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Abstract
The temporal dynamics of dissolved organic matter (DOM) are inherently linked with the functioning of

aquatic ecosystems. Because DOM represents a complex mixture of millions of different compounds, the statistical
analysis of DOM dynamics poses a huge challenge. Here, we present a statistical approach based on hierarchical
clustering of time series that groups DOM compounds with synchronous dynamics. We applied this approach to
time series of Fourier-transform ion cyclotron resonance mass spectrometry data of DOM sampled over a
period of 26 months near Helgoland, an island in the Southern North Sea. We identified three DOM clusters,
which represented a total of 1392 different molecular formulae and showed distinct chemical properties and
noticeably compound matches within the PubChem database. Correlations of the three DOM clusters with
abundance data of prokaryote and phytoplankton species and with environmental parameters provided con-
sistent indications on the potential origin of the clustered compounds. The first cluster integrated terrestrial
DOM originating from riverine discharge reaching Helgoland waters. The second cluster was attributed to
DOM related to phytoplankton and microbial activity, whereas the third cluster was interpreted as rep-
resenting the marine refractory DOM background. Accordingly, while further partitioning divided each of the
first two clusters into five sub-clusters with distinct temporal dynamics and molecular characteristics, the
third cluster persisted as a stable feature. Applying a purely mathematical approach, we thus confirmed the
differential dynamics of individual DOM compounds and compound groups and showed that temporal
dynamics of dissolved molecules are linked to their origin and transformation history.

Dissolved organic matter (DOM) represents one of the
largest active carbon pools on earth (700 Gt) comparable in
size to the Earth’s atmospheric CO2 or all land plant bio-
mass (Hedges 1992; Hansell et al. 2009). The amount of dis-
solved organic carbon (DOC) is more than 200 times higher
than that of organic particulate carbon in the ocean, under-
pinning its significance in the microbial loop, for the

remineralization of nutrients and the marine food web
(Azam 1998; Hansell and Carlson 2015). An improved
understanding of DOM dynamics is thus essential for a
complete comprehension of the global carbon cycle
(Hansell and Carlson 2015). DOM in the ocean does not
stem from a single source but is a mélange of substances
produced by marine organisms and terrestrial compounds
introduced by rivers (e.g., Raymond and Bauer 2001; Moran
et al. 2016). Processes such as photochemical alteration at
the sea surface further modify the composition of DOM
(Stubbins and Dittmar 2015). Eventually, this leads to
highly complex mixtures consisting of thousands of differ-
ent substances with fluctuating occurrence and concentra-
tions. This molecular diversity of DOM poses major
analytical challenges, not only for the correct determination
and distinction of the different compounds of DOM but
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also for devising appropriate methods for a statistical analy-
sis of DOM data.

With regard to the precise identification of compounds, ana-
lytical methods for DOM characterization have improved a lot
over the last decades. Fourier-transform ion cyclotron resonance
mass spectrometry (FT-ICR-MS) has established itself as state-of-
the-art analytical method in marine DOM geochemistry
(Nebbioso and Piccolo 2013). FT-ICR-MS and subsequent soft-
ware tools enable the synchronous detection of exact masses and
identification of thousands of molecular formulae within the
complex DOM mixtures (D’Andrilli et al. 2010; Riedel and
Dittmar 2014). The software tools applied for processing of FT-
ICR-MS data have improved over the last years as well (Toli�c
et al. 2017; Leefmann et al. 2019; Merder et al. 2020a). Due to
these improvements, the follow-up statistical data analyses of the
ever-growing data sets have become the new bottleneck for the
interpretation of extensive DOM molecular data sets, such as
long-term time series. Ideally, statistical data analyses are not
only able to identify the dynamics of DOM compounds but also
to shed light on the factors controlling these dynamics. To
achieve this goal, the dynamics of DOM compounds must be
linked to factors that potentially affect DOM composition, that
is, abundances of prevailing organisms, especially microbial spe-
cies, and environmental parameters.

As DOM compounds are both produced and consumed by
marine biota, classical regression models, including general-
ized linear or additive models, are not appropriate because
they presume a clear-cut separation into response and explan-
atory variables which is challenged by feedback mechanisms
in the complex interaction network. Furthermore, it is
unfeasible to interpret regression results for each of the thou-
sands of formulae independently. There are several approaches
tackling these issues (Kujawinski et al. 2016; Lucas et al. 2016;
Osterholz et al. 2016b), all of them focusing on the collective
compositional change instead of exploring dynamics of every
compound on its own. For example, beta-diversity indices
such as Bray–Curtis dissimilarity (Bray and Curtis 1957) yield
a single value that describes compositional differences of two
samples. Such approaches are indispensable tools to identify
the processes that affect DOM composition (Osterholz
et al. 2016a; Hawkes et al. 2018); however, they bear the risk
of losing valuable information because the compounds that
predominantly cause the change are often not easily identifi-
able. Moreover, it is difficult to separate true compositional
changes from left over noise or contaminations remaining in
the data sets. Furthermore, compounds that are produced and
consumed at high rate, and as such drive microbial life in the
ocean, may be present in seawater at very low concentration.
These compounds may largely be hidden behind an invariable
background of compounds. As such they are not appropriately
assessed by statistical approaches that condense rich molecular
data into bulk parameters.

Here, we introduce a new approach combining correlation
(synchronous variation), hierarchical clustering and machine

learning techniques applied to highly complex time series
data. The time series analyzed in this study is unique with
respect to its multivariate dimensions and, to our knowledge,
one of the longest and best-resolved molecular DOM time
series existing to date. It is based on FT-ICR-MS data of DOM
sampled between March 2009 and May 2011 from surface
waters off Helgoland Island in the German Bight. We included
complementary time-series on abundances of prokaryotes and
phytoplankton species (Wiltshire et al. 2010; Teeling
et al. 2012), to identify covariations of microbial communities
and DOM composition. The data set was further amended by
time series of environmental variables, which provide neces-
sary information on abiotic conditions that directly or indi-
rectly affect DOM dynamics.

