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The Arctic Ocean features extreme seasonal differences in daylight, temperature, ice cover, and mixed layer depth. However, the
diversity and ecology of microbes across these contrasting environmental conditions remain enigmatic. Here, using autonomous
samplers and sensors deployed at two mooring sites, we portray an annual cycle of microbial diversity, nutrient concentrations and
physical oceanography in the major hydrographic regimes of the Fram Strait. The ice-free West Spitsbergen Current displayed a
marked separation into a productive summer (dominated by diatoms and carbohydrate-degrading bacteria) and regenerative
winter state (dominated by heterotrophic Syndiniales, radiolarians, chemoautotrophic bacteria, and archaea). The autumn post-
bloom with maximal nutrient depletion featured Coscinodiscophyceae, Rhodobacteraceae (e.g. Amylibacter) and the SAR116 clade.
Winter replenishment of nitrate, silicate and phosphate, linked to vertical mixing and a unique microbiome that included
Magnetospiraceae and Dadabacteriales, fueled the following phytoplankton bloom. The spring-summer succession of Phaeocystis,
Grammonema and Thalassiosira coincided with ephemeral peaks of Aurantivirga, Formosa, Polaribacter and NS lineages, indicating
metabolic relationships. In the East Greenland Current, deeper sampling depth, ice cover and polar water masses concurred with
weaker seasonality and a stronger heterotrophic signature. The ice-related winter microbiome comprised Bacillaria, Naviculales,
Polarella, Chrysophyceae and Flavobacterium ASVs. Low ice cover and advection of Atlantic Water coincided with diminished
abundances of chemoautotrophic bacteria while others such as Phaeocystis increased, suggesting that Atlantification alters
microbiome structure and eventually the biological carbon pump. These insights promote the understanding of microbial
seasonality and polar night ecology in the Arctic Ocean, a region severely affected by climate change.
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INTRODUCTION
Microbes are fundamental for the marine biosphere and have
been recognized as key components of global change biology [1].
Understanding the causes, complexity, and consequences of
microbial community dynamics significantly benefits from con-
tinuous observations in the physicochemical context. Ocean time
series are beginning to discern the temporal variability and
environmental drivers of marine microbiomes from diurnal to
decadal scales, but focusing on temperate and tropical waters to
date [2–6]. In contrast, continuous records from the polar oceans
are rare. Pioneering studies have identified variable numbers,
activities, and communities of polar microbes over time and space
[7–13] indicating considerable seasonal contrasts [14], yet with
limited temporal or spatial resolution.
Due to the extreme winter conditions and remoteness,

continuous observations covering the polar night have been
seldom accomplished through shipboard expeditions, or per-
formed in coastal areas [15, 16]. New autonomous technologies
are a key advance for year-round studies in polar waters, recently

providing the first annual records in the Arctic and Antarctic
Oceans [17, 18]. Such approaches can identify transition phases in
the seasonal interplay between ocean physics and the ecosystem,
for instance the onset of the spring bloom or the end of net
growth. In this regard, the polar night is of key interest, when
physical mixing [19, 20] and microbial activities [21, 22] replenish
nutrients to fuel the subsequent phytoplankton bloom. Arctic
phototrophic taxa are thought to overwinter in dormancy [23],
responding rapidly when light returns [15, 24], but recent
evidence suggests that primary production might already start
from late winter [18]. However, microbial dynamics in the open
Arctic Ocean during the polar night, especially in presence of sea
ice, remain largely unknown.
Here, using an array of autonomous samplers and sensors, we

portray microbial and oceanographic seasonality in the two major
hydrographic regimes of the Fram Strait. This main deep-water
gateway to the central Arctic Ocean harbors the northward,
relatively warm and ice-free West Spitsbergen Current (WSC) and
the southward, ice-covered and cold East Greenland Current
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(EGC), with some recirculation in central Fram Strait across the
marginal ice zone (Fig. 1a). Our study is embedded in the long-
term HAUSGARTEN observatory studying primary production,
benthopelagic coupling, and deep-sea ecology since the 1990s
[25, 26]. The recent deployment of autonomous devices within the
FRAM infrastructure program affords the unique opportunity for
continuous year-round records. These considerably expand
summertime observations of microbial diversity and activity in
the WSC and EGC [27–32], shaped by a combination of sea ice
cover, nitrate availability, and mixed layer depth [33, 34]. Annual
records also help to understand the biological responses to the
northward expansion of subarctic habitats, termed Atlantification,
which propagates through the entire food web [35].
Here we investigated how polar day and night shape

seasonality, expecting considerable differences between summer
and winter microbiomes in both regions. We hypothesized that
phototrophy- and heterotrophy-dominated periods in the WSC
harbor markedly dissimilar microbial communities, whereas sea
ice cover and polar water masses in the EGC sustain winter-type
communities year-round. Our study illuminates fundamental
principles of seasonality in Arctic microbial diversity, the ecological
importance of the polar night, and potential effects of Atlantifica-
tion. This evidence helps understanding natural variability and
human impact in a region under severe threat by climate change
[36, 37], with important implications for the present and future
Arctic Ocean.

MATERIALS AND METHODS
Sampling approach
Within the framework of the FRAM marine observatory (https://www.awi.
de/en/expedition/observatories/ocean-fram.html), Remote Access Sam-
plers (RAS; McLane, East Falmouth, MA) were deployed in July 2016 on
seafloor moorings F4-S-1 in the core WSC (79.0118 N 6.9648 E) and EGC-3
in the marginal ice zone (78.831 N−2.7938 E), constituting a fixed-point
Eulerian approach (Fig. 1a). RAS deployment depth was 30m (WSC) and 80
m (EGC; to avoid ice collisions). However, vertical movements in the water
column resulted in variable actual sampling depths, with a mean of 40m
and 90m in the WSC and EGC respectively (Supplementary Table 1). RAS

frames were equipped with 48 sterile sampling bags, each containing
700 µL of saturated (7.5% w/v) mercuric chloride solution. At each
programmed sampling event, two water samples of 500mL were
autonomously pumped an hour apart into individual sampling bags and
fixed by mixing with mercuric chloride (0.01% final concentration). Upon
recovery in August 2017, samples were immediately filtered through 0.22
µm Sterivex cartridges (Millipore, Burlington, MA) and frozen at –20 °C until
DNA extraction.

DNA extraction and amplicon sequencing
DNA was extracted using the PowerWater kit (QIAGEN, Germany)
according to the manufacturer’s instructions, and quantified using Quantus
(Promega, Madison, WI). 16S and 18S rRNA gene fragments were amplified
using primers 515F–926R [38] and 528iF–964iR [29] respectively. Libraries
were prepared according to the 16S Metagenomic Sequencing Library
Preparation protocol (Illumina, San Diego, CA). rRNA gene fragments were
sequenced using MiSeq technology in 2x300bp paired-end runs (Supple-
mentary Methods).

Sequence analysis
After primer removal using cutadapt [39], 16S and 18S rRNA reads were
processed into amplicon sequence variants (ASVs) using DADA2 v1.14.1
[40] and classified using taxonomy databases Silva v138 [41] and PR2 v4.12
[42] respectively (Supplementary Methods). After singleton removal, we
obtained on average 62,000 16S rRNA and 99,000 18S rRNA reads per
sample (Supplementary Table 2) sufficiently covering community compo-
sition (Supplementary Fig. 1). Sequences have been deposited in the
European Nucleotide Archive under accession numbers PRJEB43890 (16S
rRNA) and PRJEB43504 (18S rRNA) using the data brokerage service of the
German Federation for Biological Data (GFBio) in compliance with MIxS
standards.

