

Global chlorophyll a concentrations of **phytoplankton functional** types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature products – EOF-PFT algorithm v2

> H Xi¹, SN Losa^{1,2}, A Mangin³, P Garnesson³, M Bretagnon³, J Demaria³, MA Soppa¹, OHF d'Andon³, A Bracher^{1,4}

¹ Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research ² Shirshov Institute of Oceanology, Russian Academy of Sciences ³ACRI-ST

⁴ Institute of environmental Physics, University of Bremen

Xi et al. (2021) https://doi.org/10.1029/2020JC017127

Motivation

- Within the frame of a collaborative **project OLCI-PFT (2018-2020)** https://www.awi.de/en/science/climate-sciences/physical-oceanography/main-research-focus/ocean-optics/projects/olci-pft.html
- Project Goal:

Globally retrieving multiple phytoplankton functional types (PFTs) from multisensor ocean color products and Sentinel-3 OLCI data

- Long-term consistent PFT monitoring on both global and regional scales
- Support more accurate ecosystem modelling

Objectives of the current study

I. Improve the previously developed algorithm for retrieving phytoplankton functional types (PFT) (EOF-PFT v1 \rightarrow v2)

II. Provide **per-pixel uncertainty** for the satellite PFT products

III. Extend EOF-PFT approach to different ocean color sensors to **obtain continuous PFT observations from space**

Data sets

- Matchups between satellite reflectance (Rrs), in situ PFT data, and sea surface temperature (SST)
- Merged OC products SeaWiFS-MODIS-MERIS (2002-2012), MODIS-VIIRS (2012present), and OLCI data (2016-present), CMEMS OSTIA SST products

Algorithm

5

• Re-tuned PFT Algorithm EOF-PFT v2.0

Flowchart of EOF-PFT v2.0 based on SeaW-MOD-MER merged products

Input data for model establishment:

Collocated

- In situ phytoplankton functional types (PFT) data
- Satellite Remote sensing reflectance (Rrs)
- Sea surface temperature

Method

- Empirical orthogonal function (EOF) analysis in Rrs
- Regression model for PFT: In situ PFT as a function of EOFs derived from Rrs and SST

Input data for application to satellites

- Satellite Rrs products (global)
- Satellite SST products (global)

Final Output

- Total chlorophyll concentration (TChl-a, total biomass)
- 6 different PFTs: diatoms, haptophytes etc.
- 2 fractions of picophytoplankton

Uncertainty sources and error propagation

a, *u*, and SST in Eq. (3) are not correlated with each other, the uncertainty of the PFT is presented as:

$$\sigma_{y} = \sqrt{\sigma_{y(Rrs)}^{2} + \sigma_{y(SST)}^{2}} = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial y}{\partial Rrs_{i}}\right)^{2} \sigma_{Rrs_{i}}^{2} + \sum_{i=0}^{n} \left(\frac{\partial y}{\partial a_{i}}\right)^{2} \sigma_{a_{i}}^{2} + \left(\frac{\partial y}{\partial SST}\right)^{2} \sigma_{SST}^{2}}$$

$$\sigma_{y(a)}^{2} + \sigma_{y(SST)}^{2} = \sum_{i=0}^{N} \left(\frac{\partial y}{\partial a_{i}}\right)^{2} \sigma_{a_{i}}^{2} + \left(\frac{\partial (y)}{\partial a_{sst}}\right)^{2} \sigma_{a_{sst}}^{2} + \left(\frac{\partial (y)}{\partial SST}\right)^{2} \sigma_{SST}^{2}$$

 $\sigma_{y(Rrs)}$ is not as straightforward as the other two uncertainty sources due to nonlinear transformation from the Rrs spectra. Monto Carlo simulation is performed.

Results

Statistical results of EOF-PFT v2.0 versus v1.0

	N	MDPD (%)	RMSD (mg m ⁻³)	R ²	MDPDcv (%)	RMSDcv (mg m ⁻³)	R ² cv		
EOF-SST hybrid model EOF-PFT v2.0									
TChl-a	483	31.55	1.08	0.82	31.51	1.14	0.81		
Diatoms	345	56.25	0.92	0.77	57.71	0.98	0.76		
Dinoflagellates	295	54.00	0.89	0.62	54.68	0.71	0.60		
Haptophytes	454	42.88	0.16	0.71	43.63	0.17	0.69		
Green algae	323	51.57	0.10	0.53	52.96	0.11	0.51		
Prokaryotes	438	43.79	0.09	0.42	45.44	0.09	0.38		
f-Prokaryotes	441	47.35	0.21*	0.70	47.72	0.21*	0.68		
Fraction-derived prokaryotes	434	42.13	0.09	0.46					
Prochlorococcus	204	42.60	0.02	0.24	44.97	0.02	0.17		
f-Prochlorococcus	210	41.52	0.09*	0.62	43.99	0.09*	0.57		
Fraction-derived Prochlorococcus	198	39.90	0.02	0.24					
Original EOF-based algorithm EOF-PFT v1.0									
TChl-a	394	37.41	1.24	0.76	37.08	1.27	0.75		
Diatoms	306	73.70	1.21	0.65	74.74	1.29	0.63		
Dinoflagellates	272	55.32	0.93	0.62	57.29	0.72	0.59		
Haptophytes	387	47.16	0.22	0.64	48.62	0.24	0.61		
Green algae	262	55.81	0.11	0.51	56.26	0.11	0.48		
Prokaryotes	367	53.70	0.13	0.15	55.08	0.13	0.11		
Prochlorococcus	142	39.65	0.02	0.24	42.68	0.02	0.18		