Selected aspects of DOM dynamics such as turnover of
labile substrates and production of refractory compounds
(Amon et al. 2001; Ogawa et al. 2001; Osterholz et al. 2015) or
photodegradation (Vähätalo and Wetzel 2004; Stubbins and
Dittmar 2015) have been studied in short- and long-term labo-
ratory incubations. To understand DOM dynamics in natural
environments, recent studies characterized and interpreted
changes in molecular DOM composition along spatial gradi-
ents, for example, salinity or ocean currents (Flerus
et al. 2012; Jørgensen et al. 2014; Osterholz et al. 2016b). In
most cases, such spatial gradients also involve temporal scales,
for example, aging of water masses, but environmental studies
explicitly covering temporal variation of DOM components
are scarce and limited in duration (Lucas et al. 2016) or in
temporal and analytical resolution, like the many studies that
report seasonal variations of optical DOM characteristics
(e.g., Galletti et al. 2019).

The main goals of this study were (1) the identification and
characterization of groups of DOM compounds with similar
temporal dynamics through hierarchical cluster analysis of
multivariate time series and (2) the interpretation of the tem-
poral dynamics of the identified clusters in the context of
environmental conditions and co-occurring microbial com-
munities in order to assess potential sources and transforma-
tion histories of the respective DOM compounds.

Materials and methods
Study area, sampling, and data sets

All samples were obtained at Helgoland Island, which is
located in the Southeastern North Sea ~ 50 km offshore in the
German Bight. The sampling station Helgoland Roads
(“Kabeltonne”) is located (54�11.30N, 7�54.00E) between the
main island and the minor island “Düne” (Fig. 1). Surface
water (~ 2 m water depth) was sampled between March 2009
and May 2011, up to twice a week. DOM was solid-phase
extracted (SPE; Dittmar et al. 2008). In brief, 2 L of filtered
(Whatman GF/F), acidified seawater (pH 2; HCl, p.a.) was
processed via 1 g of PPL resin (Agilent) and the SPE-DOM was
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eluted with 6 mL of methanol (MS grade) after desalting with
acidified ultrapure water.

Physical and chemical parameters were routinely deter-
mined as part of the Helgoland Roads time series (Wiltshire
et al. 2010; Wiltshire 2013; Wiltshire et al. 2015), including
temperature, Secchi depth, salinity as well as concentrations
of silicate, phosphate, nitrate, nitrite, and ammonium. Chlo-
rophyll a (Chl a) concentrations were determined by two
independent methods, one based on chlorophyll fluores-
cence measured with an AlgaeLabAnalyser (bbe
Moldaenke), whereas the other quantified chlorophyll in
the particulate (< 0.7 μm) fraction via high-pressure liquid
chromatography (Wiltshire et al. 2010; Teeling
et al. 2012). Concentrations of DOC and total dissolved
nitrogen (TDN) were quantified after high-temperature cat-
alytic combustion with a Shimadzu TOC analyzer. Accu-
racy of the DOC and TDN determinations was tested with
help of the deep-sea reference provided by Dennis
A. Hansell (University of Miami). Dissolved organic

nitrogen (DON) concentrations were calculated as the dif-
ference of TDN and dissolved inorganic nitrogen (DIN:
nitrate, nitrite, and ammonium) concentrations.

Abundance data of 95 phytoplankton taxa were obtained
from the Helgoland Roads time series database (Wiltshire
2013). For comparison with the microbial (prokaryote) com-
munity, we used a freely available data set (Fuchs et al. 2016)
that originated from the same location as the DOM data set
and covered the period from January 2009 to June 2012. Sam-
pling details and the structure of the microbial data are out-
lined in previous studies (Teeling et al. 2012; Fuchs
et al. 2016). In brief, the microbial (prokaryote) community
composition was analyzed using catalyzed reporter deposition
fluorescence in situ hybridization of formaldehyde fixed cells
on 0.2-μm pore-sized filters, and reported as relative abun-
dances of individual taxa (Fuchs et al. 2016; Supporting Infor-
mation Table S1). Occurrence and relative abundances of
individual taxa follow distinct succession patterns (Teeling
et al. 2012; Fuchs et al. 2016).

Fig. 1. Location of the study site Helgoland Roads indicated by red symbol (“Kabeltonne”; 54�11.30N, 7�54.00O) in the German Bight (North Sea).
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Molecular characterization of DOM
For analysis on the solariX 15 Tesla FT-ICR-MS (Bruker

Daltonics), DOM extracts were diluted with ultrapure water
and methanol (MS grade) to yield a DOC concentration of
20 mg C L�1 and a methanol to water ratio of 1 : 1 (v/v).
Instrument settings were as specified in Seidel et al. (2014).
For each mass spectrum, 500 scans were accumulated in the
scanning range of 150–2000 Da. The instrument was exter-
nally calibrated with arginine clusters, and spectra were inter-
nally calibrated with a list of more than 100 known CxHyOz

molecular formulae covering the mass range of the samples to
achieve a mass error of < 0.1 ppm. A reference SPE-DOM sam-
ple from North Equatorial Pacific Intermediate Water
(NEqPIW; Green et al. 2014) was frequently analyzed to con-
trol for instrument stability.

FT-ICR-MS data processing
Data generated by FT-ICR-MS analyses were processed with

ICBM-OCEAN, an open platform for DOM mass spectra
processing (Merder et al. 2020a). Analytical noise was defined
based on the method detection limit and removed (Riedel and
Dittmar 2014). The resulting data were used for a sample wise
generalized additive model-based recalibration along the mass
axis to reduce the systematic error (Merder et al. 2020a).
Masses were aligned across all spectra resulting in improved
mass precision and consequently subsequent molecular for-
mula attribution (Merder et al. 2020b). For molecular formula
attribution, we included the following elements (abundance
ranges): C (1–100), 13C (0–1), H (1–200), O (0–100), 18O (0–1),
N (0–6), 15N (0–1), S (0–3), 34S (0–1), P (0–3), and searched for
matches in a tolerance range of 0.5 ppm. From these data, we
filtered molecular formulae that were isotope verified and used
them for further analysis. Isotope verified means that the molec-
ular formula is accompanied by at least one isotopologue with a
correct intensity ratio deviance (Merder et al. 2020b) using toler-
ances of � 1000 permille from natural abundance for Δ13C,
Δ18O, Δ15N, and Δ34S. If for a single mass more than one for-
mula suggestion was isotope verified, we chose the molecular for-
mula with the largest homologous series network, considering
CH2 and O (for details, see Merder et al. 2020b). Intensities were
normalized by dividing each intensity by its respective sample
mean intensity. Normalization was done as the last step of raw
data processing, as removal of selected formulae can have a large
impact on the calculation of the mean.

Hierarchical cluster analysis of DOM time series
All statistical analyses were performed with the Software

“R” (R Core Development Team 2017) using the packages
“vegan,” “cluster,” “ggplot2,” “party,” and “visNetwork.”

For cluster analysis, only DOM molecular formulae that
were detected in at least 50% of the investigated time points
were considered. For a given pair of molecular formulae, “Spe-
arman’s rank correlation” (rs) was computed from related
intensity time series and used as a similarity metric. We

preferred Spearman’s rank correlation coefficient over
Pearson’s correlation coefficient because it is more robust and
not restricted to linear correlations. Molecular formulae were
ranked by aligning the formula-wise z-scored intensities in
descending order. The z-scoring (subtracting the mean and
dividing by the standard deviation) has no effect on the rs cal-
culation as it is a monotonic, hence, order preserving transfor-
mation but it brings formulae intensities to a comparable scale
(Fig. 2). It should be emphasized that rs was based only on
contemporaneous variation, and lagged synchrony of time
series is not recognized by this approach.

Subsequent hierarchical clustering was based on the
resulting distance matrix, collecting all pairwise distances
computed according to 1 – rs as rs is a measure of similarity. In
hierarchical clustering, pairs of molecular formulae with the
smallest distance in the distance matrix form clusters on a first
level of the hierarchy. On higher hierarchical levels, smaller
clusters merge into larger clusters building a tree-like structure
often referred to and visualized as dendrograms, until all
molecular formulae are agglomerated into a single cluster.
Where the branches of two clusters merge into a bigger cluster
is defined by the linkage method chosen for the cluster algo-
rithm. Here, we applied the average linkage algorithm (Hahs-
Vaughn 2016) that merges two clusters when their average
distance falls below a rising threshold. A detailed description
of hierarchical clustering and the most common linkage algo-
rithms can be found in Legendre and Legendre (2012). In the
final step, we decided on the optimal number of clusters or, in
other words, defined where to cut the dendrogram, which is a
crucial step for the resulting cluster composition and interpre-
tation. For this purpose, we used the silhouette value
(Rousseeuw 1987) that is calculated for each molecular for-
mula as the average ratio of distances to members of its own
cluster and the distance to members of its nearest-neighbor
cluster. This silhouette value is a measure of how well a molec-
ular formula matches its own cluster in relation to the nearest-
neighbor cluster. For every molecular formula, the silhouette
value can range from � 1 to 1. A negative value indicates a
bad attribution to a cluster. For every possible number of clus-
ters “k,” we calculated the average silhouette value (ASV) of all
molecular formulae and chose the number of clusters “k” that
maximizes the ASV, often referred to as silhouette coefficient
for further analysis (Legendre and Legendre 2012).

A consensus time series was calculated for every cluster as
the median intensity of all molecular formulae of that cluster
for every point in time, respectively. For this, we included
only time series of molecular formulae that had higher silhou-
ette values than the ASV of the respective cluster. That way we
obtained a better representation of the pattern, because the
remaining subset was restricted to components that were most
representative for the cluster. Conversely, the excluded com-
ponents that were more distant from the cluster centroid than
average were more likely to be derived from a unique origin
like point sources or represent artifacts like contaminations.
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Therefore, we decided not to include those for aggregating a
consensus cluster time series.

We compared chemical properties across clusters using
the above-determined final cluster representatives, consider-
ing the relative number of nitrogen, sulfur, and phosphorus
of the molecular formulae, O/C, H/C ratios as well as aver-
age masses and the modified aromaticity index AImod (Koch
and Dittmar 2006). In addition, we assessed the overlap of
molecular formulae of the DOM clusters with molecular for-
mulae from the NEqPIW reference sample, representing refrac-
tory deep ocean DOM, with t-peaks (Medeiros et al. 2016),
which are molecular formula markers of terrigenous DOM,
and with molecular formulae assigned to the “island of
stability,” which is also a measure for refractory marine DOM
(Lechtenfeld et al. 2014).

Furthermore, we tested if the clusters resulting solely from
synchronous dynamics can statistically be separated based on
their chemical characteristics alone. For this, we used non-
parametric classification trees (Hothorn et al. 2006) that, based
on permutation tests, maximize separation of the response
(here cluster assignments) with binary splits of the exploratory

variables (here chemical parameters). In a nutshell, classifica-
tion trees follow a top-down approach. They take a predictor
variable and test for the best threshold of this predictor to split
the data into two subsets. It recursively does this for each pre-
dictor and selects predictor and threshold that maximize
between-cluster separation. For both subsets resulting from
this split, the procedure is repeated until the optimal separa-
tion of clusters is reached. Classification trees have the advan-
tage that they are nonparametric, but they are
computationally expensive and tend to overfit when the trees
become too large, so further splitting needs to be restricted
based on reproducible and objective criteria. Here we stopped
growing of the tree, if an additional split was statistically not
significant (p ≥ 0.001) based on the test described in Hothorn
et al. (2006), so that the additional two resulting subsets
would not improve the classification anymore.