Mooring and satellite data
Temperature, depth, salinity, oxygen concentration, and oxygen saturation
were derived from Seabird SBE37-ODO CTD sensors attached to the RAS,
confirming consistent properties of the two water samples per date.
Sensor measurements were averaged over 4 h around each sampling
event, allowing to determine the relative proportions of Atlantic Water
(AW) and Polar Water (PW) (Supplementary Methods). Relative proportions
of >80% were considered as pure Atlantic or Polar Water respectively; and
20–80% as mixture of both. Physical sensors were manufacturer-calibrated
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Fig. 1 Study area and oceanographic conditions. a Location of moored Remote Access Samplers in the East Greenland Current (EGC) and
the West Spitsbergen Current (WSC) of Fram Strait, indicated in blue and red respectively. The small red arrows illustrate recirculation of
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and processed in accordance with https://epic.awi.de/id/eprint/43137. For
chemical sensors (Sunburst SAMI-pH and Sunburst SAMI-CO2), the raw
readouts are reported. Mooring data are available under https://doi.
pangaea.de/10.1594/PANGAEA.904565. Sea ice and surface chlorophyll
concentrations, derived from the AMSR-2 and Sentinel 3A OLCI satellites,
were downloaded from the University of Bremen and the European Space
Agency respectively, considering grid points within a radius of 15 km
around the moorings.

Nutrient quantification
Nitrate, nitrite, phosphate, and silicate were quantified using a QuAAtro
Seal Analytical segmented continuous-flow autoanalyser following stan-
dard colorimetric techniques. Accuracy was evaluated using KANSO LTD
Japan Certified Reference Materials, with corrections applied as required.
Following quality controls, results deemed questionable or of bad quality
(quality flags 4 or 8 respectively) were excluded from further analyses
(labeled NA in Supplementary Table 1). Nutrient data are available under
https://doi.pangaea.de/10.1594/PANGAEA.936749.

Statistical evaluation
Data analysis was done in R v4.1.1 implemented in RStudio (https://rstudio.
com). In short, alpha-diversity and rarefaction curves were computed on
raw ASV counts using R package iNEXT [43], excluding metazoan,
chloroplast, and mitochondrial sequences. Subsequently, we only con-
sidered reads with ≥3 counts in ≥2 samples. Also, two samples from >200
m depth, when the RAS was pushed down by currents, were discarded to
omit deep-water signatures. NMDS was performed using Bray-Curtis
dissimilarities on Hellinger-transformed relative abundances. Seasons were
defined based on multivariate patterning of oceanographic parameters
and microbial community composition (Figs. 2, 3). Statistical differences

were computed by PERMANOVA or Kruskal-Wallis plus Bonferroni-
corrected Dunn’s post-hoc test as appropriate. Pairwise associations were
assessed by Spearman correlations. Major R packages used were tidyverse,
phyloseq, ampvis2, and PNWColors [44–47]. Code for reproducing work-
flow and figures is available at https://github.com/matthiaswietz/RAS-1617.

RESULTS AND DISCUSSION
The present study elucidates microbial and oceanographic
seasonality in the WSC and the EGC of Fram Strait using
automated, year-round high-frequency sampling (Fig. 1a). For this
purpose, seawater was autonomously collected and preserved
in situ using moored Remote Access Samplers (RAS) in weekly to
monthly intervals (Supplementary Table 1). In addition, sensors
continuously measured depth, temperature, salinity, and oxygen,
informing about oceanographic conditions including the propor-
tions of Atlantic Water (AW) and Polar Water (PW). After recovery,
water samples were subjected to amplicon sequencing of
microbial communities and quantification of inorganic nutrients.
Bacterial, archaeal, and eukaryotic amplicon sequence variants
(ASVs) were then evaluated in the oceanographic context,
including satellite-derived ice and chlorophyll concentrations
(Supplementary Table 1).

Major annual dynamics and drivers
Environmental conditions and microbial communities substan-
tially differed over the year, but also between the two sampling
sites (Fig. 1b, Supplementary Figs. 2, 3). At the WSC mooring,
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ice-free AW prevailed throughout the year, with water tempera-
tures between 3.0 and 7.2 °C at sampling depth (Supplementary
Table 1). Stratification in summer and mixing of the water column
in winter [48, 49] corresponded to a mixed layer depth between 0
(July/August) and 270 m (February). At the EGC mooring, deployed
at the edge of the marginal ice zone, water temperature varied
between –1.8 and 4.4 °C. Intermittent advection of AW resulted in
dynamic changes between polar (cold/ice-rich) and Atlantic
(warmer/low-ice) conditions (Fig. 1b). PW-dominated periods
showed a specific physicochemical and microbial signature,
whereas AW advection resulted in greater similarities to the
WSC (Supplementary Figs. 2, 3). This connection was strongest
between AW proportions and bacterial composition (Spearman’s
rho= 0.4; p= 0.00008). Hence, differences between the WSC and
EGC correspond to different hydrography, ice cover as well as
sampling depth. Earlier studies investigated the background of
these vertical and horizontal contrasts in hydrography [33] and
microbial composition [29].
This study focuses on the seasonal shifts in microbial commu-

