Calcium carbonate saturation states along the West Antarctic Peninsula


Contact
Mario.Hoppema [ at ] awi.de

Abstract

The waters along the West Antarctic Peninsula (WAP) have experienced warming and increased freshwater inputs from melting sea ice and glaciers in recent decades. Challenges exist in understanding the consequences of these changes on the inorganic carbon system in this ecologically important and highly productive ecosystem. Distributions of dissolved inorganic carbon (CT), total alkalinity (AT) and nutrients revealed key physical, biological and biogeochemical controls of the calcium carbonate saturation state (Ωaragonite) in different water masses across the WAP shelf during the summer. Biological production in spring and summer dominated changes in surface water Ωaragonite (ΔΩaragonite up to +1.39; ∼90%) relative to underlying Winter Water. Sea-ice and glacial meltwater constituted a minor source of AT that increased surface water Ωaragonite (ΔΩaragonite up to +0.07; ∼13%). Remineralization of organic matter and an influx of carbon-rich brines led to cross-shelf decreases in Ωaragonite in Winter Water and Circumpolar Deep Water. A strong biological carbon pump over the shelf created Ωaragonite oversaturation in surface waters and suppression of Ωaragonite in subsurface waters. Undersaturation of aragonite occurred at < ∼1000 m. Ongoing changes along the WAP will impact the biologically driven and meltwater-driven processes that influence the vulnerability of shelf waters to calcium carbonate undersaturation in the future.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Helmholtz Cross Cutting Activity (2021-2027)
N/A
Peer revision
Peer-reviewed, Web of Science / Scopus
Publication Status
Published
Eprint ID
55477
DOI 10.1017/S0954102021000456

Cite as
Jones, E. M. , Hoppema, M. , Bakker, K. and de Baar, H. J. (2021): Calcium carbonate saturation states along the West Antarctic Peninsula , Antarctic Science, 33 (6), pp. 575-595 . doi: 10.1017/S0954102021000456


Share


Citation

Geographical region

Research Platforms

Campaigns
ANT > XXVII > 2

Funded by
info:eu-repo/grantAgreement/EC/FP7/264879


Actions
Edit Item Edit Item