

Hochschule Bremerhaven ___

Limitation by iron and manganese of phytoplankton communities in the Drake Passage.

Jenna Balaguer^{1*}, Florian Koch², Christel Hassler^{4,5}, Scarlett Trimborn^{1,3}

¹ Marine Botany, University of Bremen, Bremen, Germany -- ² University of Applied Science Bremerhaven, Germany -- ³ Alfred Wegener Institut, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany -- ⁴Swiss Polar Institute Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland -- ⁵Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Geneva, Switzerland -- *corresponding author: jenna.balaguer@awi.de

Context of study

- The Southern Ocean is a High Nutrient Low Chlorophyll (HNLC) region \rightarrow Trace metals and especially Iron (Fe) availability are the key control for community composition and biomass (Martin *et al.*, 1990; Boyd *et al.*, 2007; Sunda, 2012)
- Co-limitation of Fe with manganese (Mn) in the Drake Passage was suggested early in1990 (Martin *et al.*, 1990)
- Total dissolved Mn concentrations were found to be very low :
 - North Pacific (Coale, 1991)

Experiment design

2 indoor trace metals addition experiments conducted for 14 days during Polarstern 97 Expedition in 2016

Goal - Identify Fe-Mn co-limitation and assess phytoplankton sensitivity towards altered trace metal concentrations

- Southern Ocean : Drake Passage, Scotia and Weddell Sea lacksquare(Martin *et al.,* 1990 ; Buma *et al.,* 1991 ; Middag *et al.,* 2011; Middag *et al.,* 2013)
- Significant stimulation of the photosynthetic activity and biomass buildup after ash additions (including Mn) of phytoplankton assemblages across the Drake Passage were reported (Browning *et al.,* 2014)
- Only supply of Fe and Mn together led to optimal growth, photochemical efficiency and carbon production of the Antarctic diatom *Chaetoceros debilis* (Pausch *et al.,* 2019)

Can Mn act as a limiting factor with Fe?

As expected for HNLC region -> High macronutrients concentration $[N] > 23 \mu mol.L^{-1} // [P] > 1,5 \mu mol.L^{-1} // [Si] > 16 \mu mol.L^{-1}$

Results

Values represent the mean \pm SD (n=3). Statistical differences (ANOVA) for each parameter relative to the Control () and between +Fe and +FeMn treatment (#) are denoted by */# p < 0.01, **/## p < 0.001 and ***/## p < 0.0001.

36(8), 1865-1878.

Boyd PW, Jickells T, Law CS, Blain S et al. 2007. Mesoscale iron enrichment experiments 1993- 2005: Synthesis and future directions. Science 315: 612-

Browning TJ, Bouman HA, Henderson GM, Mather TA, et al. 2014. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys. Res. Lett., 41: 2851-2857. Buma, A. G., De Baar, H. J., Nolting, R. F., & Van Bennekom, A. J. (1991). Metal enrichment experiments in the Weddell-Scotia Seas: Effects of iron and

manganese on various plankton communities. Limnology and Oceanography,

Coale, K.H., 1991. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific. Limonology And Oceanography,

36(8), pp.1851–1864. Martin, J. H., Gordon, R. M., & Fitzwater, S. E. (1990). Iron in Antarctic waters. Nature, 345(6271), 156.

Martin, J. H., Fitzwater, S. E., & Gordon, R. M. (1990). Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochemical Cycles, 4(1), 5-

Middag, R. D., De Baar, H. J. W., Laan, P., Cai, P. V., & Van Ooijen, J. C. (2011). Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 58(25-26), 2661-2677.s
Middag, R., de Baar, H. J., Klunder, M. B., & Laan, P. (2013). Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co-limitation. Limnology and Oceanography, 58(1), 287-300.
Pausch, F., Bischof, K., Trimborn, S (2019) Iron and manganese co-limit growth of the Southern Ocean diatom Chaetoceros debilis. PLoS ONE
Sunda W G. (2012). Feedback interactions between trace metal putrients and

Sunda, W. G. (2012). Feedback interactions between trace metal nutrients and

phytoplankton in the ocean. Front. Microbiol. 3:204.

Ecological implications

Observe changes are not only explained by Fe \rightarrow Addition of both trace elements together promoted a shift in the species composition

- Maximum photosynthetic efficiency reached only when Fe and Mn were added together
- On the basis of the photophysiological signature of $F_{v/}F_m$ and $\sigma_{PSII} \rightarrow$ Fe limitation cannot be differentiated from a Fe-Mn co-limitation
- To go further \rightarrow Species identified in field will be tested under altered trace metal concentrations for a better understanding of their requirements