Solid-Phase Extraction of Aquatic Organic Matter: Loading-Dependent Chemical Fractionation and Self-Assembly


Contact
Boris.Koch [ at ] awi.de

Abstract

Dissolved organic matter (DOM) is an important component in marine and freshwater environments and plays a fundamental role in global biogeochemical cycles. In the past, optical and molecular-level analytical techniques evolved and improved our mechanistic understanding about DOM fluxes. For most molecular chemical techniques, sample desalting and enrichment is a prerequisite. Solid-phase extraction has been widely applied for concentrating and desalting DOM. The major aim of this study was to constrain the influence of sorbent loading on the composition of DOM extracts. Here, we show that increased loading resulted in reduced extraction efficiencies of dissolved organic carbon (DOC), fluorescence and absorbance, and polar organic substances. Loading-dependent optical and chemical fractionation induced by the altered adsorption characteristics of the sorbent surface (styrene divinylbenzene polymer) and increased multilayer adsorption (DOM self-assembly) can fundamentally affect biogeochemical interpretations, such as the source of organic matter. Online fluorescence monitoring of the permeate flow allowed to empirically model the extraction process and to assess the degree of variability introduced by changing the sorbent loading in the extraction procedure. Our study emphasizes that it is crucial for sample comparison to keep the relative DOC loading (DOCload [wt %]) on the sorbent always similar to avoid chemical fractionation.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Helmholtz Cross Cutting Activity (2021-2027)
N/A
Publication Status
Published
Eprint ID
55481
DOI 10.1021/acs.est.1c04535

Cite as
Kong, X. , Jendrossek, T. , Ludwichowski, K. U. , Marx, U. and Koch, B. P. (2021): Solid-Phase Extraction of Aquatic Organic Matter: Loading-Dependent Chemical Fractionation and Self-Assembly , Environmental Science & Technology, 55 (22), pp. 15495-15504 . doi: 10.1021/acs.est.1c04535


Download
[thumbnail of Kong_2021.pdf]
Preview
PDF
Kong_2021.pdf

Download (2MB) | Preview

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation

Geographical region

Research Platforms

Campaigns
N/A


Actions
Edit Item Edit Item