
1. Introduction
A global climate model represents the physical processes of the ocean, sea ice, atmosphere, and land, as well as 
their interactions by coupling different components in one system. Within a climate model, the ocean and the at-
mosphere are the two main compartments, which are highly linked to each other. They give/receive their feedback 
to/from each other in one system thus influencing each other consistently. In contrast to stand-alone models of the 
ocean or atmosphere, which rely on forcings, a coupled model essentially evolves freely with little influence of 
forcings. Therefore, the simulation from a coupled model system may be far away from the real state (e.g., Mul-
holland et al., 2015). Data assimilation (DA) allows constraining the model state by incorporating observations 
to correct the model evolution in state space (e.g., Zhang & Moore, 2015). With decent initialization, a coupled 
system is equipped with the potential for real-world prediction.

There are two main approaches to DA in a coupled system: weakly coupled DA (WCDA) and strongly coupled 
DA (SCDA) (Penny & Hamill, 2017). WCDA analyses the state of one or more compartments within a coupled 
system separately by assimilating their own observations and other components in the system are then influenced 
indirectly via the coupled model dynamics. WCDA is the most commonly used DA approach for a coupled sys-
tem (Zhang et al., 2020). One example is our previous study (Tang et al., 2020), who assimilated satellite sea 
surface temperature (SST) and temperature and salinity profiles into the ocean component for a coupled ocean-at-
mosphere model. The study found improvements of not only the ocean variables, which were directly updated by 
the DA, but also the atmosphere variables like the air temperature and wind speed. Most of the previous WCDA 
experiments assimilated observations of both the ocean and the atmosphere (e.g., Browne et al., 2019; Karspeck 
et al., 2018; Laloyaux et al., 2016), while there are a few studies who assimilated only atmosphere observations 
(Kunii et al., 2017).

Abstract We compare strongly coupled data assimilation (SCDA) and weakly coupled data assimilation 
(WCDA) by analyzing the assimilation effect on the estimation of the ocean and the atmosphere variables. 
The AWI climate model (AWI-CM-1.1) is coupled with the parallel data assimilation framework (PDAF). 
Only satellite sea surface temperature data are assimilated. For WCDA, only the ocean variables are directly 
updated by the assimilation. For SCDA, both the ocean and the atmosphere variables are directly updated by 
the assimilation. Both WCDA and SCDA improve ocean state and yield similar errors. In the atmosphere, 
WCDA gives slightly smaller errors for the near-surface temperature and wind velocity than SCDA. In the free 
atmosphere, SCDA yields smaller errors for the temperature, wind velocity, and specific humidity than WCDA 
in the Arctic region, while in the tropical region, the errors are generally larger.

Plain Language Summary Satellite sea surface temperature observations are combined with a 
coupled ocean-atmosphere model to improve the estimation of the ocean as well as the atmosphere variables. 
This is done by the so-called strongly coupled data assimilation, which updates not only the ocean state but uses 
the cross-covariance to update the atmosphere variables directly through the assimilation algorithm. The results 
are compared with the weakly coupled data assimilation, which only updates the ocean state directly. Both 
of the two assimilation algorithms improve the estimation of the ocean temperature. In the atmosphere, the 
strongly coupled data assimilation outperforms the weakly coupled data assimilation only in the Arctic region 
while in the low latitudes the strongly coupled data assimilation deteriorates the results.
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SCDA jointly updates the state of different components within a coupled system through cross-covariances cal-
culated among different components. Observations can be from one or more components. Compared to WCDA, 
SCDA is able to capture information from different components directly and update them instantaneously by 
DA instead of only relying on the model dynamics. This is expected to yield more consistent state estimates 
and better model predictions with a coupled system (Sluka et al., 2016). By now, there are only a few studies 
focusing on SCDA. Penny et al. (2019) summarized the previous SCDA studies with simplified coupled models 
like the Lorenz-Stommel model (Tardif et al., 2014) and an idealized single-column atmosphere-ocean coupled 
model (Smith et al., 2015). A successful example is given by Sluka et al. (2016) who assimilated atmosphere 
observations to update the ocean and atmosphere variables using a low-resolution general circulation model. 
Compared to WCDA, they found a reduction of root mean square error (RMSE) up to 60% in both the ocean and 
the atmosphere, especially for the near surface temperature and sea surface height. However, all of these studies 
used simplified and idealized models with relatively coarse resolution but no complex climate model with high 
resolution for a global real-world simulation. Moreover, all previous studies assimilated only the atmosphere 
observations or both the atmosphere and the ocean observations rather than ocean observations alone. One pos-
sible reason is that in a climate model the atmosphere component varies faster than the ocean component. Han 
et al. (2013) and Zhang et al. (2020) found that SCDA was only effective when the highly accurate, fast varying 
variables are assimilated, while it is difficult to improve the fast varying component by assimilating observations 
of the slowly varying component. However, this conclusion was also based on a simplified, idealized coupled 
system (Lorenz63 coupled to a simple pycnocline ocean model).

