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Abstract  Snow depth and sea ice thickness were observed applying an ice mass balance buoy (IMB) in the drifting ice station 

Tara during the International Polar Year in 2007. Detailed in situ observations on meteorological variables and surface fluxes were 

taken during May to August. For this study, the operational analyses and short-term forecasts from two numerical weather 

prediction (NWP) models (ECMWF and HIRLAM) were extracted for the Tara drift trajectory. We compared the IMB, 

meteorological and surface flux observations against the NWP products, also applying a one-dimensional thermodynamic sea ice 

model (HIGHTSI) to calculate the snow and ice mass balance and its sensitivity to atmospheric forcing. The modelled snow depth 

time series, controlled by NWP-based precipitation, was in line with the observed one. HIGHTSI reproduced well the snowmelt 

onset, the progress of the melt, and the first date of snow-free conditions. HIGHTSI performed well also in the late August freezing 

season. Challenges remain to model the “false bottom” observed during the melting season. The evolution of the vertical 

temperature profiles in snow and ice was better simulated when the model was forced by in situ observations instead of NWP 

results. During the melting period, the nonlinear ice temperature profile was successfully modelled with both forcing options. 

During spring and the melting season, total sea ice mass balance was most sensitive to uncertainties in NWP results for the 

downward longwave radiation, followed by the downward shortwave radiation, air temperature, and wind speed. 
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1  Introduction 

Arctic sea ice and its snow cover are sensitive components 
of the climate system. They act as strong reflectors of solar 
                                                        
 Corresponding author, ORCID: 0000-0001-8156-8412, E-mail: 
bin.Cheng@fmi.fi 

radiation and, for most of the year, as efficient insulators 
between the relatively warm ocean and the colder 
atmosphere. The marine Arctic climate system is rapidly 
changing (Döscher et al., 2014; Vihma et al., 2019; Meier et 
al., 2021) and, due to their smaller heat capacities compared 
to seawater, sea ice and particularly its snow pack are the 
most sensitive components of the system. The ice thickness, 
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volume, and multiyear ice coverage have all reduced during 
the past six decades (Kwok, 2018). Melting of sea ice yields 
freshwater to the upper ocean during summer (Carmack et 
al., 2016; Perovich et al., 2021). 

Snow affects the mass balance of sea ice via its 
insulating effect, which reduces ice growth in autumn, 
winter, and most of spring, and via its reflective effect, 
which protects sea ice from solar radiation in spring and 
summer. However, snow also contributes to sea ice growth 
via refreezing of slush generated by snowmelt (Nicolaus et 
al., 2003; Granskog et al., 2017; Provost et al., 2017; 
Webster et al., 2018) or flooding, the latter being less 
common in the Arctic. Spring snow cover has thinned in the 
Beaufort and Chukchi seas, and elsewhere in the western 
Arctic (Webster et al., 2014). The spring onset of snowmelt 
has become earlier (Markus et al., 2009), mostly controlled 
by downward longwave radiation (Maksimovich and Vihma, 
2012), and the increased snowmelt has resulted in earlier 
melt pond formation in summer, particularly north of 80°N 
(Rösel and Kaleschke, 2012).  

Autonomous sea ice mass balance buoys (IMB), 
consisting of a thermistor string and acoustic sounders, have 
demonstrated a good applicability in observing long-term 
evolution of sea ice and snow thickness as well as the 
temperature profile from the ocean through the ice and 
snow to the atmosphere (Richter-Menge et al., 2006; 
Polashenski et al., 2011; Jackson et al., 2013; Lei et al., 
2018). To understand the physical processes of snow and 
sea ice heat and mass balance, thermodynamic snow and 
sea ice models are often applied. Modelling of sea ice 
thermodynamics have been carried out for many years. 
Previous modelling studies have demonstrated the 
importance of accurate boundary conditions (Maykut and 
Untersteiner, 1971) and energy conservation (Bitz and 
Lipscomb, 1999), model vertical resolution in snow and ice 
(Cheng et al., 2008), the oceanic heat flux at the ice base 
(Polyakov et al., 2010), and snow-ice interactions (Cheng et 
al., 2013; Wang et al., 2015). However, for comparison 
between observations and model results, data on long-term 
evolution of snow and sea ice thickness and vertical 
temperature profiles are still a rarity, especially in the 
Central Arctic Ocean. 

Thermodynamic sea ice models are commonly 
externally forced by in situ observations or numerical 
weather prediction (NWP) models. In situ forcing data have 
usually a small footprint and comparably high accuracy, and 
they are often used for model development and validation. 
However, for operational services, one has to rely on NWP 
results as forcing, although NWP models still have large 
uncertainties over sea ice. Due to sparsity of observations, 
even more uncertainty is related to the oceanic heat flux, 
which varies a lot in space and time (Krishfield and 
Perovich, 2005; Stanton et al. 2012). The difference 
between the oceanic heat flux and the conductive heat flux 
upwards through the sea ice controls the basal growth or 
melt rates (Makshtas, 1991). In the latter half of the melt 

season, when the ice layer is often close to isothermal, the 
ice bottom melt rate is controlled by the heat flux from 
ocean (Lei et al., 2014; Ackley et al., 2015; Leppäranta, 
2015).  

Information on sea ice and snow thickness in the 
Arctic Ocean is still sparse. To better understand the 
ongoing and future changes in the Arctic sea ice and snow 
and their interaction with the ocean and atmosphere, 
improvements are needed in observations, process 
understanding, models, and use of observations in models. 
In this study, we present IMB observations in undeformed 
sea ice at the drifting ice station Tara (Gascard et al., 2008) 
in the Central Arctic Ocean from May to November 2007. 
The temporal evolution of IMB data on snow depth, ice 
surface ablation, bottom freezing and melting, as well as 
snow and ice temperature profiles were analysed. A 
one-dimensional thermodynamic snow and sea ice model 
was applied to simulate the evolution of snow and ice 
temperature profiles and mass balance. The in situ 
meteorological observations and NWP model analyses and 
forecasts were used as external forcing. The observed and 
modelled snow and ice thickness and temperature profiles 
were compared.  

