Techniques for Spatiotemporal investigations of rhizosphere processes

Ketil Koop-Jakobsen, Alfred-Wegener-Institute - Wadden Sea station, Germany

Agenda:

 Why aquatic interfaces (plant-sediment, sediment-water) are important in aquatic system?

- How to investigate plant sediment interactions in aquatic systems
 - a review of methods

Case study 1: Plant-mediated sediment oxygenation ... in Elymus athericus

Ketil Koop-Jakobsen, PhD BIOGEOCHEMIST

Salt marsh specialist

Primary Research Topics:

- Nutrient Cycling in Salt Marsh rhizosphere
- O₂, pH and CO₂ Dynamics in Rhizospheres
- Carbon Sequestration in Salt Marshes and sea grasses

Fieldwork 2018, Plum Island Estuary, MA, USA

Ketil Koop-Jakobsen, PhD BIOGEOCHEMIST

Salt marsh specialist

Primary Research Areas:

Aquatic systems: Wetlands, Ponds and Coasts

- Wadden Sea
- US Eastcoast

Fieldwork 2018, Plum Island Estuary, MA, USA

Ketil Koop-Jakobsen, PhD BIOGEOCHEMIST

Salt marsh specialist

Overarching topic:

Spatiotemporal dynamics of rhizosphere processes

Fieldwork 2018, Plum Island Estuary, MA, USA

Importance of interfaces in aquatic ecosystems

Plant-mediated sediment oxygenation release oxygen into the rhizosphere

Elymus athericus - Wadden sea marshes, Germany

Photo © Koop-Jakobsen

Wetland plant rhizosphere

143 rhizomes with aerenchyma in cross section

~6000 rhizomes with aerenchyma per m⁻² at -5 cm depth

Morphology of Spartina rhizospheres – structure

Wetland rhizospheres can develop a very dense biomass

Consequently, there is large area with plant-sediment interfaces

Some of these areas facilitate exchange of chemical compounds between the sediment and the plant.

Other areas have barriers preventing interaction between the sediment and the plant

Photo © Koop-Jakobsen

Plant-mediated sediment oxygenation – How does it work?

Plant-mediated sediment oxygenation – How does it work?

Spatiotemporal heterogeneity controls important ecosystem functions

Unvegetated coastal sediment

Vegetated coastal sediment

Importance of aquatic interfaces

Photo © Koop-Jakobsen

Spatiotemporal heterogeneity control important ecosystem functions

Photo © Koop-Jakobsen

Hülse et al Geosci. Model Dev., 11, 2649–2689, 2018

tance of aquatic interfaces

odwi

Plant mediated sediment oxygenation – Plant benefits ?

It is a flood adaptive trait ...

... Facilitating oxygen for aerob respiration in roots ... Increasing nutrient uptake via roots ... Reduce impact of phytotoxin in the rhizosphere

This traits ...

... Enable wetland plant if live in waterlogged sediment ... Makes wetland plants competitive under waterlogged conditions

-Impact on Ecosystem services ?

Increase aerob degradation of organics matter affect carbon sequestration
Increase nutrient retention/nitrogen removal
Control GHG release

Photo © Koop-Jakobsen

How to measure plant – sediment interactions - a review of methods

Methods for studying root-sediment interactions

Microsensors

Space: 1D-profile Time: Continuous measures

• Fiber optodes

Space: Point measures Time: Continuous measures

• DGT DET-Gels

Space: 2D images Time: point measurements

Planar optodes

Space: 2D images Time: Continuous measures

Review of methods

Scholz VV et al (2021) Resolving Chemical Gradients Around Seagrass Roots—A Review of Available Methods. Front. Mar. Sci. 8:771382. doi: 10.3389/fmars.2021.771382

Microsensors

Space: 1D-profile Time: Continuous measures

• Fiber optodes

Space: Point measures Time: Continuous measures

Planar optodes

Space: 2D images Time: Continuous measures

DGT DET-Gels

Space: 2D images Time: point measurements

1D-profiling

Koop-Jakobsen K and Gutbrod MS (2019) Front. Environ. Sci. 7:137. doi: 10.3389/fenvs.2019.00137

2 Kind of measuring principles

Microsensors

Space: 1D-profile Time: Continuous measures

• Fiber optodes

Space: Point measures Time: Continuous measures

DGT DET-Gels

Space: 2D images Time: point measurements

Planar optodes

Space: 2D images Time: Continuous measures

Micro-electrodes:

Analytes: O₂, H₂, H₂S, N₂O, NO, Redox. (pH and temp)

Signal: Electric current (for most

Material: glass (fragile)

Tip-size: >10µm

Noteworthy: consumes analyte

Micro-Optodes

Analytes: O₂, pH and pCO₂

Signal: Light

Material: plastic optical fibers (less fragile)

Tip-size: >50µm

Noteworthy: consumes analyte

Time: Continuous measures

Rhizosphere O₂-dynamics studied with Multi Fiber Optode

Photo © PreSens

• Microsensors

Space: 1D-profile Time: Continuous measures

• Fiber optodes

Space: Point measures Time: Continuous measures

• DGT DET-Gels

Space: 2D images Time: point measurements

Planar optodes

Space: 2D images Time: Continuous measures Commercially available system – 10 optodes

Diffusive Gradients in Thin-films (DGT) or Diffusive Equilibration in Thin-Films (DET)