Until now, no studies assess the assimilation of ocean observations into both the ocean and atmosphere compo-
nents with SCDA. This paper analyzes this impact of SCDA with a complex, global ocean-atmosphere model 
by assimilating real-world ocean observations. Results are compared with WCDA, and ensemble simulations 
without DA. In summary, this paper investigates: (a) whether SCDA improves the atmosphere state compared to 
WCDA, and (b) the effect of vertical localization in the atmosphere. The remainder of this paper is divided into 
four sections. Section 2 introduces the coupled ocean-atmosphere model and the data assimilation method. Sec-
tion 3 describes the data assimilation experimental settings. Section 4 analyses and discusses the results, while 
Section 5 provides a brief summary.

2. Model and Data Assimilation Method
2.1. Coupled Ocean-Atmosphere Model

The AWI climate model AWI-CM-1.1 (Rackow et al., 2018; Sidorenko et al., 2015) is a global ocean-atmos-
phere coupled model. Within AWI-CM-1.1, the sea ice-ocean model FESOM1.4 (Wang et al., 2014) simulates 
the ocean circulation by solving the primitive equations on an unstructured triangular grid using the finite ele-
ment method, while the atmosphere model ECHAM6 (Stevens et al., 2013) represents the dynamic atmosphere 
processes in spherical harmonics and the land surface by the submodel JSBACH. The software OASIS3-MCT 
(Valcke et al., 2013) serves as the coupler to exchange the air-sea fluxes and surface states.

2.2. Data Assimilation Method

This study performs DA using the local error subspace transform Kalman filter (LESTKF) (Nerger et al., 2012b) for 
both WCDA and SCDA simulation runs. As one type of ensemble Kalman filter, the LESTKF collects an ensemble 
of model state realizations to represent the model uncertainties. Here only a short description is given. For a detailed 
description of the algorithm, we refer to the Supporting Information S1. The state vector can be written as
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where the subscript i is the realization number, 𝐴𝐴 𝐗𝐗oce is the state vector with ocean variables and 𝐴𝐴 𝐗𝐗atm the vector 
with atmosphere variables. For WCDA, only 𝐴𝐴 𝐗𝐗oce is included while for SCDA both 𝐴𝐴 𝐗𝐗oce and 𝐴𝐴 𝐗𝐗atm are included. 
The DA updates the ensemble by combining the observations to correct the model simulations
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𝐗𝐗𝑎𝑎 = 𝐗𝐗𝑓𝑓𝐖𝐖 (2)

at each observation time where the superscripts a and f indicate the analysis and forecast, respectively. 𝐴𝐴 𝐖𝐖 is the 
matrix transforming the forecast into the analysis ensemble. Domain and observation localization are used in this 
study following the method described by Nerger et al. (2012a). No inflation is applied.

