Spatiotemporal heterogeneity of wetland rhizospheres controls essential wetland ecosystem functions

Ketil Koop-Jakobsen

Wadden Sea station Sylt – Germany

Agenda:

Introduction

- Spatiotemporal heterogeneity controls important ecosystem functions
- Nitrogen retention in marsh rhizospheres

Structural heterogeneity in salt marsh rhizospheres

Biomass structure and gas transport

Chemical heterogeneity in rhizospheres

- Plant-mediated sediment oxygenation
- Root-mediated CO₂ uptake

Chalk talk

Sediment oxygenation in Lobelia spp

Spatiotemporal heterogeneity controls important ecosystem functions

Spartina patch – Wadden sea, Germany

Vegetated coastal sediment

Plant-mediated sediment oxygenation release oxygen into the rhizosphere

Elymus athericus - Wadden sea marshes, Germany

Spatiotemporal heterogeneity control important ecosystem functions

Unvegetated coastal sediment

Vegetated coastal sediment

Hülse et al Geosci. Model Dev., 11, 2649–2689, 2018

Ecosystem functions

- Green house gas release
 - Carbon turnover and sequestration
- Nutrient retention/turnover

Nitrogen retension in Salt marsh rhizosphere

Quantifying coupled nitrification-denitrification in marsh rhizospheres

- Salt marshes are important for coastal nitrogen retention
- Plant-mediated sediment oxygenation plays a key role for the nitrogen turnover
- The impact of plant-mediated sediment oxygenation was under-studied
- The role of rhizosphere denitrification was not quantified
- Measuring rhizosphere processes without disturbing biomass and sediment conditions is a challenge

Measuring denitrification in a salt marsh rhizosphere

- Combining Push Pull and isotope pairing techniques

Coupled nitrification-denitrification in PIE marsh rhizospheres

Rhizosphere denitrification was quantified in the PIE marshes in fertilized and unfertilized marshes of the TIDE project.

Denitrification was measured down to 20cm

Denit Surface

Denit Rhizosphere

Koop-Jakobsen and Giblin (2010) - Limnology and Oceanography vol.55(2), pp789-802

Spatial heterogeneity: Biomass structure

Spatial heterogeneity: Biomass

The European Spartina story

Spartina alterniflora was unintentionally introduced to England, probably by ballast water from North Atlantic transport around 1850.

Spartina alterniflora hybridized with the European native cordgrass Spartina maritima (small cordgrass) forming the naturally derived and sterile hybrid Spartina × townsendii around 1870. The fertile Spartina anglica evolved by chromosome doubling out of Spartina × townsendii and was observed 25 years after the first appearance of this hybrid.

Spartina alterniflora

Spartina maritima

dodecaploid

The European Spartina story

Spartina anglica was deliberately planted out along the Wadden sea for coastal protection However, Spartina did not do established as well as expected until the last couple of decades

Nehring et al 2008

The European Spartina story

Spartina anglica is spreading in response to increased temperatures

Loebl et al 2006

Spatial heterogeneity: Biomass

Loebl et al 2006

The European – *Spartina* story

Since *S. anglica* was introduced by humans and it is now considered an alien invasive species. In the highly protected area of the Wadden Sea, which is a national park and UNESCO heritage site, Spartina is no longer welcome.

Spartina out competing Salicornia, Nehring et al 2008

Morphology of Spartina rhizospheres – structure

Wetland plant rhizosphere

143 rhizomes with aerenchyma in cross section

~6000 rhizomes with aerenchyma per m⁻² at -5 cm depth

First attemptKoop-Jakobsen... 2017

Granse, Titschlack, Ainouche, Jensen and Koop-Jakobsen "Subsurface aeration of tidal wetland soils: root-system structure and aerenchyma connectivity in Spartina (Poaceae)" In review STOTEN 2021

Spartina rhizosphere – biomass structure

In the Wadden sea Salt marshes there are two types of Spartina hybrids:

- Spartina townsendii (hexaploid)
- Spartina anglica (dodecaploid)

Chromosome doubling during the hybridization process is known to result structural changes in particular large aerenchyma formation.

Aerenchyma formation is often associated with high gas-transport capability. High connectivity of the aerenchym the prerequisite

Plant-mediated sediment oxygenation

Granse, Koop-Jakobsen (in review) STOTEN

Belowground biomass volume and aerenchyma volume

Granse, Koop-Jakobsen et al in review STOTEN 2021

Connectivity Analysis

Fragmentation and connectivity

Root systems structure and gas transport

Oxygen translocation from aboveground sources to roots and rhizomes require an unbroken aerenchyma compartment from the stems to roots.

CT-scanning was used to detect rhizome connectivity targeting larger rhizomes with a minimum diameter of 1.4 mm and 70 mm in length.

Fragmentation and connectivity

90 mm S. x townsendii (tidal flat)

90 mm

S. anglica (tidal creek)

90 mm

S. x townsendii (pioneer marsh)

90 mm S. anglica (pioneer marsh)

Spatiotemporal heterogeneity: Plant-mediated sediment oxygenation Spartina anglica

LED growth-light **Planar optode imaging** Plant Planar optode behind transparent front plate VisiSens TD imaging system 02 O_2 Map - PC + Software Modular imaging modalities -

LED Excitation light - Big area kit

Sediment

Roots

Rhizobox with

removable front plate

- Data recording and analysis

Prepairing rhizobox

Rhizosphere O₂-dynamics studied by Planar Optode

Rhizobox with S. anglica roots

Koop-Jakobsen et al 2015 Estuaries and coast

Dynamics of O₂, pH and CO₂ in marsh rhizospheres

Koop-Jakobsen et al 2018 Frontiers in Plant science

Dynamics of O₂, pH and CO₂ in marsh rhizospheres

Daily variation in O₂, pH and CO₂ around Spartina root. (periods: 12h light/ 12h dark)

Koop-Jakobsen et al 2018 Frontiers in Plant science

#1

1 cm

#1

#1

bulk sediment

Koop-Jakobsen et al 2018 Frontiers in Plant science

Oxygen and CO₂ dynamics in *Cyperus difformis*

Are plant-mediated sediment oxygenation and Root-mediated CO₂ uptake key flood-adaptive traits in *Cyperus difformis?*

Root-mediated

6

Photo from http://www.knowledgebank.irri.org/decision-tools/rice-doctor/rice-doctor-fact-sheets/item/flooding-or-submergence