Finally, we tested if the clusters found by maximizing
ASV can be further divided into representative sub-clusters.
For this, we only included the cluster representative formu-
lae, which we considered a denoised representation of the
cluster compounds. We again applied hierarchical

Fig. 2. Time series and clustering results of the Helgoland Roads molecular DOM time series. (a) Reconstructed average mass spectrum of Helgoland
Roads DOM time series data, (b) unrooted dendrogram of the DOM time series (separation indicates the classification into three clusters: CL1 = cluster
1, CL2 = cluster 2, CL3 = cluster 3), (c) z-scored DOM time series of FT-ICR-MS signal intensities for 2109 molecular formulae, (d) the ASV for the range
of cluster numbers 2–20.
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clustering with average linkage on this reduced formula
subset, but this time did not determine the optimal cluster
number by maximizing ASV. In contrast, we intended to
split the original clusters into as many sub-clusters as possi-
ble. As during this process very small clusters emerge, for
example, the segregation of a single formula from a cluster,
we only interpreted clusters with a minimum of 20 members
(molecular formulae) as valid sub-clusters.

Correlation of DOM clusters with environmental and
microbiological data

To reveal potential connections of DOM clusters with
environmental conditions and microbial communities, we
performed correlation analyses, again using Spearman’s
rank correlation coefficient between the consensus DOM
cluster time series and time series of environmental param-
eters, and prokaryote and phytoplankton abundances,
including only pairwise complete data. Statistical signifi-
cance of pairwise correlation coefficients was assessed via
permutation tests, including the Benjamini–Hochberg cor-
rection for multiple testing (Benjamini and Hochberg 1995)
for the final p-values. The Benjamini–Hochberg correction
(control of false discovery rate) is less conservative than the
classical Bonferroni correction (control of family-wise error
rate). The results were visualized inside a special network
assembly related to association networks in microbiology
(Steele et al. 2011), but here with the DOM clusters for-
ming the network centers. Prokaryote, phytoplankton, or
environmental parameters significantly correlating with
one or more of the clusters were linked radially to the
respective cluster center. Because of its appearance, we refer
to this network representation as “dandelion plot” in the
following (https://icbm.de/komplsyst/helgoland-network).
A two-dimensional version is displayed in a colored correla-
tion matrix. We did not estimate correlations including
time lags (i.e., the cross-correlation function) because of
the unevenly distributed and in some cases even missing
sampling points. Moreover, we abstained from a general
additive model (Wood 2017) for the reconstruction of miss-
ing data, as the highly fluctuating concentrations even
between consecutive sampling points potentially introduce
unpredictable bias.

Ranking and database search of cluster representative
DOM compounds

For each cluster, we ranked the molecular formulae by their
silhouette value to assess how representative each formula is
for the respective cluster (Supporting Information Data S1,
Table S2 [Top 100]). For all cluster representative molecular
formulae, we searched for matches with substances in the
PubChem database (Kim et al. 2016) based on identical molec-
ular formulae (https://pubchem.ncbi.nlm.nih.gov). We are
aware that each molecular formula can represent multiple iso-
mers with very different structures. Consequently, this

database analysis was purely exploratory and, therefore, resul-
tant statements are tentative. We also did not assess possible
bias within the database toward substances in pharmaceutical
or industrial usage or substances found within cultured or lab-
oratory species. Therefore, we did not include a detailed statis-
tical analysis of the molecular formula matches and instead
only name noticeable accumulation of certain substance clas-
ses in relation to the identified DOM clusters.

Results
Time series of DOM molecular formulae

In total, we attributed 11,110 different molecular formulae
to masses detected by FT-ICR-MS in any of the time series
samples. After excluding all assigned isotopologues (formulae
containing 13C, 15N, 34S, 18O) that are already represented by
their respective 12C, 14N, 32S, 16O formulae and including only
formulae detected in at least 50% of the time series samples,
the final data set consisted of 2109 molecular formulae. The
reconstructed mass spectrum (Fig. 2a) for the 2109 molecular
formulae covered a mass range between 164 and 668 Da with
a bell-shaped envelope of the intensity pattern (averaged
intensities over time) typically observed for natural marine
DOM (Zark and Dittmar 2018).

None of the considered molecular formulae contained
phosphorus, 24% contained at least one nitrogen atom, and
7.5% included sulfur. The mean AImod was 0.3 with an inter-
quartile range of 0.2, indicating that most of the molecular
formulae represented aliphatic compounds (Koch and
Dittmar 2006). The number of molecular formulae detected at
the different time points was between 2050 and 2100, with
less than 5% deviation and few distinct exceptions
(Supporting Information Fig. S1a). Most of the 2109 molecular
formulae were ubiquitous, that is, detected at all time points.
Molecular formulae that were detected less frequently had
generally low signal intensities (Supporting Information
Fig. S1b,c).

The complete z-scored time series of all 2109 molecular
formulae showed strong fluctuations even on a timescale of
days (Fig. 2c). There was no overall visible trend. Instead,
there was an accumulation of molecular formulae with
increased intensities during certain time periods, especially
in spring and autumn as well as in mid-summer 2009,
which coincided with the occurrence of phytoplankton
blooms (Teeling et al. 2012).

Clustering of DOM compounds
Based on Spearman’s Rank correlation distance, the ASV

was maximum for separation into three clusters (Fig. 2b,d)
although the maximum value was low (ASV = 0.28). This is
mainly due to the fact that during the hierarchical clustering
all molecular formulae were assigned to one of the clusters,
and therefore, all clusters included some molecular formulae
with temporal dynamics strongly deviating from the cluster
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mean. The three identified DOM clusters (cluster 1, cluster
2, and cluster 3) contained a similar number of molecular for-
mulae each (n = 835, n = 613, and n = 661, respectively), so
no cluster was overrepresented or underrepresented. Restric-
tion to those molecular formulae that had higher silhouette
values than the ASV of the respective cluster reduced the size
of the clusters to 546, 420, and 426 for cluster 1, cluster 2, and
cluster 3, respectively. Thus, the temporal dynamics represen-
ted by the three clusters (Fig. 3) integrated 66% of the 2109
molecular formulae, suggesting the existence of few major reg-
ulators that determine the bulk of DOM dynamics.