2.3. Coupling PDAF With AWI-CM-1.1

The Parallel Data Assimilation Framework (PDAF, http://pdaf.awi.de) (Nerger & Hiller, 2013; Nerger et al., 2005) 
is an open source software for applying ensemble-based DA. The LESTKF is one of the ensemble-based DA 
methods implemented within PDAF. PDAF has already been coupled with AWI-CM-1.1 allowing to perform 
both WCDA and SCDA by assimilating multiple types of ocean observations (Nerger et al., 2020). A seamless 
sea ice prediction system is further developed by Mu et al. (2020), where different ocean and sea ice observations 
are assimilated. Tang et al. (2020) used this coupled system to investigate the impact of assimilating different 
types of ocean observations on the ocean and atmosphere by WCDA.

3. Experimental Settings
The model setup and data assimilation configurations for WCDA are described in Tang et al. (2020) and here, we 
briefly summarize them.

The horizontal resolution of the unstructured ocean grid varies between 25 and 150 km. The model is discretized 
into 47 layers in the vertical. The thickness of the top layer is 10 m. Below to surface, the thickness increases 
linearly to 250 m for the bottom layer. A regular grid is used for the atmosphere, with a horizontal resolution of 
1.875° (spectral resolution T63) and 47 sigma-levels. Every hour, the ocean and the atmosphere model exchange 
fluxes and surface state variables.

DA experiments are performed for the year 2016, using an ensemble of 46 model state realizations. The ocean 
variables including the sea surface height, temperature, salinity, and velocity in three dimensions are updated 
daily by DA. A horizontal localization radius of 300 km is used based on tuning experiments minimizing the 
RMS errors. Daily level-3 satellite SST observations from the E.U. Copernicus Marine Service are assimilated. 
The original observations have a spatial resolution of 0.1° and are remapped to the unstructured ocean model grid 
through a data thinning process. An observation error of 0.8°C is applied as in Tang et al. (2020).

To obtain the initial conditions for the DA experiments, first a serial spin-up run was carried out to simulate 
the 1950–2015 historical period. The model state on the last day of the year 2015 was taken as the central state 
for the ensemble. An ensemble of perturbations created with the second-order exact sampling method (Pham 
et al., 1998) was added to the ocean part of this central state to generate the initial ensemble for the ocean com-
ponent (see Supporting Information S1). The atmosphere part of the central state was directly used as the initial 
state for all ensemble members in the atmosphere. The atmosphere ensemble spread attains a quasiequilibrium 
within one month of the simulation period due to chaotic error growth in the atmosphere induced by the ocean 
states. Thereafter, the atmosphere states resemble largely uncorrelated weather patterns across the ensemble.

SCDA has the same model setup as WCDA. The only difference is the DA configuration. In SCDA, the at-
mosphere variables are jointly updated by DA together with the ocean variables through the cross covariances 
between the two components, while WCDA only updates the ocean variables. The updated variables in the atmos-
phere are air temperature, surface pressure, vorticity, divergence, and humidity. In the atmosphere, a localization 
radius of 300 km is set in the horizontal direction, which is the same as used in the ocean to ensure consistency. 
In one SCDA setup (SCDA), no vertical localization is implemented in the atmosphere. In a second SCDA setup 
(SCDA_vert), the full DA increment is applied for all atmosphere variables from the surface to 800 hPa pressure 
level; between 800and 600 hPa the DA increment is linearly decreased from full increment to zero at 600 hPa; 
above 600 hPa there is no update by assimilation at all.

Besides the assimilation runs, free-run simulations without DA are also performed for comparison purposes. A 
summary of the simulation scenarios is given below:

1.  Free_run: Free-run simulations without DA;

http://pdaf.awi.de
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2.  WCDA: WCDA run updating only ocean variables;
3.  SCDA: SCDA run updating both ocean and atmosphere variables, without vertical localization for atmosphere;
4.  SCDA_vert: SCDA run updating both ocean and atmosphere variables with vertical localization for 

atmosphere.

