid weight y
Here, we define different rules to compute the hybrid
weight y adaptively.

Using the effective sample size N/, = > "(w')~:

0 Choose y, so that Ny is as small as possible, but
above a limiting value « [see 3]

New alternative linear dependence
Yin Vin =1 — BNess/N

Note: It is known that if Ncsy is close to 1, particle
filters don’t work well. However, this does not imply
that the PF is better then the LETKF for higher N, ;.

Using the skewness and kurtosis of the observed
ensemble:

Kalman filters assume that distributions are
Gaussian. In this case the LETKF is preferable. We use
skewness & kurtosis to quantify the non-Gaussianity.

In general skewness (skew) and kurtosis (kurt) are not
bounded. However, we can normalized the skewness
and kurtosis by
skew' = skew/VN
We can define
sk = min(1 — |kurt’|,1 — |skew'|)

kurt' = kurt/N

To avoid too low N, we define combined rules
Vsk,lin
Vsk,a

Vsk,lin = max['}/slm ’Ylin]

Vsk,a = mal‘h/skv ’Yoz]
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NETF

The transformation of the ensemble mean and
ensemble perturbations for ensemble size N can be
written in the generic form:

x¢ =% + X'Tw
X' = X""W
Ensemble Kalman & nonlinear filters just use
different definitions of the
* weight vector w (dimension V)

* Transform matrix W (dimension N x N)

LETKF

PDAFParaIIeI

Data Assimilation
Framework

Hybrid Filter LKNETF

NETF [1, 2] is a second-order exact particle filter. We
compute the  normalized  weight  vector
w=(wb, .., w™)/ Zw(l) using likelihood

weights. For Gaussian observation errors it is

@' ~ exp <—U.5(y - Hx,{)TR_l(y - fo))

The weights are also used for the transform matrix
W = /N [diag(w) — ww”]"* A

Here, A is the identity or a mean preserving random
matrix that can be applied to stabilize the filter.

Experiments

Lorenz-63 model

For the Lorenz-63 model, the default parameters are
used. All 3 state variables are observed, The
nonlinearity increases with the length of the forecast
phase.

Below: ETKF and NETF for 3 different nonlinearities
(NL). The NETF yields smaller errors for increasing N.
The limit value descreases for inceasing N.
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Below: RMS error for ETKF, NETF, and the hybrid
filter variant HNK for different choices of y and N=25.
Yskiin leads to the smallest errors with an error
reduction of up to 28% compared to the ETKF.
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In the LETKF we compute a local update of the
ensemble mean and perturbations. The weight
vector is computed according to the Kalman filter,
which always assumes that the errors are Gaussian.
Using the transform matrix
A~ =p(N - DI+ HXT)TRTHX/

that results from the equations of the Kalman filter
and always assumes Gaussian errors we have

W = A(HX/)TR! (y - HE)
W =+VN—-1AY2A

Lorenz-96 model
The results for the Lorenz-96 model (40 grid points,
F=8) are shown for a forecast duration of 8 time
steps. Each second grid point is observed.

Below: RMSe in dependence on localization radius
and ensemble inflation for LETKF and LKNETF-HNK.
The hybrid filter yields smaller errors for fixed y=0.9.
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Inflation (forgetting factor p)
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Below: ¥ i» yields optimal (N=15) or nearly optimal
(N=40) errors. The overall smallest errors are
obtained with y . for optimal tuning for N=40. the
variant HNK yields smallest errors. Hybridization with
skewness/kurtosis always reduces the errors
compared to LETKF. Using only N, can increase the
error for small & (Va).
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NEMO
NEMO is used in a double-gyre configuration
(SEABASS in NEMO 3.3) with a resolution of 0.25e.
Assimilated is simulated along-track SSH data with an
observation error of 5 cm over two years with
N=120. Observations are available each 2" day.

Below: RMSE reduction of SSH by the assimilation
when using N, ; ;. Y« leads to filter divergence unless
a is close to 1. y, leads to an error reduction by up
to 7% relative to the LETKF, but also needs tuning.
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Below: RMSE reduction by the assimilation when

using skewness and kurtosis: The skewness and

kurtosis for the observed ensemble is not large

enough to have a significant effect.
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Due to the similarity of NETF and ETKF one can easily
combine both filters into a hybrid analysis step.
Different hybrid schemes can be formulated:

1-step update (HSync)
Xt syne = x’ + (1 —7)AXNerr +YAXETKF
Here the analysis incrementsAX of both filters are

computed and then a weighted average of both is
used.

2-step updates (HNK and HKN)

In the 2-step update we can compute the NETF first
followed by the ETKF, both with increased
observation errors according to the hybrid weight
(Variant HNK):

Stepl: X% nx = XiprpX, (1 -7)R™Y
Step2: X% np = XbrrrXbvi, TR

Alternatively, we can compute the ETKF update
before the NETF (Variant HKN).

Summary

The hybrid ensemble filter LKNETF combines the
stable LETKF with the second-order exact particle
filter NETF. Different variants of the hybrid filter are
introduced.

The assimilation experiments for all three models are
implemented using PDAF [4,5] so that identical filter
implementations are used. The hybrid variant HNK
that applies the NETF to produce an intermediate
result that is further used in the LETKF yields the
lowest estimation errors. The hybrid rule basing on
skewness and kurtosis yields very stable results and
the lowest errors for the chaotic Lorenz models.

For NEMO at a resolution of 0.25°, the rules using
the effective sample size yield the smallest errors.
Here, the ensemble is not non-Gaussian enough to
used the skewness and kurtosis to define the hybrid
wieght
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