nities. In both the WSC and EGC, communities markedly changed
in composition and diversity over the annual cycle (Fig. 2a),
illustrating dynamic microbiome structures year-round. Taxonomic
dissimilarities to the first sampling event peaked around the March
equinox before increasing again towards peak polar day (Fig. 2b),
indicating light-driven temporal recurrence [50]. Notably, bacterial
but not eukaryotic alpha-diversity correlated with daylight hours in
both regions (Spearman’s rho= 0.6, p < 0.006).

Microbial and environmental seasonality
We contextualized major patterns in microbial and physicochemical
variability (Figs. 2−4) to delineate the four seasons: spring (mid-
April to mid-June), summer (mid-June to late-July), autumn (August

to October), and winter (November to mid-April). Comparing all
sampling events in the WSC and EGC, community structures largely
clustered by season, with up to ~60% compositional dissimilarity to
the other seasons respectively. Nonetheless, region-specific sub-
clusters underlined the influence of hydrographic differences on
microbiome composition (Supplementary Fig. 4). Seasonal contrasts
in physicochemistry (Fig. 3a, Supplementary Table 3) and commu-
nity composition (Fig. 3b, Fig. 4, Supplementary Fig. 5a) were most
pronounced in the WSC, corroborated by season-specific correla-
tions betweenmicrobial taxa and environmental parameters (Fig. 5).
Weaker seasonality in the EGC corresponded to the combined
influence of deeper sampling depth, sea ice cover, and the
proportions of PW (Figs. 3b, 5). In line with recent metagenomic
evidence, these patterns indicate a considerable degree of
temporal specialization among Fram Strait microbiomes [51, 52],
although the abundant SAR11 and SAR86 clades (constituting on
average 25 ± 6% and 8 ± 3% of sequences, respectively) varied little
over the year (Supplementary Fig. 5a).
In the WSC, daylight and temperature were significant drivers of

eukaryotic variability (PERMANOVA, p < 0.001), whereas bacterial
composition varied mostly with temperature (PERMANOVA, p <
0.001), comparable to the global TARA microbiome study [53].
Bacterial alpha-diversity peaked at the end of polar night (Fig. 2b)
when water temperatures were lowest (Fig. 1b), underlining the
day-night shift as key transition event. ASVs associated with
Bacillariophyta (i.e. diatoms) and Flavobacteriales predominated
from spring to autumn (Fig. 2a), presumably corresponding to
metabolic interrelations through algal carbohydrates [54]. In
contrast, heterotrophic eukaryotes (foremost Syndiniales and
RAD-C radiolarians), archaea (Nitrosopumilales) and specific
bacterial taxa (e.g., Rhodospirillales) prevailed in winter, with
additional short-lived peaks of the diatom parasites Pirsonia and
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MAST-3 (Fig. 2a). We consider these taxa as “microbial recyclers”
persisting on detrital, inorganic or semi-refractory substrates. For
instance, as detailed below, Nitrosopumilales are involved in
ammonia oxidation and hence nitrate replenishment. The separa-
tion into photoautotrophy- and heterotrophy-driven periods of
production and recycling was reflected in nutrient concentrations,
with depletion in summer and replenishment during winter
(Fig. 1b, Supplementary Table 1).
In the EGC, changes between polar and Atlantic conditions