The performance evaluation measure is the RMSE of ocean and atmosphere variables to quantify the difference 
between model simulations (the 24 hr-forecasts that serve as the model background in the DA) and observations/
reanalysis data:

RMSE(�) =

√
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where X can be SST, subsurface temperature or salinity for the ocean, and air temperature or wind velocity in the 
atmosphere; nt is the number of time steps, nobs the total number of observations/reanalysis data points, which 
varies for different analysis steps; aj is the area of the grid cell j. The overbar indicates ensemble average, the 
superscript sim refers to the model simulations at a certain time step before data assimilation and the superscript 
obs the observations at the same time step.

4. Results and Discussion
The four different scenarios described previously are analyzed and discussed in this section. First, results are 
evaluated for the ocean. The RMSE for SST was calculated by comparing the model forecast with the SST ob-
servations used for the DA experiments. In contrast, the RMSE for the subsurface temperature and salinity was 
calculated by comparing the simulation with the independent EN4 profile data from the UK Met Office (Good 
et al., 2013). From the RMSE values, we also calculated the relative error, which expresses the improvement 
compared to the free-run:

𝑅𝑅(𝑋𝑋) =
RMSEscenario(𝑋𝑋)

RMSEfree(𝑋𝑋) (4)

Compared to the free-run, both WCDA and SCDA improve the forecast of the temperature. The reduction for 
RMSE of SST is 64%, 61%, and 64% for WCDA, SCDA, and SCDA_vert, respectively. The SCDA run without 
vertical localization gives slightly larger RMSE(SST) than the WCDA run, while the vertically localized SCDA 
simulation gives the same RMSE(SST) as the WCDA run. The three assimilation runs lead to similar results for 
the subsurface temperature with an RMSE reduction of 20% for WCDA run and 19% for two SCDA runs. The 
improvement for salinity is relatively limited and the RMSE is only reduced by 5% for WCDA run, 3% for SCDA, 
and 4% for SCDA_vert.

The two SCDA runs give similar bias (average SST difference between the model simulation and the observations 
over 10 months) maps to the WCDA run, see Figure S1 and Tang et al. (2020). As SCDA directly updates the 
atmosphere variables, the following discussion will concentrate on the performance of different DA runs on the 
atmosphere component.

In general, the global area-weighted annual average 2 m-temperature bias is −0.17°C for the free run, +0.43°C 
for WCDA, +0.45°C for SCDA, and +0.43°C for SCDA_vert. Compared to the free run, DA slightly warms up 
the atmosphere almost everywhere in the ocean (Figures 1a–1d) while the SST difference does not show such 
general bias as the 2 m-temperature (Figure S6). Over the ocean, DA leads to a small rather uniform warm bias 
everywhere except for a negative bias in the Arctic. Over the continents there are warm and cold biases. WCDA 
reduces the warm bias around the west coast of South Africa and northern Pacific. However, this reduction is 
smaller in case of SCDA, see Figure 1e. Over Europe, Asia, and North and South America the amplitude of the 
bias is mainly reduced in SCDA compared to WCDA, while it is increased over the tropical South America and 
parts of Antarctica. Further, the amount of bias is slightly increased over Australia. Generally, while differences 
between SCDA and WCDA are only moderate (Figure 1e), differences between SCDA_vert and WCDA are even 
much smaller (Figure 1f). Thus, the larger effects visible in SCDA are caused by the changes in the free atmos-
phere, which dynamically feed back to the planetary boundary layer.
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Regarding the wind speed at 10 m height, compared to the free run, both the positive and negative biases along 
the Equator in the Pacific Ocean and the Atlantic Ocean are strongly reduced by WCDA (Figure 2b) and SCDA 
(Figures 2c and 2d). The bias reduction by SCDA is weaker than by WCDA, shown in Figure 2e. WCDA also 
reduces the bias in the Southern and Northern Pacific, which is not the case for SCDA. The positive bias is 
strengthened by WCDA in the Southern Indian Ocean, and this is even stronger by SCDA. Both WCDA and 
SCDA introduce positive bias in the Southern Ocean, south of Africa, where the free run shows negative bias. 
Again, when vertical localization is used in SCDA_vert, the DA effect is more similar to that of WCDA.