There have been several drifting-ice-station campaigns 
implemented in the Arctic in the past a few decades. Various 
in-situ observations have been carried out. Although Tara 
field observations are not new, in situ observations are 
always valuable for model validation and process studies, 
especially along the transpolar stream. Several previous 
studies have addressed the spatiotemporal variability of 
atmospheric and oceanic forcing on snow and sea ice mass 
balance through investigation of in-situ observations 
(Nicolaus et al., 2010; Haller et al., 2014; Haas et al., 2017). 
In this paper, we focus on modelling of spatiotemporal 
variations of snow and ice mass balance during the 
spring-summer season in the central Arctic, which has not 
received much attention so far. The period of Tara 
observations is particularly interesting, as it preceded the 
lowest September sea-ice concentration observed ever 
before (Zhang et al., 2008). Further, summer 2007 
represented a transition from the earlier, multi-year sea-ice 
dominated Arctic to recent, more first-year sea-ice 
dominated Arctic (Tschudi et al., 2020).  

In this study, we pay particular attention on IMB 
observations, modelling of snow and ice mass balance, as 
well as its sensitivity to uncertainties in the NWP-based 
atmospheric forcing during spring and the melting season. 
Through this comprehensive investigation, we expect to 
better understand the linkages between sea ice changes, 
model forcing, and model results. The objectives of the 
study are (1) to identify the requirements for better sea ice 
and snow measurements in the Arctic Ocean, (2) to find out 
the most critical atmospheric factors for sea ice mass 
balance in spring and summer, and (3) to evaluate the 
performance of existing modelling approaches and present 
perspectives for their improvement.  
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2  Data and method 

2.1  Tara drifting ice station 

The drifting ice station Tara (Figure 1) was a major 
component of the European Commission (EC) funded 
project DAMOCLES (Developing Arctic Modelling and  

Observing Capabilities for Long-Term Environmental 

Studies) (Gascard et al., 2008). The French schooner Tara 
was frozen into sea ice and drifted along the Transpolar 
Drift Stream across the Arctic Ocean. The Tara was moored 
in sea ice on 4 September 2006 north of Laptev Sea, and 
broke free on 21 January 2008 in Fram Strait. Most devices 
for sea ice and snow observations were deployed between 
22 and 30 April 2007, and the observations continued 
towards the end of 2007 (Nicolaus et al., 2010). 

 
Figure 1  a, The drift trajectory of Tara between 5 September 2007 and 7 November 2007. The colored line zoomed on the right frame 
indicates the ice thickness measured by an ice mass balance buoy (IMB) deployed nearby Tara between 1 May and 16 December 2007. The 
background ice concentration represents the conditions on 16 September 2007. b, An aerial view of the Tara camp in late April 2007 (Photo 
by Tara field camp crew). 

2.2  Weather data 

Measurements of the meteorological conditions on the ice 
were performed between 1 May and 3 August 2007. The 
variables used in this study are wind speed (Va) and air 
temperature (Ta) at 10 m height and air relative humidity 
(Rh) at 2 m height. These variables were recorded at 
2-minute intervals and averaged to obtain hourly values. 
The downward (Qsd) and upward (Qsu) shortwave and the 
downward (Qld) and upward (Qlu) longwave radiative fluxes 
were measured using a pair of Eppley PSP pyranometers 

and a pair of Eppley PIR pyrgeometers facing upward and 
downward, respectively. The radiation measurements were 
made at 1-minute intervals and averaged to obtain hourly 
values. The surface albedo (α) was derived from Qsd and Qsu. 
Hourly means of both meteorological parameters (Va, Ta, Rh) 
and radiative fluxes (Qsd, Qld), and α were applied as 
external forcing for the ice model.  

2.3  Ice mass balance 

An ice-mass-balance buoy (number 2007C) produced 
jointly by MetOcean (http://www.metocean.com/) and the 
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US Army Cold Regions Research and Engineering 
Laboratory (CRREL) was deployed on 23 April 2007 
(Nicolaus et al., 2010). Acoustic sounders were mounted 
looking downward above the snow surface and looking 
upward below the ice bottom. The surface and bottom 
positions were measured, and the snow depth and ice 
thickness were derived. A 5-m-long thermistor string was 
applied to measure the vertical temperature profile from 
near-surface air through snow and ice to the ocean. The 
vertical sensor interval was 10 cm. Both acoustic and 
temperature measurements were made every 2 h. At the time 
of the IMB deployment, there were six thermistor- sensors 
located above the snow surface. Reliable measurements of 
snow depth, ice thickness and the temperature profile lasted 
from 2 May to 20 November 2007 (Figure 2). 

In early May, snow pack around Tara was thin (5–   
10 cm) compared with a 20 cm snow depth observed during 
the same period at the North Pole (Gerland and Hass, 2011). 
At the IMB site, snow depth increased from the initial 5 cm 
up to 12 cm by 10 June before the snowmelt started. The 
snow melted completely by 22 June and started to 
accumulate again on 14 August. By the end of August, the 
snow had accumulated to 22 cm. The snow depth was also 
measured at a snow stake by visual readings some 250 m 
away from the IMB site, and the results showed very 
similar temporal evolution compared with the IMB 
measurements (Nicolaus et al., 2010). From 1 September to 
20 November, the IMB sounder revealed several episodes 
of snow depth increase on a short time scale of 1–2 d. These 
events were most probably associated with snowfall. The 
snow depth increased from 22 cm by the end of August up 
to 48 cm on 19 October. Between 19 and 21 October, the 
sounder recorded a sudden drop of snow depth by 15 cm, 
followed by an immediate 10 cm increase and a further 
increase up to 55 cm on 27 October. The thermistor string 
data showed a sharp gradient at the same layers indicating 
that the uppermost sensors were indeed in the snowpack. 
The oscillation of snow depth around 20 October most 
probably resulted from a combination of snowfall and 
snowdrift. 

