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Northern Hemisphere drought risk in a warming climate
Daniel F. Balting 1✉, Amir AghaKouchak 2,3, