2021 ANNUAL CONFERENCE

29 JUNE - 8 JULY 2021

CAN POLAR FISH GET OUT OF BREATH?

Hypoxia tolerance and aerobic scope of Polar cod, Boreogadus saida

Felix C. Mark¹, Sarah Kempf¹, Carolin Neven¹, Guy Claireaux²

¹Integrative Ecophysiology, Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany. fmark@awi.de
²LEMAR, IUEM, Unité PFOM-ARN, Ifremer - Centre de Bretagne, Plouzané, France

Climate Change in Polar Oceans

Climate Change in Polar Oceans

- Arctic Ocean expected to rise by up to 1-2°C by 2100
- Ocean warming, acidification, deoxygenation...
- Warmer winters, less sea ice formation
- >20% of Arctic sea ice have melted -> freshening of seawater
- Stenothermal, cold-adapted organisms
- Atlantification of the Arctic Ocean is in progress...

Borealisation of Barents Sea, 2004-2012

Borealisation of Barents Sea, 2004-2012

Water Temperatures

cold water (blue) moving north

Fish Communities

 Arctic communities (blue) driven out of Barents Sea

Background – study animal

- Polar cod (Boreogadus saida), Gadidae
- core thermal habitat: -1.5 to +2°C
- Arctic circumpolar distribution
- polar key species
 - ideal model organism
 - understand physiological responses to global warming
 - predict future ecosystem scenarios

Study Area Svalbard - two contrasting fjord systems

Study Area Svalbard - two contrasting fjord systems

Study Area Svalbard - two contrasting fjord systems

 Most fjord systems on the West and North coast are very well mixed and relatively warm: Kongsfjorden

- Most fjord systems on the West and North coast are very well mixed and relatively warm: Kongsfjorden
- Only central fjord system, protected by landmasses and high fjord sills remain stratified: Billefjorden

8

- Most fjord systems on the West and North coast are very well mixed and relatively warm: Kongsfjorden
- Only central fjord system, protected by landmasses and high fjord sills remain stratified: Billefjorden
- ...albeit at the expense of decreased oxygen levels (75% air sat)

Boreogadus saida

Billefjorden

Billefjorden

Billefjorden

Polar marine fish and invertebrates have a very low hypoxia tolerance (if at all...)

Polar marine fish and invertebrates have a very low hypoxia tolerance (if at all...)

- very low metabolic rates
- good oxygen solubility in cold waters
- cold adapted low metabolic plasticity
- how hypoxia tolerant is Polar cod?

Boreogadus saida

Polar marine fish and invertebrates have a very low hypoxia tolerance (if at all...)

Experimental setup

Polar marine fish and invertebrates have a very low hypoxia tolerance (if at all...)

Experimental setup

static and swim tunnel respirometry @ 2°C

Polar marine fish and invertebrates have a very low hypoxia tolerance (if at all...)

Experimental setup

- static and swim tunnel respirometry @ 2°C
- start at air saturation, decrease of PO₂ in 10 and 5% steps until P_{crit}

Boreogadus saida

Polar marine fish and invertebrates have a very low hypoxia tolerance (if at all...)

Experimental setup

- static and swim tunnel respirometry @ 2°C
- start at air saturation, decrease of PO₂ in 10 and 5% steps until P_{crit}
- U_{crit} protocol in swim tunnel with 10 min steps of 0,15 BL/s at different PO₂

Boreogadus saida

Maximum metabolic rate (MMR) – LOL curve (limiting oxygen level)

(after Neill and Bryan 1991, Claireaux and Chabot 2016)

Maximum metabolic rate (MMR) – LOL curve (limiting oxygen level)

Aerobic Scope = MMR - SMR

(after Neill and Bryan 1991, Claireaux and Chabot 2016)

Standard metabolic rate (SMR) between 100 and 60% O₂ saturation

Standard metabolic rate (SMR) between 100 and 60% O₂ saturation

Standard metabolic rate (SMR) between 100 and 60% O₂ saturation

Maximum metabolic rate (MMR) from 100-5% O₂ saturation

Maximum metabolic rate (MMR) from 100-5% O₂ saturation

Aerobic scope

Aerobic scope

Aerobic scope stable down to 40% O₂ saturation

Carolin Neven

	2 °C	10 °C
Pcrit	5,9% air sat (21 μmol/l)	21,1 % air sat (55 μmol/l)
SMR	0,37 μmol/g*h	2,12 μmol/g*h
MMR	4,25 μmol/g*h	6,5 μmol/g*h
Aerobic scope (absolute)	3,5 μmol/g*h above 40% air sat	4 μmol/g*h above 70% air sat
Factorial aerobic scope	> 10	~ 3

- At 2 °C:
 - Polar cod is extremely hypoxia tolerant!
 - P_{crit} is very low at 5,9% O₂ saturation
 - aerobic scope can be maintained down to about 40% O₂ saturation
 - but no anaerobic capacity!