Note that the vertical localization can have no direct effect on the 2 m-temperature and the 10 m-wind speed. 
However, there is also the effect of the model dynamics. The effect is here that without vertical localization also 
the atmosphere above the boundary layer is modified by the assimilation. These changes will then influence the 

Figure 1. (a–d) Average bias (model simulation - ERA-interim) of temperature at 2 m above surface for the free run and assimilation runs; (e and f) average difference 
of the absolute bias of 2 m temperature between two strongly coupled data assimilation (SCDA) runs and weakly coupled data assimilation (WCDA) run. Values are 
averaged over months March–December.
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lower atmosphere through the dynamics. Since during the assimilation process the daily assimilation updates and 
the 1-day forecasts alternate we only see the combined effect.

Figure 3 shows the zonal mean RMSE of the atmosphere temperature, wind speed and specific humidity at differ-
ent pressure levels. Between 650and 1000 hPa, that is, in the lower half of the troposphere, the zonal mean RMSE 
of temperature (RMSE(T)) is reduced almost everywhere by DA compared to the free run. This is especially the 
case in the tropics and lower latitudes between 30°N and 30°S (Figure 3b). Between 900 hPa and 500 hPa the 
RMSE(T) is slightly increased by WCDA in the Arctic (Figure 3b), while the two SCDA runs reduce it (Fig-
ures 3c and 3d). However, DA increases the RMSE(T) close to the equator between 10°N and 10°S in the height 
range between 650and 450 hPa, independent of whether WCDA or SCDA is applied. This is mainly caused by an 
amplification of the near-surface warming (Figure 1b) with increasing height due to the temperature dependence 
of the moist adiabatic lapse rate, which leads to a pronounced warm bias in the upper tropical troposphere in the 
DA runs (see Figure S4). Compared to WCDA, SCDA yields up to 0.5 K larger RMSE(T) between 25°N and 25°S 