caused more variable community composition, turnover and

diversity. For instance, environmental conditions during AW
advection in January resembled those in August (Figs. 1b, 3a).
Daylight, temperature, hydrography and ice cover all contributed
to microbial community structuring (PERMANOVA, p < 0.05). This
explained why some taxa correlate with seasonally changing
environmental parameters, and some with polar or Atlantic
conditions (Fig. 5). Constant proportions of photoautotrophic
and heterotrophic eukaryotes year-round, with ~50% lower
diatom abundances than in the WSC (Fig. 2a, Supplementary
Fig. 5b), illustrated a more heterotrophic food web largely
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determined by sampling depth [55]. Sensor data available from
autumn 2017 onwards show that <1% of photosynthetically active
radiation reaches 80m, impeding primary production. Further-
more, stratification in the upper ~50 m is strong [33, 34]. Detected
phytoplankton sequences thus largely correspond to sinking cells
from surface blooms and ice [56, 57]. In this context, high ice cover
between May and July presumably repressed light availability and
hence surface primary production, while stimulating the down-
ward flux of ice-derived microbes. This combination of factors
contributed to the weaker seasonality and temporal lag in the
detection of certain phytoplankton taxa. For instance, Phaeocys-
taceae and Mediophyceae primarily occurred in summer/autumn
(EGC) compared to spring/summer (WSC) respectively (Fig. 4).
Nonetheless, our results indicate some overarching seasonal
principles, especially during AW recirculation to the EGC. In the
following, we present a detailed synopsis of seasonal patterns and
specific events in chronological order from autumn 2016 to
summer 2017.

Autumn
Autumn in the WSC was characterized by nitrate, silicate and
phosphate depletion and a specific community of Coscinodisco-
phyceae, Ceratiaceae, SAR116 and Rhodobacteraceae (Figs. 3, 4−6,
Supplementary Table 3). These patterns illustrate a post-bloom
state, with growing decay of summer phytoplankton [58] and
concurrent increase in mixotrophic dinoflagellates [59]. The
prevalence of Corethron, Rhizosolenia and Proboscia sequences
(Fig. 6b, Supplementary Fig. 5b) matched microscopic cell counts
[60], corroborating our amplicon-based results. Similar autumn

patterns in the Southern Ocean indicate bi-polar seasonal
preferences of Coscinodiscophyceae, likely facilitated by their ability
to overcome silicate limitation [61], use ammonium instead of
nitrate [17], and resist grazing [62]. Appearance of chytrid fungi
and Labyrinthulaceae at maximal nutrient depletion in October
(Supplementary Fig. 6) indicates saprophytic activity on decaying
algae [63, 64]. Up to 13-fold higher abundances of Cand.
Puniceispirillum, other SAR116 members as well as Ascidiaceihabi-
tans, Amylibacter and Planktomarina (Fig. 6b) were probably fueled
by DMSP and senescence compounds from decaying phytoplank-
ton [65, 66]. Detection of Luteolibacter from the Rubritaleaceae
family (Fig. 5b) mirrored autumn in coastal Svalbard [67] and
suggested ongoing particle formation, typical processes in ageing
phytoplankton [68]. Overall, the average mixed layer depth of 17m
(Supplementary Table 3) suggests that microbial signals partially
correspond to cells sinking from the shallow productive layer.
Fragilariopsis co-occurred in the WSC and the EGC during early

autumn (Fig. 5b). We hypothesize that this typically ice-associated
taxon was transported to the WSC by advection, considering the
higher proportion of PW during this time (Fig. 6c). This event also
covaried with higher pH, with potential metabolic effects on
prevalent taxa such as Pseudo-nitzschia [69]. Otherwise, the EGC
displayed quite different dynamics. Peaking diatom abundances
characterized autumn as major photosynthetic period (Fig. 4,
Supplementary Fig. 5b). We attribute this delay to the low ice
cover (Fig. 1b, Supplementary Table 3) enhancing light penetra-
tion and stratification [70]. This combination presumably allowed
an autumn surface bloom, becoming subsequently detectable at
80m once phytoplankton cells sank.
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Winter
The WSC and EGC shared elevated abundances of Magnetospir-
aceae, Nitrospinaceae, the Arctic97B-4 clade and unclassified
Gammaproteobacteria (Figs. 4, 5b), although their winter-
summer contrasts were stronger in the WSC (average Kruskal-
Wallis significance p ≤ 0.003 vs. 0.02 in the EGC). Furthermore,
Dadabacteriales appeared from February (WSC) or late March
(EGC) (Fig. 6) and might contribute to the recycling of organic
matter [71]. Fundamental regional differences were the complete
switch to heterotrophy in the WSC, compared to ice-related
microbial signatures including persistent diatom signals in
the EGC.