The ice thickness was 214 cm on 1 May and increased 
to 225 cm due to basal growth until 22 June. From 22 June 
to 14 August, the ice surface melt was 53 cm but the basal 
growth was 6 cm. The basal melt was recorded after ice 
surface melt stopped and snow started to accumulate on 14 
August. The basal melt was 20 cm from 14 August until 20 
November. The latest recorded ice thickness was 160 cm. 
The evolution of snow and ice thickness revealed by 
temperature profile measurements (Figure 2a) was 
consistent with that based on the acoustic sensors   
(Figure 2b).  

2.4  Products of NWP models 

The operational analyses and short-term forecasts of the 
European Centre for Medium-Range Weather Forecasts 

 

Figure 2  a, The IMB temperature profiles measured on 2 May, 
10 August and 20 November 2007. The circles represent the data 
from the locations of the temperature sensors. The upper blue 
dashed line marks the initial ice surface when the IMB was 
deployed. The lower blue line is the ice surface on 10 August 
deteced by sounders. The green circles indicate sensors located in 
the air. Negative value was defined below initial ice surface. b, 
The temperature and thickness of snow and ice measured by IMB 
during the period from 1 May to 20 November, 2007. In the 
vertical axis, zero refers to the initial air-snow interface. The black 
lines are the acoustic sounder observed surface/bottom 5-day 
moving average evolution.   

(ECMWF) and the HIgh Resolution Limited Area Model 
(HIRLAM, Undén et al., 2002) were available for this study. 
The ECMWF operational analyses were available with 6 h 
intervals. However, as there are no operational analyses on 
radiative fluxes and precipitation, the downward 
components of the solar shortwave and thermal longwave 
radiation were based on the ECMWF 12-h accumulated 
operational forecasts (00 and 12 UTC + 12 h), and the 
precipitation on 24-h accumulated forecasts (00 UTC +   
24 h). The lateral model spatial resolution was 0.225º. The 
10-m Va, 2-m Ta, and Rh, the cloudiness (CN), snow 
precipitation (PrecS), Qsd and Qld were the variables applied 
as forcing for HIGHTSI. 

The HIRLAM (version 7.4) experiments were made 
over an Arctic domain (4oE–140oE, 85oN–89oN) (Figure 1b) 
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with a horizontal resolution of 15 km and 60 vertical levels. 
As a limited area model, the lateral boundary conditions of 
HIRLAM were taken from ECMWF analyses and forecasts. 
The output variables were the same as for the ECWMF.  

All NWP data were linearly interpolated to 1 h time 
intervals. The ECMWF results were bilinearly interpolated 
to a higher spatial resolution (0.1125º). Values from the 
nearest point of the (interpolated) grid along the Tara 
trajectory were used. 

2.5  HIGHTSI model and configurations for this 
study 

HIGHTSI is a one-dimensional thermodynamic snow/ice 
model targeted to solve temperature and mass balance 
(Launiainen and Cheng, 1998). HIGHTSI solves the 
snow/ice surface heat budget, the solar radiation penetrating 
the snow and ice, the heat conduction in the snow and ice, 
and the ice bottom heat and mass balance. The turbulent 
surface fluxes are parametrized considering the thermal 
stratification. The penetration of solar radiation into snow 
and ice depends on the cloud cover, surface albedo, snow 
structure and density, and colour of the sea ice, making the 
extinction coefficient a time dependent parameter with a 
large range of variability (Table 1). This allows quantitative 
calculation of sub-surface melting (Cheng et al., 2003, 
2006). Short- and long-wave radiative fluxes can be either 
parametrized or prescribed based on in situ observations or 
NWP model results. The heat flux and mass balance as well 
as snow/ice phase transformation are calculated at the 
interfaces of air/snow, air/ice, snow/ice, and ice/ocean 
(Cheng et al., 2008).  

The essential forcing parameters for HIGHTSI are Va, 
Ta, Rh, Qs, Ql as well as snow precipitation (PrecS). The 
model experiment defined as the reference control run was 
based on forcing by in situ observations and covered the 
period from 1 May to 3 August. During the Tara expedition, 
unfortunately PrecS measurements were not made. We 
therefore applied ECMWF snow precipitation. A snow 
density of 320 kg·m−3 was used to convert the snow water 
equivalent to snow depth (Huwald et al., 2005). 

At the sea ice bottom, the oceanic heat flux (Fw) varies 
in time and space. The variations are related to the seasonal 
evolution of upper-ocean temperature (Lei et al., 2014) and 
the solar heating of the ocean due to regional appearance of 
open leads and changes in ice concentration in summer 
(Perovich, 2011). Lacking direct Fw measurements, we 
estimated it based on the IMB measurements of ice 
thickness and in-ice temperature (Lei et al., 2010). At the 
ice bottom, the difference between the conductive heat flux 
ki/(∂Ti/∂z) and Fw determines the ice growth rate ρiLf 
(dhi/dt), where ∂Ti/∂z represents the vertical gradient of 
in-ice temperature Ti near the ice bottom, Lf is the latent 
heat of fusion of sea ice, hi is ice thickness, and z and t are 
the depth and time, respectively. The bottom ice growth of 
10 cm from early May until onset of surface ice melting on 
21 June represents an average ice growth rate of 1.9 mm·d−1. 
The conductive heat flux near the ice bottom was calculated 
using the thermistor string data. The heat conductivity of 
sea ice was calculated based on Pringle et al. (2007), using 
average sea ice temperature and mean sea ice salinity of   
4 ppt (Nicolaus et al., 2010). As the latent heat of fusion of 
sea ice is 333.4 kJ·kg−1, to generate 10 cm ice growth over 
52 d, the average oceanic heat flux should have been about 
1 W·m−2.  