Figure 2. (a–d) Average bias (model simulation – ERA-interim) of wind speed at 10 m above surface for the free run and assimilation runs; (e and f) average difference 
of 10 m wind speed between the two strongly coupled data assimilation (SCDA) runs and weakly coupled data assimilation (WCDA) run. Values are averaged over 
months March–December.
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Figure 3. (a) Zonal mean root mean square error (RMSE) of temperature as a function of pressure for Free_run; (b) RMSE 
difference of temperature between weakly coupled data assimilation (WCDA) and Free_run; (c and d) RMSE difference of 
temperature between strongly coupled data assimilation (SCDA) and WCDA; (e) zonal mean RMSE of wind speed for Free_
run; (f) RMSE difference of wind speed between WCDA and Free_run, (g and h) RMSE difference of wind speed between 
SCDA and WCDA; (i) normalized zonal mean RMSE of specific humidity for Free_run, (j) normalized zonal mean RMSE 
difference of specific humidity between WCDA and Free_run, (k and l) normalized zonal mean RMSE difference of specific 
humidity between SCDA and WCDA. RMSEs of specific humidity were normalized with the ERA-interim specific humidity 
to account for the strong humidity gradients (in particular in the vertical).
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but smaller RMSE(T) in the high-latitude regions. The difference for SCDA_vert (Figure 3d) shows again that 
the increased errors are caused mainly by the changes of the atmosphere variables introduced by DA in the free 
atmosphere. Accordingly, the difference between SCDA_vert and WCDA is again minor, except for the notable 
error reduction in the Arctic troposphere. Here, the improvement is apparently induced in the lower atmosphere 
and the model dynamics convey the improvement into the upper troposphere. The vertically localized SCDA ex-
erts stronger additional influence in the Arctic compared to other latitudes. Possible reasons include the presence 
of sea ice (suppressing SST variations and their influence on the atmosphere) and the shallowness of the Arctic 
boundary layer. This implies that the localization profile covers a larger part of the free atmosphere in the Arctic 
compared to lower latitudes. Since there are no SST observations north of 80°N, the effects in the Arctic are pure-
ly dynamic. The assimilation also influences the winds at different levels in the atmosphere. Between 800 hPa 
and the ground level, the zonal mean RMSE of horizontal wind speed (RMSE(ws)) in the equatorial region is 
reduced by WCDA and SCDA_vert (Figures 3f and 3h). SCDA gives almost the same RMSE(ws) as the free 
run in this region (Figure 3g). Thus, the changes in the free atmosphere feed back to the circulation in the lower 
atmosphere. Slightly increased RMSE(ws) is observed north of the equator between 800 hPa and 600 hPa, the 
region between 20°N and 20°S above 500 hPa and the northern high latitude regions above 800 hPa in WCDA. 
For the rest of the regions WCDA reduces the RMSE(ws). In general, SCDA shows larger RMSE(ws) between 
25°N and 25°S than the free run and WCDA from ground to the free atmosphere up to 300 hPa, but outside of the 
tropical region the velocity is improved compared to the free run (Figure 3g). SCDA_vert gives similar results as 
WCDA (Figure 3h). This suggests again that the direct DA increments in the lower troposphere do not add much 
to the changes communicated from the DA-corrected ocean surface state to the atmosphere through the coupling, 
whereas direct increments in the higher troposphere exert a stronger additional influence.

A further effect of the assimilation is visible in the specific humidity. Large normalized RMSEs (RMSE(q)) are 
visible in the free run (Figure 3i) in the tropics at heights above 800 hPa, south of 70°S between 650 hPa and the 
ground, and north of 60°N between 800 and 400 hPa. The RMSE(q) along the equator, especially in the higher 
atmosphere above 600 hPa, is largely reduced (Figure 3j) because the corrected equatorial SSTs (reduced cold 
bias) generate stronger ascending motion and transport more moisture into the upper troposphere (see Tang 
et al., 2020). This effect is particularly strong for WCDA (Figure 3j) and SCDA_vert (Figure 3l), but smaller for 
SCDA with updates throughout the atmosphere. Slightly smaller RMSE(q) is found in the southern hemisphere 
north of 40°S for WCDA compared to the free run, while the RMSE in this region is slightly larger for SCDA than 
the free run. Like for the temperature in Figures 3a–3d, WCDA slightly deteriorates the state in the Arctic, while 
SCDA improves it. Similar to temperature and wind velocity, the humidity difference between SCDA_vert and 
WCDA is mostly minor, except for the Arctic where a smaller RMSE(q) is obtained for SCDA_vert.

From WCDA experiments discussed by Tang et al. (2020) we already know that assimilating only SST has a sub-
stantial effect on tropical and subtropical temperature profiles in the atmosphere. The lower atmosphere responds 
quickly to the changed SST even if it is not constrained directly by the DA. In case of SCDA, the atmosphere is 
directly influenced and then reacts also dynamically. However, this combination only leads to a small additional 
effect of slightly higher temperatures in the lower atmosphere.

WCDA corrects the cold bias of the lower atmosphere only in the tropics but not in the high latitudes. In contrast, 
the two SCDA experiments can improve the bias in the Arctic. This positive effect not only holds for the air 
temperature but also for other atmosphere variables like the wind speed and the specific humidity. This indicates 
that SCDA_vert can preserve the good performance of WCDA in the tropics and subtropics. At the same time it 
can improve the atmosphere simulation in the high latitudes which benefits from SCDA, possibly linked with the 
presence of sea ice (suppressing SST variations) and the shallow boundary layer. However, both of them deterio-
rate the simulation of atmosphere temperatures corrected by SST observations through coupling.