Heterotrophic winter communities of the WSC. The increase of
Syndiniales, parasitic recyclers of phytoplankton biomass [72], in
November marked the onset of winter (Supplementary Fig. 6).
Bacterial diversification and nutrient replenishment (Figs. 2, 6)
followed the breakdown of summer stratification, with maximal
mixing of the water column in January (Fig. 6a). At this time,
heterotrophic eukaryotes constituted ~70% of sequences and
nutrient standing stocks were restored (Figs. 2a, 6a). The parallel
decline of phototrophs to a combined relative abundance of <5%
(Supplementary Fig. 5b) indicated complete mixing as one central
turning point of the annual cycle [73, 74]. Notably, this also
illustrates that only a small “seed bank” overwintered to initiate
the following spring bloom. The upward transport of microbes
during mixing likely enriched the community’s metabolic potential
[75]. For instance, appearance of deep-water RAD radiolarians [76]
possibly contributed to the recycling of phytoplankton biomass.
Stratification potentially also influenced the temporal succession
of different Syndiniales lineages over winter (Supplementary
Fig. 6).
Winter bacteria and archaea likely contributed to nutrient

replenishment. The co-occurrence of Nitrosopumilaceae and
Nitrospinaceae (Figs. 4, 6b), the major drivers of marine nitrifica-
tion, suggests an interactive niche with initial oxidation of
ammonia or urea by Nitrosopumilaceae and subsequent nitrite
oxidation by Nitrospinaceae [77]. In addition, the Magnetospiraceae
family (Rhodospirillales) might recycle nitrogen by fixation and
contribute to a yet underestimated nitrogen source [78, 79].
Furthermore, metaproteomic data indicate that Magnetospiraceae
perform CO2 fixation and thiosulfate oxidation [13]. Overall,
genomic and metabolic evidence suggests consistent roles of
Nitrosopumilaceae, Nitrospinaceae, and Magnetospiraceae during
winter in both Arctic and Antarctic Oceans [80, 81]. Further
potential recyclers are the Pirellulaceae and Woeseiaceae through
ammonia oxidation and denitrification respectively [82, 83]. The
winter niche of Defluviicoccales was potentially fueled by stored
glycogen or unsaturated aliphatics [84, 85]. Overall, the prevalence
of diverse heterotrophic and chemoautotrophic taxa illustrates the
polar night as important recycling phase before the spring bloom.
Furthermore, the winter microbiome is not static, but responsive
to certain stimuli such as mixing.

An ice-related microbial loop in the EGC. Unique to the EGC was
the persistence of raphid-pennate diatoms and flavobacteria
throughout winter (Fig. 4), contrasting their light-correlated
seasonality in the WSC. We attribute these signals to ice melt
and release of cells into the water, following intermittent water
temperatures of >2 °C during AW advection in January (Fig. 1b).
The diatoms Bacillaria and Naviculales, together with Polarella and
Chrysophyceae flagellates, constituted up to 15% of sequences
between February and March (Fig. 6b, Supplementary Fig. 7a). All
of these taxa occur in sea ice and the underlying water [56, 86],
possibly constituting an ice-related microbial loop. Ice algae
produce copious amounts of storage polysaccharides and
extracellular polymeric substances, fueling bacterial growth in
the underlying water [70, 87]. Bacillaria exudates are a valuable

nutrient source for bacteria [88], as is chrysolaminarin from
diatoms and Chrysophyceae [89]. Concurrently, Chrysophyceae
potentially also influenced organic matter cycling by preying on
bacteria [90]. A Flavobacterium ASV constituted ~10% between
January and March (Fig. 6b, Supplementary Fig. 7a), sharing >99%
sequence similarity with Flavobacterium frigidarium, a psychro-
philic genus with laminarinolytic abilities [91]. Detection of related
sequences on ice-algal aggregates [92] supports a presumed niche
of this ASV through utilization of ice-algal carbohydrates. Overall,
such ice-fueled processes might explain signatures and activities
of specific microbial taxa in the warming Arctic [93, 94].
An EGC-specific winter bacterium was the SAR406 clade,

peaking at 9% sequence abundance in March and remaining
detectable into summer. In addition, the frequently ice-associated
genus Colwellia increased from February to abundances of >20%
in mid-June (Figs. 6b, 7a). Both SAR406 and Colwellia markedly
correlated with ice cover (Spearman’s rho= 0.7, p < 0.0004),
suggesting that ice cover sustained these winter-type taxa into
summer. As SAR406 might participate in sulfur cycling [95], loss of
sea ice might diminish the recycling of inorganic substrates.