During the study period the ice floe of the Tara camp 
was relative stable, and no large areas of open water were 
detected near the IMB in May and June. Melt ponds were 
detected in the vicinity of Tara but only for a relatively short 
time period in the second half of July (Sankelo et al., 2010). 
During the melt season, Fw was likely to increase due to 
solar heating. We assumed Fw = 1 W·m−2 for the freezing 
period (1–22 June) and Fw = 2 W·m−2 for the rest of the 
modelling period. The initial snow and ice temperature 
profiles were defined according to the IMB measurements. 
The model parameters are summarized in Table 1. We 
applied the observed surface albedo in all model 
experiments to reduce the uncertainties of shortwave 
radiative flux. The model had 20 layers in sea ice and    
10 layers in snow. The time step was 1 h.  

Table 1  HIGHTSI model parameters 
Parameter Value Source 

Albedo (αs, αi) Observation Tara measurements 

*Extinction coefficient for sea ice (i) 1.5–17 m–1 Grenfell and Maykut (1977) 

O *Extinction coefficient for snow (s) 15–25 m–1 Perovich (1996) 

Freezing temperature at ice base (Tf) –1.8℃ Sea water (35‰ salinity) 

Initial density of snow (so) 320 kg·m−3 Huwald et al. (2005) 

Sea ice density (i) 910 kg·m−3 Tara measurements 

Sea ice salinity (si) 3–6 ppt Nicolaus et al. (2010) 

Snow density (s) Function Anderson (1976) 

Thermal conductivity of sea-ice (ksi) Function of Ti, si Pringle et al. (2007) 

Thermal conductivity of snow (ks) Function of s Sturm et al. (1997) 

Note: * The extinction coefficients of sea ice and snow are functions of cloudiness (0–1) and ice colour (blue or white) (Launiainen and Cheng, 1998). 
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2.6  HIGHTSI model experiments 

Several model experiments were made. The reference run 
(REF) was used to assess the performance of the HIGHTSI 
model, with minimal impact from uncertainties in the 
atmospheric forcing. Hence, HIGHTSI was forced by the 
Tara in situ observations, except that precipitation was 
based on the ECMWF 24-h accumulated forecasts. The 
differences between the Tara observations and NWP model 
results originated from various factors, such as inaccuracies 
in the NWP model initialization, the resolved dynamics of 
weather systems, and the parameterization of sub grid-scale 
processes. To investigate the sensitivity of snow and sea ice 
mass balance to the inaccuracy of atmospheric forcing, we 
carried out HIGHTSI sensitivity experiments. Those 
experiments, entitled as EC and HIR, were forced by the 
analyses and short-term forecasts of the ECMWF and 
HIRLAM models, respectively.  

Comparing the results of REF, EC and HIR yield 
information on the impact of the uncertainty of the 
modelled atmospheric forcing on snow and ice mass 
balance. In addition, we carried out the following sensitivity 
experiments Va-EC, Ta-EC, Qs-EC, Ql-EC, Va-HIR, Ta-HIR, 
Qs-HIR, and Ql-HIR, where Va refers to wind speed, Ta to 
air temperature, Qs to downward shortwave radiation, and 
Ql to downward longwave radiation. In these experiments, 
the selected atmospheric forcing variable was based on the 
ECMWF or HIRLAM model output, but the other 
atmospheric forcing variable were based on the Tara 
observations. Hence, these experiments yielded information 
on the impact of the uncertainty of individual atmospheric 
forcing variables, allowing identification of the forcing 
variables associated with most critical uncertainties from 
the point of view of snow and ice mass balance. Finally, we 
wanted to understand how representative the Tara 
observations were for snow and ice conditions along the 
Transpolar Drift Stream. Hence, we made a sensitivity 
experiment EC-100 that was otherwise identical to EC, but 
the ECMWF model output was taken from a trajectory 
parallel to that of Tara but located 100 km northwest of it. 
To access solely the impact of weather forcing, we assumed 
the same initial conditions of snow depth, ice thicknesses 
and temperature profile as applied in the EC experiment. 

3  Results 

3.1  Assessment of NWP results 

The reliability of modelling results largely depends on the 
quality of forcing data. We applied a double linear 
interpolation procedure to calculate the ECMWF and 
HIRLAM output variables along the Tara drift trajectory 
using the nearest grid-point values picked from the models 
(best match to the Tara location from NWP model grids). 
Figure 3 shows the time series of Tara observed and NWP 
modelled weather parameters along Tara track. Figure 4 

shows the probability density function (PDF) of Tara 
observed and NWP modelled meteorological parameters. 
Table 2 gives statistical analyses of the NWP results. 

The modelled wind speed, in general, well reproduces 
the temporal variation of observations (Figure 3a). However, 
both NWP models tended to overestimate low wind speeds 
and underestimate high wind speeds. For example, in the 
case of observed wind speeds less than 2 m·s−1, the NWP 
modelled wind speeds were, on average, 1.7 m·s−1 
(ECMWF) and 1.8 m·s−1 (HIRLAM) too high, whereas for 
observed wind speeds higher than 8 m·s−1, the NWP wind 
speeds were, on the average, 1 m·s−1 (ECMWF) and 3 m·s−1 
(HIRLAM) too low. The ECMWF average wind speed  
(4.6 m·s−1) was slightly higher than that of HIRLAM   
(4.1 m·s−1) and had a better correlation with observations  
(Table 2). 

The temporal variability of modelled and observed air 
temperature agreed to each other (Figure 3b). However, the 
NWP models overestimated the lowest air temperatures. 
The ECMWF and HIRLAM produced the same average air 
temperature. Both ECMWF and HIRLAM air temperature 
showed a positive bias (1.7 ) compared with the ℃
observations. During the melting season, however, the 
agreement was better. The ECMWF relative humidity 
agreed better with Tara observations than that of HIRLAM. 
Before the start of the melting season, the average 
HIRLAM relative humidity was 12% larger than the 
ECMWF result. During the melting season, the modelled 
mean values of relative humidity were 97% for ECMWF 
and 96% for HLRLAM that were closed to each other and 
to observations (94%). However, on a few occasions the 
measurements suggested large temporal variations of 
relative humidity, while the modelled values remained 
stable (Figure 3c). The radiative fluxes, in particular their 
temporal variability differed for observations and NWP 
products (Figures 3d, 3e).  