	2 °C	10 °C
Pcrit	5,9% air sat (21 μmol/l)	21,1 % air sat (55 μmol/l)
SMR	0,37 μmol/g*h	2,12 μmol/g*h
MMR	4,25 μmol/g*h	6,5 μmol/g*h
Aerobic scope (absolute)	3,5 μmol/g*h above 40% air sat	4 μmol/g*h above 70% air sat
Factorial aerobic scope	> 10	~ 3

- At 2 °C:
 - Polar cod is extremely hypoxia tolerant!
 - P_{crit} is very low at 5,9% O₂ saturation
 - aerobic scope can be maintained down to about 40% O₂ saturation
 - but no anaerobic capacity!
- After acclimation to 10 °C
 - similar findings, general reduction of hypoxia tolerance to values generally observed in gadoid fish (~20% air sat)
 - mainly SMR rises (no compensation),
 FAS decreases
 - still no apparent use of anaerobic capacity

	2 °C	10 °C
Pcrit	5,9% air sat (21 μmol/l)	21,1 % air sat (55 μmol/l)
SMR	0,37 μmol/g*h	2,12 μmol/g*h
MMR	4,25 μmol/g*h	6,5 μmol/g*h
Aerobic scope (absolute)	3,5 μmol/g*h above 40% air sat	4 μmol/g*h above 70% air sat
Factorial aerobic scope	> 10	~ 3

- At 2 °C:
 - Polar cod is extremely hypoxia tolerant!
 - P_{crit} is very low at 5,9% O₂ saturation
 - aerobic scope can be maintained down to about 40% O₂ saturation
 - but no anaerobic capacity!
- After acclimation to 10 °C
 - similar findings, general reduction of hypoxia tolerance to values generally observed in gadoid fish (~20% air sat)
 - mainly SMR rises (no compensation),
 FAS decreases
 - still no apparent use of anaerobic capacity

	2 °C	10 °C
Pcrit	5,9% air sat (21 μmol/l)	21,1 % air sat (55 μmol/l)
SMR	0,37 μmol/g*h	2,12 μmol/g*h
MMR	4,25 μmol/g*h	6,5 μmol/g*h
Aerobic scope (absolute)	3,5 μmol/g*h above 40% air sat	4 μmol/g*h above 70% air sat
Factorial aerobic scope	> 10	~ 3

 Even close to its T_{crit}, Polar cod still shows a remarkable hypoxia tolerance of 21% air sat. at 10°C, adding competitive capacity in deoxygenated fjord bottom waters

- At 2 °C:
 - Polar cod is extremely hypoxia tolerant!
 - P_{crit} is very low at 5,9% O₂ saturation
 - aerobic scope can be maintained down to about 40% O₂ saturation
 - but no anaerobic capacity!
- After acclimation to 10 °C
 - similar findings, general reduction of hypoxia tolerance to values generally observed in gadoid fish (~20% air sat)
 - mainly SMR rises (no compensation),
 FAS decreases
 - still no apparent use of anaerobic capacity

	2 °C	10 °C
Pcrit	5,9% air sat (21 μmol/l)	21,1 % air sat (55 μmol/l)
SMR	0,37 μmol/g*h	2,12 μmol/g*h
MMR	4,25 μmol/g*h	6,5 μmol/g*h
Aerobic scope (absolute)	3,5 μmol/g*h above 40% air sat	4 μmol/g*h above 70% air sat
Factorial aerobic scope	> 10	~ 3

- Even close to its T_{crit}, Polar cod still shows a remarkable hypoxia tolerance of 21% air sat. at 10°C, adding competitive capacity in deoxygenated fjord bottom waters
- Mechanisms still unclear:
 - 'normal' metabolic rates
 - very low anaerobic capacity