Spring and summer
Microbial succession in the WSC. Once daylight reached ~20 h in
mid-April, the microbial system returned to a phototrophic state.
The winter-spring transition occurred within few weeks, compar-
able to warmer Pacific waters [96]. The average mixed layer depth
of >200m until mid-June (Supplementary Table 3) likely facilitated
strong phytoplankton growth. Eukaryotic composition changed
ahead of bacterial communities, whose structure changed within
four weeks after the primary photosynthetic peak (Supplementary
Fig. 6). We observed three distinct bloom stages, featuring
phototrophic pioneers (Phaeocystis and Chaetoceros) followed by
araphid-pennate diatoms (Grammonema) and centric diatoms
(Thalassiosira) (Fig. 7, Supplementary Fig. 8). A comparable three-
stage bloom has been observed a year before in nearby
Kongsfjorden [97]. The replacement of eukaryotic heterotrophs
by photoautotrophs (Fig. 3b, Supplementary Fig. 6) suggests
considerable energy fluxes around the winter-spring transition,
with possible effects on benthopelagic coupling [98–100]. The
early detection of Aurantivirga and SAR92 (Supplementary Fig. 6)
matched observations during the Antarctic spring bloom [17],
indicating comparable temporal niches at both poles. The
Grammonema abundance of >50% in May coincided with peaking
chlorophyll, potentially fueling intermittent peaks of Formosa,
Polaribacter, and NS clades from family Flavobacteriaceae (Fig. 7a),
comparable to diatom-flavobacteria relationships in temperate
and Antarctic waters [54, 101].
Thalassiosira was specific for summer and the final bloom stage,

when nitrate and phosphate declined and oxygen concentrations
peaked (Fig. 7). The average mixed layer depth in summer was 23
m (Supplementary Table 3); hence, the RAS sampled just below
the productive layer. The relative increase of mixotrophic
flagellates (e.g., Gyrodinium and Woloszynskia) and concurrently
decreasing chlorophyll indicates that trophic structure shifted
towards heterotrophy. Increase of the roseobacter Amylibacter
(formerly NAC11-7) to 15% sequence abundance emphasized the
beginning transition to the autumn post-bloom where Rhodo-
bacteraceae dominated (Fig. 4). We hypothesize concurrent
generation of detritus particles, given the typical termination of
diatom blooms by aggregation [68] and the association of
Amylibacter with related particles [102]. Furthermore, the appear-
ance of ectoparasitoid dinoflagellates such as Chytriodinium
indicates beginning parasitism on diatoms and larger metazoans
[103].

Absence of major phototrophic peaks in the EGC. Diatom
abundances resembled those during winter (Supplementary
Fig. 5b), with threefold lower chlorophyll concentrations than
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the WSC peak (Fig. 7b). Fragilariopsis and Chaetoceros together
only constituted <10% of eukaryotic sequences, although
nutrients were not limiting (Fig. 7b, Supplementary Table 3).
Furthermore, Phaeocystis only reached 9% and hence a quarter of
WSC proportions. These observations corroborate the influence of
sampling depth, i.e. that phytoplankton sequences merely mirror
preceding surface dynamics and export flux. This constant input of
detrital material presumably also explains why Syndiniales
prevailed over summer (Fig. 4), together with major peaks of
the mixotrophs Chromidina (Ciliophora) and Gyrodinium (Dino-
flagellata) that constituted up to 35% of eukaryote sequences.
Chromidina is normally considered an animal parasite, suggesting
yet undescribed free-living niches in the marginal ice zone. The
prevalence of mixotrophy was underlined by the earlier detection
of Woloszynskia, and twofold lower flavobacterial abundances
compared to the WSC (Figs. 2a, 4b). Moreover, the typical
phytoplankton associates OCS116, Lentimonas and Luteolibacter
[104, 105] were only detected from mid-summer, following EGC-
specific Cryomorphaceae and Marinomonas peaks (Fig. 7a). The
presence of ice cover over summer, likely resulting in continuous

input of ice-derived substrates, indicates further differences in
trophic structure. Ice substrates presumably fueled the major peak
of Colwellia, which can efficiently grow on organic matter from sea
ice [70].