The modal of wind speed was 4 m·s−1 among in situ 
observation and results of NWP models (Figure 4a). The 
main modal of air temperature was 0℃ because half of the 
data period was in summer. The observed and modelled Ta 
distributions agreed well in the range from −5℃ to +2℃ 
(Figure 4b).  NWP models yielded moister air compared 
with observaitons (Figure 4c). The ECMWF relative 
humidity agreed better with Tara observations than that of 
HIRLAM (Table 2). The observed, ECMWF-based, and 
HIRLAM-based distributions of Qs and Ql differed from 
each other (Figures 3d, 3e; Figures 4d, 4e). This was mostly 
due to differences in clouds. The uncertainties in the 
treatment of the variable cloud properties by the NWP 
models are often the main source of the differences between 
modelled and observed radiation fluxes (Schreier et al., 
2013). Unfortunately, we do not have reliable cloud 
observations to make a more extensive assessment. Overall, 
the absolute difference between ECMWF and observed Qs 
(45 W·m−2) was larger than that between HIRLAM and 
observations (20 W·m−2). The biases were −45 W·m−2 and  
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Figure 3  Time series of ECWMF (red line) and HIRLAM (cyan line) modelled and in situ observed (grey) variables of wind speed (Va, a), 
air temperature (Ta, b), relative humidity (Rh, c), downward shortwave radiative flux (Qs, d), and downward longwave radiative flux (Ql, e).   
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Figure 4  Probability density function (PDF) of Tara observed (red) and NWP modeled (ECWMF, green; HIRLAM, blue), Va, Ta and Rh 
sorted into 2 m·s−1, 2  and 2% bins, as well as ℃ Qs and Ql sorted into 50 and 25 W·m−2 bins, respectively. The data include 2255 samples 
totally.   

Table 3  Statistics of meteorological variables based on Tara observations as well as the operational analyses and short-term forecasts of 
the ECMWF (EC) and HIRLAM (HIR) from 1 May to 3 August 2007 

 Data source Va/(m·s−1) Ta/℃ Rh/% Qs/(W·m−2) Ql/(W·m−2) 

Mean value 

Tara 3.9 −4.7 91 253 255 

ECMWF 4.6 −3.0 92 208 285 

HIRLAM 4.1 −3.0 92 233 281 

Bias, standard deviation 
(Std) 

deviation 

Tara 2.0 6.0 5.6 73 44 

ECMWF 2.1 5.1 7.6 67 38 

HIRLAM 1.8 5.0 6.3 116 58 

Bias 
Cal. – Ob. 

EC MWF– Tara 0.7 1.7 0.5 −45 31 

HIRLAM –Tara 0.2 1.7 4.3 −20 27 

Root-mean-squared errors 
(RMSE) 

ECMWF– Tara 1.9 2.3 5.1 94 47 

HIRLAM –Tara 2.2 2.8 5.5 129 57 

Corr. Coff. 
EC versus Tara 0.64 0.97 0.75 0.28 0.63 

HIR versus Tara 0.35 0.94 0.60 0.15 0.54 

 
–20 W·m−2 respectively, i.e., the modelled Qs were 
underestimated. For smaller Ql (< 250 W·m−2), the 
distributions of observations and NWP results agreed 
reasonably well. However, the HIRLAM model 
overestimated the large values (Figure 3e, Figure 4e). The 
correlation between the observed and modelled Ql was 
larger than that of the Qs (Table 2). 

3.2  Reference run 

The modelled ice and snow evolutions were compared with 
the IMB measurements (Figure 5). From 1 May until 11 
June, the accumulated snow precipitation in water 
equivalent was 16.6 mm based on the ECMWF model. This  

resulted in 5.2 cm snow depth increase, which was an 
underestimate by 1.8 cm compared with the IMB data. The 
timing of the modelled snowmelt onset was 10 June versus 
the observed onset on 7 June. The modelled and observed 
snowmelt rates and the snow-free dates were 10 mm·d−1 and 
9 mm·d−1, and 22 and 21 June, respectively. The modelled 
timing of ice melt onset agreed with observations partly due 
to the good simulation of snowmelt onset. During the 
simulation period, the IMB measured 0.4 m surface ice melt 
compared to the model result of 0.34 m. The errors of 
modelled surface heat fluxes contributed to the difference 
(Section 3.4).  

The modelled ice bottom evolution was in good 
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Figure 5  IMB observed and HIGHTSI modelled (reference run) 
time series of surface evolution (a) and bottom evolution (b). The 
blue and black lines are IMB 5-day and 1-day moving average 
results. The ice growth in late June is due to a false bottom 
formation. 

agreement with IMB measurements until the end of the 
snow-covered period. The model run yielded 7.1 cm bottom 
freezing until 14 June followed by 6.5 cm melting by the 
end of the simulation. The modelled ice thickness agreed 

well with the IMB measurement until mid-June before the 
bottom melt was simulated. The IMB, however, revealed a 
further bottom freezing up to 8 cm until late July (5-day 
running mean). This freezing up at bottom during the 
melting season is likely a process called false bottom 
formation (Notz et al., 2003; Perovich et al., 2003). A “false 
bottom” is a thin layer of ice which forms in summer 
underneath the ice floe by meltwater that lies between the 
salty water and the sea ice. The source of meltwater and rate 
of its appearance are critical to determine the ice growth in 
summer. False bottoms may contribute to basal ice growth 
during the spring-summer period (Perovich et al., 2018). 
The surface ice melt onsite started on 19 June, which should 
have reduced ice surface albedo and increased solar 
radiation absorbed by sea ice and probably also the ocean 
below, enhancing bottom melting. The model experiment 
indeed suggested bottom melting after 19 June. During the 
melting season, the oceanic heat flux likely increases 
(Perovich and Elder, 2002) and would result in further 
melting at the ice bottom.  