Most of the molecular formulae considered in the three
confined clusters were detected at all time points (Supporting
Information Fig. S2). Omnipresence of these compounds is
consistent with the interpretation that few major regulators
control their dynamics. The top 100 molecular formulae per
cluster, ranked according to the silhouette value, are listed in

Supporting Information Table S2, and the complete data of all
1392 formulae is supplied in Supporting Information Data S1.

The three clusters were clearly distinguishable based on the
chemical composition of the contained molecular formulae
(Fig. 4). The differential mass distribution is obvious from
visual inspection of the reconstructed average mass spectra of
the three clusters (Supporting Information Fig. S3). The molec-
ular formulae of each of the three clusters were also clearly dis-
tinguishable by their elemental ratios, as visualized in their
respective van Krevelen diagrams (Fig. 5). The separation of
the molecular formulae into the three clusters that was purely
based on their synchronous dynamics was largely reproduced
by statistical analyses based on the associated chemical charac-
teristics (Fig. 6). The classification tree based on the explana-
tory variables mass, O/C, and H/C ratios achieved a clear and
statistically significant distinction between the three clusters.
Around 90% of molecular formulae with masses < 432 and O/C

Fig. 3. Time series clusters reconstructed from Helgoland Roads molecular DOM time series data. Dotted red lines represent median values at each time
point, colored areas highlight the related interquartile range. Calculations are based on molecular formulae exhibiting silhouette values above their
respective cluster average (cluster 1 [CL1] = 546 of 835 formulae, cluster 2 [CL2] = 420 of 613 formulae, cluster 3 [CL3] = 426 of 661 formulae). Uneven
tick marks on x-axis indicate sampling points.
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Fig. 4. Chemical properties of the three molecular DOM clusters. (a) Distribution of the modified aromaticity index (AImod) presented by violin plots
and boxplots, (b) same as (a) but for molecular mass, (c) percentage of molecular formulae containing nitrogen and sulfur, (d) relative frequencies of
number of nitrogen atoms observed for nitrogen-containing molecular formulae. CL1 = cluster 1, CL2 = cluster 2, CL3 = cluster 3.

Fig. 5. Van Krevelen diagrams of the three molecular DOM clusters. Gray points depict all 1392 molecular formulae contained in any of the three clus-
ters, colored symbols represent elemental composition of compounds of the respective cluster (CL1 = cluster 1, CL2 = cluster 2, CL3 = cluster 3).
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ratios < 0.36 were attributed to cluster 2. Almost 100% of
molecular formulae with masses > 432 and H/C ratios > 1.05
were members of cluster 3. Cluster 1 contained almost 80% of
molecular formulae with masses < 432 and O/C > 0.36 and
almost 100% of molecular formulae with masses > 432 and
H/C < 1.05. The additional chemical characteristics AImod, N,
and S were tested for improved separation, but did not yield
any additional statistically significant split of the decision tree.

For all clusters, there was a considerable but differential overlap
with molecular formulae detected in the DOM reference sample
from the North Pacific (cluster 1 = 60%, cluster 2 = 75%, cluster
3 = 90%). Molecular formulae assigned to t-peaks (Medeiros
et al. 2016) and the “island of stability” (Lechtenfeld et al. 2014)
showed characteristic distributions over the three clusters
(Supporting Information Fig. S4). The three clusters were also
characterized by distinct correlation patterns with environmental
and microbiological parameters (Fig. 7; Supporting Information
Fig. S5, Data S2). Further partitioning of the three clusters yielded
a total of 11 sub-clusters, each characterized by distinct chemical
properties (Fig. 8; Supporting Information Figs. S6, S7).

Discussion
Cluster properties and relation to environmental and
microbiological parameters
Cluster 1 related to terrestrial origin

Cluster 1 was mainly characterized by highly oxygenated
unsaturated molecular formulae and low H/C ratios of

nitrogen-bearing molecular formulae (Fig. 5). It was also the
only cluster including molecular formulae with AImod ≥ 0.67
(Fig. 4), providing unequivocal evidence for the presence of
condensed aromatic structures (Koch and Dittmar 2006). The
predominantly highly unsaturated to aromatic character of
the molecular formula in cluster 1 suggests a terrestrial origin
(Koch and Dittmar 2006; Schmidt et al. 2009; Lu et al. 2015).
A potential terrestrial origin of this cluster is consistent with
the highest overlap with t-peaks (Medeiros et al. 2016;
Supporting Information Fig. S4) that represent terrigenous
molecular formulae. Cluster 1 also shared a considerable num-
ber of molecular formulae that form the “island of stability”
(Lechtenfeld et al. 2014; Supporting Information Fig. S4),
which has been proposed to represent the refractory core of
marine DOM.