ECOLOGICAL CONCLUSIONS
This first assessment of microbial seasonality in the Fram Strait by
autonomous sampling identified marked seasonal contrasts,
distinct transition events, as well as dynamic variability linked to
polar vs. Atlantic conditions. The characterization of bloom stages,
ephemeral abundance peaks, and polar night characteristics
promotes the understanding of the drivers and timescales of
microbial seasonality in ice-covered and ice-free Arctic waters.
These insights yield a number of fundamental ecological
conclusions, with implications for the present and future Arctic
Ocean.

1. We identified major dynamics and drivers of microbiome
structure in the Arctic Ocean: marked seasonal contrasts
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related to daylight, temperature and stratification in the
euphotic zone of the ice-free WSC, compared to weaker
seasonality related to ice cover, proportions of polar/Atlantic
water masses and sampling depth in the EGC.

2. Dynamics in the WSC illustrate key principles of microbial
seasonality in the ice-free, open Arctic Ocean: Phaeocystis as
daylight pioneer followed by pennate diatoms and max-
imum chlorophyll concentrations when mixed layer depth
was still >200m (spring); declining nitrate and shift towards
centric diatoms and mixotrophic flagellates upon increasing
stratification (summer); minimum nutrients and highest
temperatures when Coscinodiscophyceae diatoms and oligo-
trophic bacteria prevailed (autumn); and chemoautotrophic
microbial recyclers and nutrient replenishment during
vertical mixing (winter). Comparable observations have
been made in a year-round study using Niskin-based
sampling [11], illustrating that autonomous techniques
provide results consistent with traditional approaches while
considerably increasing temporal resolution. Moreover, our
results remarkably overlap with a RAS-based study in the
open Southern Ocean, which also reports Coscinodiscophy-
ceae in autumn, Aurantivirga and SAR92 as first bacterial
responders, and Amylibacter at the summer-autumn transi-
tion [17]. This suggests fundamental “bi-polar” patterns of
microbial seasonality, only discernable by autonomous
sampling.

3. The EGC exhibited combined effects of depth, ice cover and
variable polar/Atlantic water masses, with a strong hetero-
trophic signature year-round. Seasonality and similarities to
the WSC scaled with the extent of AW advection. At a
maximum speed of 0.25 m s−1 [106], water from the WSC
can reach the EGC within ~2 weeks, underlining how quickly
hydrographic regimes can change and influence community
composition. Polar-dominated conditions extended the
duration and abundance of winter taxa such as SAR406
and Colwellia, with surface phytoplankton growth mainly
detected during low ice in autumn. Periods of low ice
coincided with higher abundances of Phaeocystis, Thalassio-
sira, OCS116 and Aurantivirga (Supplementary Fig. 7b).
These dynamics are sentinels of how the future EGC might
shift from an ice- to a light-driven habitat [107], presumably
affecting the fate of phytoplankton blooms and the
biological carbon pump [57, 108, 109]. Elevated photo-
synthesis and resulting higher amounts of organic sub-
strates might accelerate the microbial loop [110], inducing
the remineralization of ice-derived organic matter at the
expense of chemoautotrophic metabolisms [70, 111].

4. Atlantification of the Arctic may enhance early blooms of
Phaeocystis [15, 27] and alter biogeochemical fluxes,
considering the associated production of TEP that serves
as microbial substrate, microhabitat and downward vehicle
of organic matter. In case stratification becomes stronger
and more permanent with increasing temperatures, winter-
time convection might diminish and deep-water “recycling
taxa” disappear from the winter assemblage, with yet
unknown ecological consequences.

In conclusion, the demonstrated seasonal microbiome
dynamics and drivers contribute to the understanding of Arctic
ecosystem functioning over polar day and night. This evidence is
particularly relevant considering the anticipated impact of climate
change on polar regions.
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