3.3  Sensitivity studies 

The mean differences between ECMWF calculated and Tara 
observed Va and Ta are 1.4 m·s−1, 1.8℃, and 1.7 m·s−1, 1.9℃ for 
HIRLAM. The mean values of Qs and Ql are 74 W·m−2,  

 
Figure 6  Results of model sensitivity experiments for mass balance at the ice bottom (a, c) and ice surface (b, d), for the experiments 
with forcing from the ECMWF (a, b) and HIRLAM (c, d) models. The line types represent the various sensitivity experiment. “Ref” marks 
the reference run. EC and HIR are model runs using entire ECMWF or HIRLAM results as forcing. 
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36 W·m−2 for ECMWF and 108 W·m−2, 47 W·m−2 for 
HIRLAM. 

The ice bottom mass balance and ice surface melt 
showed similar characteristics with respect to the 
sensitivities of both ECMWF and HIRLAM forcing data. 
The uncertainty of wind speed (Va-EC, Va-HIR) has no 
major impact on bottom ice mass balance and surface 
melting. Wind speed mainly affects the turbulent fluxes of 
sensible and latent heat but during spring and summer both 
fluxes were very small compared with Qs and Ql, resulting 
in a very small sensitivity to the wind speed. The 
uncertainty of air temperature (Ta-EC and Ta-HIR) affects 
ice mass balance both at the bottom and surface. The ice 
thickness varied by some 3 cm at the ice bottom in response 
to both ECMWF and HIRLAM Ta uncertainties. At surface, 
the uncertainty of Ta resulted in 19 cm increased melting for 
Ta-EC and 14 cm more melting for Ta-HIR. At the ice 
bottom, the sensitivities of ice mass balance to the Qs 
(Qs-EC, Qs-HIR) and Ql (Ql-EC, Ql-HIR) radiative forcing 
were close to each other for both ECMWF and HIRLAM. 
The effect was stronger than that of Ta. At the surface, 
however, the sensitivity of ice melting in response to the 
change of Qs and Ql differs from each other, respectively. 
The inaccuracy in the longwave radiative flux affects the 
most surface melting. The uncertainty of Ql generated an 
increase in surface melting by 0.57 m for ECMWF and  
0.84 m for HIRLAM, respectively. The corresponding 
values are 0.39 m and 0.57 m for Qs. 

3.4  Comparison of the freezing and melting 
periods 

To better understand the model results, we divided the study 
period into two phases, the freezing period from 1 May to 9 
June and the melting period from 10 June to 2 August. We 
present results that were derived from control reference run 
(Ref) as well as model experiments using solely EC and 

HIR output as external forcing. The observed and 
NWP-based forcing of Ta, Qs and Ql, as well as the 
modelled surface heat fluxes for both periods are presented 
in Table 4. 

During the freezing period, the net shortwave radiative 
flux affecting the surface heat balance (Qsum, not including 
the fraction penetrating below the model surface layer) did 
not vary much between the model experiments, whereas the 
net longwave radiative fluxes (Qlnet) were different due to 
different Qld (c.f. Table 4). The surface turbulent fluxes 
were small. Among the three experiments, differences 
mostly occurred between Ref and EC. The net radiative and 
turbulent heat flux acting at the surface (Qsnet+Qlnet+Qh+Qle) 
was −32 W·m−2, −14 W·m−2 and −23 W·m−2 for Ref, EC 
and HIR, respectively representing a heat loss. The surface 
conductive heat flux (Fc) was upward. The net surface heat 
flux Qnet: (Qsnet+Qlnet+Qh+Qle+Fc) was −0.8 W·m−2,     
12 W·m−2 and 16 W·m−2 in Ref, EC, and HIR, respectively, 
i.e., the snow surface layer gained heat in EC and HIR, but 
not in Ref. There was no modelled surface melting in any of 
the experiments during the freezing period. Accordingly, the 
ice mass balance was dominated by the bottom heat budget, 
which generated freezing.  

During the melting period, the shortwave radiative flux 
dominated the surface net heat flux. The total radiative and 
turbulent heat flux at the surface (Qsnet+Qlnet+Qh+Qle) was 
12 W·m−2, 49 W·m−2 and 50 W·m−2 for Ref, EC, and HIR, 
respectively, representing heat gain. Qnet was 22 W·m−2,  
43 W·m−2 and 42 W·m−2 in Ref, EC, and HIR, respectively, 
demonstrating that in REF the conductive heat flux 
contributed to the heat gain at the surface, but not in EC and 
HIR. The larger surface heat gain in EC and HIR caused 
more surface melting than in Ref. The lower air temperature 
in Ref (−0.4  versus 0.6  for EC and 0.4  for HIR) and ℃ ℃ ℃
a smaller downward longwave radiative flux resulted in less 
surface melting. 

 

Table 4  Mean values of the forcing variables for HIGHTSI: air temperature (Ta) and downward radiative fluxes (Qsd, Qld), as well as the 
HIGHTSI model results for the surface fluxes, during the freezing and melting periods in Ref, EC, and HIR  

 
External forcing HIGHTSI modelled surface heat fluxes 

Ta/℃ Qs/(W·m−2) Ql/(W·m−2) Qsum/(W·m−2) Qlnet/(W·m−2) Qh/(W·m−2) Qrle/(W·m−2) Fc/(W·m−2) Qnet/(W·m−2)

Freezing period 

Ref −10 253 231 14 −40 −0.6 −5 32 −0.8 

EC −7.5 225 252 12 −27 6 −5 26 12 

HIR −7.1 323 225 15 −49 9 2 39 16 

Melting period 

Ref −0.4 253 273 55 −39 0.3 −4 10 22 

EC 0.6 195 312 44 −3 6 2 −6 43 

HIR 0.4 161 325 36 10 4 −0.2 −7 42 

Notes: Qsum: shortwave radiative flux for the surface layer; Qlnet: net longwave radiative flux; Qh: sensible heat flux; Qle: latent heat flux; Fc: surface conductive heat 

flux; Qnet: (Qsnet+Qlnet+Qh+Qle+Fc). All fluxes are defined positive toward the surface. 