Compared to the other two clusters, cluster 1 included by far
the highest number of sulfur-containing compounds, account-
ing for a proportion of 15% of all molecular formulae in cluster
1 (Figs. 4,5). Potential explanations for the high relative abun-
dance of sulfur-containing compounds include introduction of
sulfurized DOM from sulfidic environments (Schmidt
et al. 2009; Gomez-Saez et al. 2017), excretions from algae
(Cunha and Grenha 2016), release of cell wall components of
archaea (Deatherage and Cookson 2012), wastewater input, and
agricultural discharge (Gonsior et al. 2011; Wagner et al. 2015).
Over 98% of the sulfur-containing molecular formulae in clus-
ter 1 had an O/S ratio ≥ 4, which has been suggested as indica-
tive for organosulfates enriched in humic-rich river DOM

Fig. 6. Classification tree results dividing the three molecular DOM clusters based on chemical characteristics. A decision tree is a machine learning tech-
nique that uses binary splits of chemical parameters to optimally distinguish the DOM clusters (CL1 = cluster 1, CL2 = cluster 2, CL3 = cluster 3). The
number “n” corresponds to the total number of molecular formulae, the y-axis in the barplot represents relative abundances, numbers on the branches at
each split represent the threshold to split the data into two distinct subsets.
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(Lu et al. 2015). In general, riverine DOM is not enriched in sulfur
compared to ocean DOM (Riedel et al. 2016), but anthropogenic-
ally impacted rivers show enrichments in sulfur-containing for-
mulae (Wagner et al. 2015). For the Delaware estuary, increasing
concentrations of dissolved organic sulfur were observed along a
transect from the ocean to the river (Osterholz et al. 2016a). In
tidally influenced coastal areas such as the coastal North Sea,
freshwater inflow is often associated with input from sulfidic pore
water discharging from submerged sediments that is enriched in
sulfur-containing DOM (Seidel et al. 2014).

The sampling area around Helgoland represents a transition
zone between coastal waters influenced mainly by the rivers
Elbe and Weser and the marine waters of the North Sea
(Hickel 1998; Fig. 1). Rivers are a well-recognized contributor
of terrestrial DOM to the ocean, reflected in decreasing DOC
concentrations as well as characteristic changes in the molecu-
lar DOM composition along increasing salinity gradients
(Abdulla et al. 2013; Medeiros et al. 2015; Osterholz
et al. 2016b). The strongest support for a terrestrial origin of
cluster 1 is provided by the highly statistically significant neg-
ative correlation with salinity and the highly statistically sig-
nificant positive correlation with DOC (Fig. 7, https://icbm.
de/komplsyst/helgoland-network), reflecting that molecular
formulae of cluster 1 were enriched at time points when fresh-
water inflow associated with increased DOC concentrations
was high. In addition, cluster 1 was negatively correlated with
concentrations of inorganic nitrogen species (nitrate, nitrite,
DIN) while it was positively correlated with DON and Chl a,
indicating that times of increased river discharge coincided
with characteristic features of phytoplankton blooms, such as
depletion of nutrients, enrichments of DON and Chl a.

Several phytoplankton taxa were positively correlated with
cluster 1 (Fig. 7, Supporting Information Fig. S5). Most of
these positive correlations were shared with cluster 2, indicat-
ing that the occurrence of these specific taxa coincided with
river water inflow (cluster 1) and the conditions controlling
cluster 2. There was no shared correlation with cluster 3; in
contrast, all taxa positively correlating with cluster 1 showed
no or anticorrelation with cluster 3. Unique positive correla-
tions for cluster 1 were observed for the diatoms
Asterionellopsis glacialis, Ditylum brightwellii, and Bacillaria
paxillifera. All these species are considered tolerant to salinity
fluctuations or reduced salinity (Rijstenbil et al. 1989). Cluster
1 did not show strong correlations with any of the prokaryotic
taxa included in this time series study, only a moderate antic-
orrelation with the heterotroph Gram-negative Marinoscillum
(phylum Bacteroidetes) targeted as CYT-734. Anticorrelation
of cluster 1 with this marine genus is consistent with a terres-
trial origin of this cluster. A likely reason why we did not
detect positive correlations with any of the prokaryotes is that
the data set on prokaryote abundance mainly includes typical
marine taxa, while characteristic terrestrial organisms are not
covered systematically (Fuchs et al. 2016; Supporting Informa-
tion Table S1).

Possible substances included in the PubChem database that
matched the molecular formulae in CL 1 include hydrox-
ycinnamic acids, for example, C13H12O9 (caftaric acid), C13H12O8

Fig. 7. Heatmap of Spearman correlations between time series of DOM
clusters and phytoplankton, prokaryote, and environmental data. Nonsig-
nificant (p > 0.05) correlations are displayed in white. All taxa or environ-
mental parameters not included in this plot exhibited no significant
correlation after multiple testing corrections. CL1 = cluster 1,
CL2 = cluster 2, CL3 = cluster 3. Exact numbers of displayed data are
summarized in Supporting Information Data S2.
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(coutaric acid, caffeoylmalic acid), and C14H14O9 (fertaric acid),
which are found in grapes and plant tissues (Vrhovšek 1998).
Other molecular formulae like C16H18O9 (chlorogenic acid) are
intermediates in lignin biosynthesis (Boerjan et al. 2003). Fur-
thermore, cluster 1 exhibited matches with secondary metabo-
lites of vascular plants like the flavonoids catechin (C15H14O6),
quercetin (C15H10O7), or kaempferol (C15H10O6). We are aware
that each molecular formula integrates thousands of potential
structural isomers and we do not claim that the detected molecu-
lar formulae represent their respective matches in the database.
Nonetheless, the fact that many of the database matches are
related to higher plants is consistent with the proposed terrestrial
origin of cluster 1.

Cluster 2 related to phytoplankton blooms and microbial
activity

All molecular formulae of cluster 2 had an AImod < 0.67
(Fig. 4a), indicating the absence of compounds with purely
condensed aromatic structures. Compared to cluster 1, the
molecular formulae of cluster 2 were less oxygenated and
more saturated (Fig. 5). Cluster 2 included the highest propor-
tion of nitrogen-containing molecular formulae (Fig. 4) and a
significantly higher number (p < 0.001, permutative
resampling [10,000 repetitions]) of peptide-like molecular

formulae (Rivas-Ubach et al. 2018) compared to the other two
clusters (cluster 1 = 30, cluster 2 = 55, cluster 3 = 30). The
more aliphatic character and the relative enrichment in
molecular formulae containing one or more nitrogen atoms
are characteristic for freshly produced phytoplankton DOM
(Medeiros et al. 2015). A recent autochthonous origin of clus-
ter 2 is supported by the small overlap with terrestrial com-
pounds represented by the t-peaks (Medeiros et al. 2016) and
with molecular formulae forming the “island of stability” of
refractory marine compounds (Lechtenfeld et al. 2014;
Supporting Information Fig. S4).