Microsensors

Space: 1D-profile Time: Continuous measures

• Fiber optodes

Space: Point measures Time: Continuous measures

• DGT DET-Gels

Space: 2D images Time: point measurements

Planar optodes

Space: 2D images Time: Continuous measures 2D images of porewater dissolved ions and gasses: inorganic nutrient (e.g., P, Fe, Mn) contaminant (e.g., As, Cd, Pb) Gases (H2S)

DGT gel: Analyte diffuses into the get and get bound in the gel

DET gel: Analyte diffuses into the get and reach an equilibrium with the pore water

Spatial distribution analysed by as laser ablation inductively coupled mass spectrometer (LA-ICP-MS). Resolution: 100 μ m

Planar optode investigations

LED growth-light

Planar optode imaging

Planar optode technology

Prepairing rhizobox

Imaging oxygen distribution

Ref: Lenzewski, Koop-Jakobsen et al, New phytologist 2018

Planar optode imaging is a quantitative technology - Each pixel in the optode image is assigned an [O₂]-value

Visualization of the spatial oxygen distribution as 2D image

Photo © Koop-Jakobsen

Planar optode imaging is a quantitative technology

- Each pixel in the optode image is assigned an [O₂]-value

1. Key Feature: Quantification of Spatial Variation

Planar optode imaging is a quantitative technology - Each pixel in the optode image is assigned an [O₂]-value

2. Key Feature: Quantification of Temporal Variation

Dynamics of O₂, pH and CO₂ in marsh rhizospheres

Koop-Jakobsen et al 2018 Frontiers in Plant science

Dynamics of O₂, pH and CO₂ in marsh rhizospheres

Daily variation in O₂, pH and CO₂ around Spartina root. (periods: 12h light/ 12h dark)

https://www.researchgate.net/publication/326033658_Video_following_O2_pH_and_CO2_distribution_around_a_root_of_the_wetland_grass_Spartina_anglica

Plant-mediated sediment oxygenation in Elymus athericus

Research example 1: Plant-mediated sediment oxygenation facilitate the spread of *Elymus athericus* in European marshes

 Ketil Koop-Jakobsen, Alfred-Wegener-Institute - Wadden Sea station, Germany
Robert Meier, PreSens Precision Sensing GmbH, Regensburg, Germany
Peter Müller, Institute of Soil Science, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

Photo: Dirk Granse UniHH

Oxygen dynamics in *Elymus athericus* **rhizosphere**

Characteristics:

Name: Elymus athericus Distribution: Native to Europe Habitat: High marsh Length: 20-120 cm Roots: long rhizomes, Most root biomass in 0-10cm

Photo © Koop-Jakobsen

Geographical distribution and study area:

Geographical distribution: Europe Atlantic coast and Mediterranean coast Study area: Wadden sea: Tidal dominated describe

Green: distribution of Elymus http://www.plantsoftheworldonline.org/taxon/ur n:lsid:ipni.org:names:912429-1

Wadden Sea salt marsh Photo: Koop-Jakobsen, AWI

LFRED-WEGENER-INSTITUT ELMHOLTZ-ZENTRUM FÜR POLAR-ND MEERESFORSCHUNG

Oxygen dynamics in Elymus athericus

Ø,

Elymus is spreading significantly altering the plant composition

Low marsh ecotype

Marsh

Does Elymus possess traits that enables its spread into waterlogged areas ? Is Elymus capable of plant-mediated sediment oxygenation? Are there differences between between the low and high marsh ecotype?

Eiymus athericus

Plant-mediated sediment oxygenation release oxygen into the rhizosphere

Elymus athericus - Wadden sea marshes, Germany

Study design

Plant mediated sediment oxygenation in Elymus was investigated using planar optode, which images oxygen in the rhizopshere.

4 Low-marsh ecotype samples

VS

4 high marsh ecotype samples

Spatial oxygen distribution in *Elymus* rhizosphere

Low marsh ecotype

Koop-Jakobsen and Mueller 2021 Frontiers in plant science

Spatial oxygen distribution in *Elymus* rhizosphere High marsh ecotype

Koop-Jakobsen and Mueller 2021 Frontiers in plant science

Spatial oxygen distribution in *Elymus* rhizosphere Low marsh ecotype

Koop-Jakobsen unpublsihed

Temporal oxygen distribution in Elymus

Spatial oxygen distribution in Elymus

Koop-Jakobsen and Mueller 2021 Frontiers in plant science

Conclusion:

- *Elymus athericus* is capable of plant-mediated sediment oxygen
- Plant-mediated Sediment oxygenation can have significant impact on Elymus' rhizosphere chemistry via sediment oxygenation
- This specific trait enables Elymus to spread in to the more waterlogged parts of the low marsh
- This spread of Elymus and its alteration of sediment chemistry may affect carbon storage capacity

Frontier in Plant Science 10 June 2021 Koop-Jakobsen, Meier and Müller https://doi.org/10.3389/fpls.2021.669751

Acknowledgement

For KK-J, the research was funded in part by The Helmholtz Climate Initiative (HI-CAM). HI-CAM is funded by the Helmholtz Association's Initiative and Networking Funds (10.13039/501100009318). PM was supported by the DAAD (German Academic Exchange Service) PRIME fellowship program funded through the German Federal Ministry of Education and Research (BMBF; 10.13039/501100002347).

Front. Plant Sci., 10 June 2021 | <u>https://doi.org/10.3389/fpls.2021.669751</u>