 
The observed and modelled average temperature 

profiles for the freezing and melting periods are shown in 
Figure 7. During the freezing phase, the observed and 

modelled ice temperature profiles were quasi-linear and close 
to each other, indicating an upward heat conduction. During 
the melting season, the ice temperature profiles became 
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nonlinear with the lowest ice temperature at a depth of about 
0.6 m. This was modelled reasonably well in all experiments. 
The nonlinearity of the temperature profile was dominated by 
the variation of temperature and the salinity-dependent 
thermal conductivity of sea ice. Once melting occurred, the 

temperature profile became isothermal. The error analyses 
are presented in Table 5. During the freezing period, the 
vertical temperature distribution of Ref was more accurate 
than those of EC and HIR. The RMSE and biases were 
reduced during the melting period.  

 
Figure 7  The modelled and observed mean vertical temperature profiles for the freezing period (a) and the melting period (b). The lines 
connected by black circles mark the IMB observations, and the model results are shown in red (Ref), blue (EC) and green (HIR) lines. 

Table 5  The RMSE, Std, and correlation coefficient (R) between calculated and observed average vertical temperature profile of ice 
cover for the freezing and melting periods 

  RMSE Bias Std R 

Freezing period 

Ref 0.55 −0.18 0.11 
 

99 
EC 1.03 0.28 0.38 

HIR 1.31 0.37 0.26 

Melting period 

Ref 0.41 −0.24 0.22 98 

EC 0.45 0.12 0.41 87 

HIR 0.44 0.11 0.42 86 

 

3.5  Spatial variations of the ice mass balance 

At a given time, the model represented conditions at a 
localized point, but the spatial variations of snow depth and 
ice thickness are complex. A full assessment of the spatial 
heterogeneity cannot be made without considering the 
dynamics and thermodynamics of the atmosphere, snow, 
sea ice and the ocean. However, simple model experiments 
can reveal the impact of weather forcing on spatial variation 
of snow and ice mass balance on a selected scale. Focusing 
on a scale of 100 km across the Transpolar Drift Stream, we 
compared the results of experiments EC and EC-100 (see 
Section 2.6). The modeled snow depth and ice thickness 
along the two trajectories showed highly correlated 

temporal evolution and, by the end of the study period, the 
results of these two experiments only showed a difference 
of 3 cm for the snow depth and 2 cm for the ice thickness. 
Hence, compared to spatial differences in weather forcing 
on a 100 km scale, the initial snow and ice conditions were 
more critical for spatial heterogeneity in snow and ice mass 
balance.  

4  Discussions and conclusions 

Snow and sea ice mass balance at the drifting ice station 
Tara in the Arctic Ocean in 2007 was investigated. We 
applied in situ meteorological and surface flux observations, 
IMB data, snow and ice model (HIGHTSI), as well as 
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operational analyses and short-term forecasts from two 
NWP models. Along the Tara drift trajectory, the mean snow 
depth was 7 cm before the snow melt onset. The maximum 
ice thickness was 2.25 m in late June. A total of 53 cm ice 
surface melt was observed suggesting an average surface 
melting rate of about 1 cm·d−1 during the melting season. The 
latest recorded ice thickness was 1.6 m in the Greenland Sea. 
In early July, acoustic sounders detected a “false bottom”. 
The occurrence of a false bottom has been found in the 
Arctic Ocean prior to (e.g., Untersteiner and Badgley, 1958; 
Notz et al., 2003) and after (e.g., Wang et al., 2020; Lei et al., 
2021) the Tara expedition. This phenomenon can occur not 
only in the central Arctic but also in the coastal landfast ice 
zone (Wang et al., 2013, 2020). The Tara in situ observation 
indicated that it was likely a short-lived process since this 
part of ice formation was quite fragile and potentially subject 
to a dynamic breakoff from the main ice column (Wang et al., 
2020). The false bottom can be seen quite clearly from high 
resolution ice temperature regimes measured by the 
thermistor string-based ice mass balance buoy (Lei et al., 
2021).   

The HIGHTSI run, applying Tara observations as 
forcing, yielded onset of snow melt, onset of surface ice 
melt, and ice bottom growth that were in close agreement 
with the IMB measurements. During freezing conditions, 
the IMB ice thickness and ice temperature gradients 
suggested a small average oceanic heat flux of 1 W·m−2 at 
the ice bottom. The oceanic heat flux is critical for ice 
bottom mass balance. During surface melt, the ice layer is 
close to isothermal, and the conductive heat flux close to 
zero. Hence, the oceanic heat flux alone controls the basal 
melt. After the end of the surface melt season, the basal 
melt results from the difference between the conductive 
heat flux and oceanic heat flux. Along the Tara trajectory, 
surface melting dominated sea ice mass balance during the 
melting period partly because during the Tara drift period 
the spring was particularly warm and the surface melting 
season was long (Vihma et al., 2008). The short-term 
impact of oceanic heat flux during the simulation period 
was limited. Accurate information on surface heat fluxes 
was critical for successful modelling of ice surface melting. 
Challenges remain in simulation of the “false bottom” 
observed during the melting season. Even if a model can 
simulate the ice formation, the ablation of “false bottom” 
might not be purely a thermodynamic process. Also, a 
dynamic break off may occur (Wang et al., 2020). There is 
need for more quantitative observational data on this 
process before it can be implemented in models.  