During phytoplankton blooms, inorganic nutrients typi-
cally become depleted and this is reflected in negative corre-
lations of cluster 2 with concentrations of all dissolved
nitrogen species (nitrate, nitrite, DIN, TDN; Fig. 7). Cluster
2 showed positive correlations with DOC, DON, and Chl
a concentrations, providing strong evidence for a relation
of cluster 2 with phytoplankton blooms and the associated
release of microbial-derived DOM. Cluster 2 was also corre-
lated to temperature, which is consistent with a predomi-
nant occurrence of plankton blooms and enhanced
microbial activity during warmer seasons.

In support of a planktonic origin, cluster 2 was the cluster
with the highest number of correlations with individual

Fig. 8. Van Krevelen diagram of refined cluster partitioning (splitting) of the three molecular DOM clusters into 11 clusters. Gray points depict all 1392
molecular formulae contained in any of the clusters (same as for the three clusters; Fig. 5), colored symbols represent affiliation with the three original
clusters (CL1 = cluster 1 [1–5], CL2 = cluster 2 [6–10], CL3 = cluster 3 [11]).
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phytoplankton taxa (Fig. 7). Positive correlations unique for
this cluster included the diatoms Cerataulina pelagica,
Chaetoceros didymus, Chaetoceros minimus, Actinocyclus sp.,
Leptocylindrus danicus, and Lauderia annulata, as well as the
dinoflagellates Amphidinium/Katodinium/Gyrodinium and the
toxic Dinophysis acuminata. We note that cluster 1 also
showed positive correlations with phytoplankton species
(Fig. 7; Supporting Information Fig. S5), but under different
environmental conditions. This might indicate that an alter-
nation of phytoplankton subcommunities can take place at
Helgoland influenced by river discharge. Cluster 2 was also
the cluster with by far the most positively and statistically
significant correlations with the abundance of specific pro-
karyotes (Fig. 7, dandelion plot: https://icbm.de/komplsyst/
helgoland-network), including those targeted by Sar86-1245
(Gammaproteobacteria), NOR5-730 (Gammaproteobacteria),
Pla46 (Planctomycetes), ARCH915 (Archaea), and
FORM181A (Flavobacteria). Some of these bacteria have
been observed during and after phytoplankton blooms at
the same sampling site off Helgoland, when microbial com-
munities exhibit distinct succession of individual taxa
(Teeling et al. 2012).

The molecular formulae most representative for the tempo-
ral dynamics of cluster 2 match PubChem entries of plant hor-
mones, for example, C15H20O4 which might correspond to
abscisic acid, a growth-inhibiting phytohormone found not
only in plants but also in microalgae and macroalgae (Stirk
et al. 2009; Guajardo et al. 2016). Molecular formulae of inter-
mediates of abscisic acid biosynthesis like C15H20O3 (abscisic
aldehyde) and C15H22O3 (xanthoxin) were all highly ranked
matches for cluster 2, as well as potential transformation prod-
ucts C15H20O5 (phaseic acid) and C15H22O5 (dihydrophaseic
acid). The nitrogen-containing molecular formulae C12H13NO2

that was detected at lower signal intensities matched indole-
3-butyric acid, a growth inducing hormone of the auxin family
widely distributed in plants and algae (Piotrowska-Niczyporuk
and Bajguz 2014). Auxin synthesis involves the amino acid tryp-
tophan (Amin et al. 2015) which derivatives also had molecular
formula matches in cluster 2 as hydroxytryptophan or
kynurenine (C10H12N2O3), as well as other amino acids such as
N-acetyltyrosine (C11H13NO4) or the dipeptide glycyl-L-tyrosine
(C11H14N2O4). Other hormone matches such as melatonin
(C13H16N2O2) are known to act against oxidative stress in
plants and have also been found in algae (Arnao and
Hern�andez-Ruiz 2006). Furthermore, the formula matches
of cluster 2 include domoic acid (C15H21NO6) a neurotoxin
produced by algae and known to cause amnesic shellfish
poisoning (Delegrange et al. 2018).

Bacteria also produce plant hormones to induce growth of
diatoms (Amin et al. 2015; Ajani et al. 2018), and there is
some evidence for the production of auxins by marine micro-
algae (Mazur et al. 2001; Labeeuw et al. 2016). In a recent
study, the molecular formulae of the auxin indole-3-acetic
acid and its precursor tryptophan have been detected in the

exometabolome of pure cultures of Dinoroseobacter shibae, a
representative of the globally abundant and often plankton-
bloom associated marine Roseobacter group (Wienhausen
et al. 2017). Overall, in contrast to cluster 1, with database
matches predominantly associated to higher land plants, clus-
ter 2 includes matches with compounds that are also pro-
duced by marine organisms. A microbial origin of many of the
database matches is consistent with the proposed relation of
cluster 2 with increased microbial activity in the course of
phytoplankton blooms.