Examples of regressions between observed (x-axis, obs.) and predicted (y-axis, pred.) PFT quantities using EOF-PFT v2.0

PFT products from EOF-PFT v2.0

Satellite-derived estimates of annual (2011) mean surface TChl-a and Chl-a concentrations of six PFTs

PFT uncertainty from EOF-PFT v2.0

Per-pixel uncertainty (in natural logarithmic scale) of the annual mean of 2011 for the satellite-derived PFT quantities from EOF-PFT v2.0

Green algae Chl-a uncertainty

1.5 0.5

f-derived prokaryotes Chl-a uncertainty

f-derived Prochlorococcus Chl-a uncertainty

Uncertainty comparison

- TChl-a uncertainty derived from EOF-PFT v2.0 is in general lower than the OC-CCI standard product
- First time the per-pixel PFT uncertainty description on a global scale

Extended versions v2.1 and v2.2

• EOF-PFT v2.1 for MOD-VIR merged products

• EOF-PFT v2.2 for OLCI products

EOF-PFT v2.1

Application to MOD/VIIRS 201801

EOF-PFT v2.2

Application to OLCI 201801

Product consistency

EOF-PFT v2.0 versus 2.1

10

m⁻³)

(mg I

σ

MODIS-VIIRS

10

MODIS-VIIRS derived (mg m^{-3})

0.01

0.1

0.01

	Slope	Intercept	R ²
Diatoms	1.16	0.37	0.96
Dinoflagellates	1.68	1.36	0.82
Haptophytes	0.98	0.04	0.93
Green algae	1.41	0.72	0.78
Proka_converted	0.98	0.08	0.86
Prochlo-converted	1.08	0.35	0.41

Statistics of type II Regression with uncertainty accounted between MOD/VIR and SeaW/MOD/MER monthly PFTs for Jan 2012.

List of EOF-PFT algorithm versions

	EOF-PFT version	Date of development	Applicable sensor(s)	Input data	Product time frame	Remarks
EOF-based algorithm	v1.0	Dec 2019	SeaWiFS/MODIS/MERIS merged product	9-band merged R_{rs}	2002-2012	In situ data from Losa et al. (2017)
	v1.1	Jan 2019	MODIS/VIIRS merged product	9-band merged R _{rs}	2012-present	Losa et al. (2017) and own cruises
	v1.2	Jan 2019	Sentinel 3 OLCI-A product	11-band OLCI R _{rs}	2016-present	In situ data from own cruises
EOF-SST hybrid algorithm	v2.0	Mar 2020	SeaWiFS/MODIS/MERIS merged product	9-band merged R _{rs} , SST	2002-2012	Updated pigment data
	v2.1	May 2020	MODIS/VIIRS merged product	9-band merged R _{rs} , SST	2012-present	Updated pigment data
	v2.2	May 2020	Sentinel 3 OLCI-A product	11-band OLCI Rrs, SST	2016-present	Updated pigment data
SST-separated hybrid algorithm	v3.0	Jul 2020	SeaWiFS/MODIS/MERIS merged product	9-band merged R _{rs} , SST	2002-2012	Updated pigment data

 Data products available in CMEMS Under "Ocean Products" at <u>https://marine.copernicus.eu/</u>

Updated version available online in May 2021

Summary and Outlook

- Improved satellite PFT products are provided using updated algorithms EOF-PFT v2
- Per-pixel uncertainty of the satellite PFT products is assessed in detail by accounting for errors from input data and model parameters
- Extendable to other ocean color satellite products

Outlook:

17

- Continuous time series of global PFT long term monitoring
- **PFT shifting and trend** under the changing climate

For more detailed information please check on the publication by Xi et al. 2021: https://doi.org/10.1029/2020JC017127

Acknowledgements

- **OLCI-PFT** Project (ACRI-AWI Offer #209-180104)
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project number 268020496—TRR 172, within the Transregional Collaborative Research Center ArctiC Amplication: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)³ (Project C03)
- Federal Agency for Scientific Organizations (FASO) Russia (theme 0128-2021-0014)
- Marc Taylor for original EOF script, Sonja Wiegmann and all previous and current Phytooptics team members who participated in the past cruises for data collection and analysis
- All the scientists and crew who were involved in the global HPLC pigment data collection and analyses for making their data publicly available
- NASA, ESA, EUMETSAT for the SeaWiFS, MODIS, MERIS and OLCI data
- GlobColour program for the L3 merged products
- CMEMS for the sea surface temperature products
- Ocean-Colour Climate Change Initiative (OC-CCI) program for global chlorophyll-a data products