The modelled evolution of snow depth, controlled by 
ECWMF-based snow precipitation, was in line with 
observations. Modelling of snow accumulation relies on the 
accuracy of precipitation, but in situ precipitation 
observations are seldom available from the Arctic Ocean. 
Because of a very limited amount of people in the Tara 
expedition after April, no continuous precipitation and snow 
drift observations were made. Although the reference run 

showed a good snow depth evolution, we still cannot 
conclude the quality of modelled snow accumulation, since 
it largely depends on the quality of precipitation data. Even 
in the case of precipitation measurements available, the 
locally measured snow depth may still be 2–3 times larger 
than the snow depth derived from precipitation 
measurements (as in the Surface Heat Budget of the Arctic 
Ocean (SHEBA) campaign; Huwald et al., 2005). In this 
study, HIGHTSI well reproduced the snow melt onset and 
the melting rate, but with errors on snow accumulation. The 
inaccuracy of NWP-based snowfall and the lack of snow 
dynamics in HIGHTSI contributed to the differences. An 
advanced snow model (e.g., Liston et al., 2020; Wever et al., 
2020) would be useful to better understand the role of snow 
dynamics on snow accumulation.  

The snow melt onset, the mean vertical temperature 
profile in snow and ice and ice bottom freezing were 
successfully modelled applying NWP results as forcing. 
Despite this, during the freezing period, the evolution of the 
snow and ice temperature profile was better represented in 
the model experiment using in situ forcing data than in the 
experiments using NWP results as forcing. During the 
melting period, the nonlinear profile of ice temperature was 
modelled well. The RMSE and STD between modelled and 
observed mean temperature profile were smaller using in 
situ forcing data than in the experiments using NWP results 
as forcing, but the differences were rather small. Hence, our 
results suggest that, from the point of view of the mean 
temperature profile, the ECMWF and HIRLAM products 
were reasonable to be used as forcing.  

From the point of view of snow and sea ice 
thermodynamics, the main uncertainty of NWP model 
results lies in the radiative fluxes, which depend on cloud 
conditions, such as cloud liquid water and ice contents as 
well as cloud coverage and height. In particular, the 
NWP-based longwave radiative flux showed large 
differences from Tara observations. The accuracy of air 
temperature is also important for the ice mass at the ice 
surface and at the ice bottom. The surface melting was most 
sensitive to the longwave radiative flux followed by the 
shortwave radiative flux and the air temperature. During the 
Tara drift in spring and summer, the order of importance of 
NWP variables from the point of view of sensitivity of sea 
ice mass balance is as follows: the downward longwave 
radiative flux, downward shortwave radiative flux, air 
temperature and wind speed. The sensitivity was higher 
during summer than spring. 

The errors in the modelled snow accumulation and the 
first snow-free day indicate that improvements are still 
needed in NWP products for precipitation and radiative 
fluxes. These are critical products for operational sea ice 
services, in particular for low solar height angles. Negative 
shortwave radiation bias has been found for HIRLAM in 
nearly clear-sky conditions with a low solar elevation 
(Rontu et al., 2017). Over the Baltic Sea, differences 
between the observed and HIRLAM-based Qs were 
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generally larger in conditions of a low solar height angle 
(Pirazzini et al., 2006).  

The evolutions of snow and ice mass balance along the 
Tara drift trajectory and a parallel one 100 km north-west of 
it showed highly correlated mass balance patterns. The 
differences of modelled snow depth and ice thickness were 
much less than the differences caused by the effect of 
uncertainties of the meteorological forcing variables 
(Section 3.3) or caused by model experiments using a 
different initial snow depth and ice thickness or spatial 
variability within a very small footprint of about a few 10 m 
due to irregular distribution and re-distribution of snow 
observed at different places in the Arctic Ocean (Gerland 
and Haas, 2011). The reasons for the small differences 
probably include the following: (1) the seasonal mean 
weather conditions were almost the same along both 
trajectories, despite of instantaneous differences, and (2) the 
thermal inertia of snow and ice prevent large spatial 
changes of snow and ice thickness in response to the 
instantaneous differences of atmosphere variables. The 
spatial variations of snow and ice mass balance are, 
however, sensitive to differences in the initial snow and ice 
conditions and timing of major weather events, such as 
storms (Merkouriadi et al., 2017). From the perspective of 
seasonal sea ice forecast in the Arctic, the initial ice 
conditions and timing of the calculation are critical (Day et 
al., 2014). The often-observed large spatial variations of 
snow and ice thickness distribution (Haas et al., 2017) are, 
therefore, most likely dominated by the dynamic features of 
the sea ice. In the case of this thermodynamic study over the 
central Arctic Ocean far from the coasts, the horizontal 
resolution of atmospheric forcing fields would have not 
been of primary importance. However, horizontal gradients 
in atmospheric variables are usually much larger in coastal 
and archipelago regions, where a high model resolution is 
needed (Kilpeläinen et al., 2011). Also, modelling of 
small-scale sea ice dynamics, such as deformation and 
opening and closing of leads, is sensitive to horizontal 
resolution of atmospheric forcing (Itkin et al., 2017).  

To improve our understanding of snow and ice 
characteristics in the Arctic Ocean, new observations from 
IMB are important (Gerland et al., 2019). Use of new 
satellite remote sensing products deliver promising results, 
as such from the ICESat-2 laser altimeter with valuable 
additional information on Arctic sea ice mass balance over 
larger areas (Petty et al., 2020; Koo et al., 2021). Using 
those in combination with in situ observations and 
modelling as presented in this study can lead to a further 
improved understanding of the Arctic sea ice mass balance 
and its changes. 

A lot of new data were collected during the MOSAiC 
campaign in 2019–2020 (Krumpen et al., 2020; Lei et al., 
2021). New findings are expected from further MOSAiC 
data analysis and forthcoming Chinese National Arctic 
Research Expedition (CHINARE) data analyses and 
modelling. 
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