Cluster 3 representing the refractory marine DOM
background

Cluster 3 was significantly different from the other two
clusters in that it comprised molecular formulae with the
highest masses and the lowest AImod (Fig. 4). The elemental
ratios O/C and H/C covered a comparably small and well con-
fined area in the van Krevelen diagram (Fig. 5), matching typi-
cal characteristics of carboxyl-rich alicyclic molecules (CRAM),
that have been proposed as a ubiquitous constituent of natu-
ral DOM (Hertkorn et al. 2006). Cluster 3 showed the highest
overlap with refractory molecular formulae found in deep
Pacific DOM (90% of the molecular formulae in cluster 3 were
also found in the NEqPIW reference), and the highest overlap
with the “island of stability” (Lechtenfeld et al. 2014), indicat-
ing that this cluster represents the refractory marine DOM
background. A ubiquitous refractory marine DOM pool has
been proposed as the ultimate result of the multiple produc-
tion, mixing, degradation, and transformation processes act-
ing on DOM (Koch et al. 2005; Zark and Dittmar 2018). This
hypothesis implies that the refractory DOM background does
not contain any source-specific signature. The finding that
cluster 3 contained a negligible number (only two matched)
of the terrigenous compounds represented by t-peaks
(Medeiros et al. 2016) is consistent with such a scenario and
the interpretation of cluster 3 as representing the marine
DOM background.

Cluster 3 exhibited statistically significant positive correla-
tions with salinity, DOC/DON ratio, as well as with concentra-
tion of DIN, and anticorrelations with temperature and
concentrations of Chl a and DON (Fig. 7). High salinity, low
temperature, and high inorganic nutrient concentrations are
typical for winter conditions when the North Sea around Hel-
goland is well mixed. Increased DOC/DON ratios are a typical
feature of refractory marine DOM compared to freshly pro-
duced marine DOM (Hansell and Carlson 2015), providing
further support for cluster 3 representing the marine DOM
background. Low concentrations of Chl a and DON are consis-
tent with the absence of phytoplankton growth and associ-
ated recent production of fresh DOM during winter.
Accordingly, cluster 3 did not show any positive correlation to
the abundance of phytoplankton and prokaryotes, except for
a moderate positive correlation with the marine bacterium
Marinoscillum, targeted as CYT-734.
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Matches of cluster 3 molecular formulae in the PubChem
database include a wide range of terpenoids, with a mention-
able number of iridoid glycosides like C24H32O10 (acevaltrate),
C22H28O10 (davisioside), C26H38O12 (dihydrofoliamenthin),
C27H38O12 (sioriside), C24H30O11 (harpagoside), C23H34O11

(hookerinoid B), C25H36O12 (nemoroside). Terpenoids are
structurally very similar to proposed structures of CRAM
(Hertkorn et al. 2006; Lam et al. 2007). Thus, as for the other
two clusters, prominent PubChem database matches are con-
sistent with the proposed origin and character of cluster
3. Iridoid glycoside like substances can become toxic in their
metabolization (Yamane et al. 2010) making them unattrac-
tive to most microorganisms and additionally support the
refractory character of this cluster.

Beyond the three-cluster partitioning
The three-cluster partitioning yielded an optimal separation of

the data as indicated by the ASV (Fig. 2d) and the resulting three
clusters were clearly distinguishable with respect to the chemical
characteristics of their members as well as their proposed origin. A
deeper partitioning into sub-clusters could provide valuable infor-
mation on joint dynamics of smaller groups of compounds, that
is, reveal DOM dynamics with higher molecular resolution.

Interestingly, while cluster 1 and cluster 2 split up into five
sub-clusters each, cluster 3 persisted as a stable cluster. This corrob-
orates the interpretation that cluster 3 represents a homogenous
mixture of refractory marine background DOM, with all com-
pounds exhibiting similarly low temporal dynamics that is not
influenced by sporadic events like freshwater inflow or phyto-
plankton blooms. For all 11 sub-clusters we tested if they also
achieved the distinct separation of chemical characteristics
observed for the three clusters (Figs. 4, 5; Supporting Information
Fig. S3). All 10 sub-clusters of cluster 1 and cluster 2 showed a clear
separation based on their elemental O/C and H/C ratios in the
van Krevelen space (Fig. 8). This is a remarkable finding, as it dem-
onstrates that by statistical analysis of DOM time series, temporal
dynamics of DOM compounds can be linked to distinct chemical
composition. Thus, without knowing the exact structures of the
molecular formulae, we can infer environmental behavior. The
robust separation of compounds with differential chemical com-
position achieved by the hierarchical clustering was confirmed by
classification trees purely based on information derived from
molecular formulae (Supporting Information Fig. S6). Differences
in nitrogen content were identified as an important factor for a
deeper classification of substructures in cluster 1 and cluster 2. The
11 clusters also exhibited distinct mass distributions (Supporting
Information Fig. S7), although the separation by mass was not as
pronounced as for the three clusters.

Conclusion
The multitude of compounds that make up DOM are not

only highly diverse in molecular composition but also exhibit
very different dynamics. Here, we demonstrated that basic

statistical approaches such as cluster and correlation analysis
are valuable tools to identify synchronous dynamics and to
reveal distinct coherencies between DOM molecular formulae
and environmental conditions influencing the dynamics. The
analyses performed in this study are not limited to time series
data but can also be applied to deciphering dynamics and
respective controls in studies of spatial gradients.

For the DOM time series presented here, we provide con-
clusive evidence that the DOM pool included three major
groups of compounds that were clearly constrained based on
their shared temporal dynamics. Although the time series
analysis did not include any information on the nature of the
DOM compounds, the resulting DOM clusters were clearly dis-
tinguishable based on their chemical composition. Correla-
tions with abiotic and biotic environmental parameters were
consistent with potential sources and history of the individual
clusters.

Disclosing the structural identity of molecular formulae
detected in DOM is still a major challenge. Targeted analysis
of specific compounds is restricted to few known substances
while the exact structure of the majority of DOM molecules
remains uncharacterized. Assigning molecular formulae to
matches in databases such as PubChem remains tentative.
Our study shows that by combining information on dynamics
and potential origin and transformation history with informa-
tion on characteristics of respective database matches, struc-
tural identity of individual compounds can be narrowed
down. Such confined tentative assignments can then be tested
by more targeted studies, including chemical analytics
(e.g., fragmentation experiments in FT-ICR-MS), biological
(cultivation experiments), and environmental studies (specific
conditions or gradients).
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