5. Conclusions
In this paper, SCDA is applied for a global coupled ocean-atmosphere model. By assimilating satellite SST ob-
servations, we explore the influence of SCDA on the ocean and the atmosphere. The ocean and the atmosphere 
variables are simultaneously updated by the LESTKF utilizing the cross-covariances between the SST and the 
atmosphere variables. Results are compared with our previous WCDA experiment, where only the ocean varia-
bles are directly updated by DA. SCDA of SST observations yield a similar performance in simulating the ocean 
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as WCDA. For the atmosphere, SCDA gives overall slightly worse results than WCDA if no vertical localization 
is applied. With vertical localization in the atmosphere that constrains DA increments to the lower troposphere, 
the difference between SCDA and WCDA is quite minor. An exception is the Arctic region, where SCDA, with 
and without vertical localization, improves the atmosphere. This suggests that the improvements in the Arctic 
are due to improvements in the lower atmosphere, which are dynamically transported to higher levels. The weak 
effect of SCDA with vertical localization compared to WCDA in the tropical to midlatitude regions implies that 
the SSTs already exert a strong influence on the lower troposphere. This implies SCDA should only be done with 
vertical localization in order to avoid changes in the higher atmosphere due to the unrealistic ensemble-estimated 
covariances, which then feed back dynamically to the planetary boundary layer.

In contrast to SCDA studies that assimilate atmosphere observations and update ocean variables via the covar-
iances, which show a clear benefit in the ocean from the atmosphere observations, we found rather moderate 
improvements of the atmosphere caused by SCDA of ocean observations compared to WCDA. This asymmetry 
is likely linked to the different time scales in the atmosphere and the ocean. In our experiments, the slower ocean 
SST is used to update the faster atmosphere. Nevertheless, the experiments show that there can be positive effects, 
in particular in the Arctic region.

A related limitation of our study is that, in contrast to numerical weather prediction systems, the atmosphere is 
unconstrained, except for the influence exerted by the SST and, in case of the SCDA, the cross-compartment DA 
increments. Thus, the different DA ensemble members exhibit largely independent random weather states rather 
than states that sample only uncertainty around the state of the observed real atmosphere. Consequently, the in-
fluence of the SST-DA on the atmosphere can largely be linked to impacts on the mean state rather than how the 
evolution of weather-related variability is captured. Similar studies with a directly constrained atmosphere could 
explore to what degree the SCDA of ocean observations can help further constrain the atmospheric state when 
the atmosphere is already more strongly constrained in the first place.

In the experiments performed here, the instantaneous covariances between SST and the atmosphere variables 
were utilized for SCDA. To filter out the fastest dynamics of the atmosphere, one could envision to use the covari-
ances between the instantaneous ocean state and averaged atmosphere fields, for example, over one day. However, 
initial experiments of this approach were not successful. Further work should be aimed in this direction to make 
the observations of the ocean more useful for atmosphere-ocean SCDA.

Data Availability Statement
Open Research: The AWI climate model AWI-CM version 1.1 used for this research can be accessed from the 
esm-tool at Zenodo (Barbi et al., 2020). PDAF is available from the website http://pdaf.awi.de, after registra-
tion. The observation data used in this study can be downloaded from the Copernicus website https://resources.
marine.copernicus.eu/?option=com_csw&view=details&product_id=SST_GLO_SST_L3S_NRT_OBSERVA-
TIONS_010_010, and the UK MetOffice website https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.
html. The ERA-interim reanalysis data can be downloaded from the ECMWF website https://apps.ecmwf.int/data-
sets/data/interim-full-daily/. The input data for the numerical modeling can be found in Rackow et al. (2019). The 
output data for the numerical experiments related to this article can be found at Zenodo https://doi.org/10.5281/
zenodo.5717555 (Tang et al., 2021).
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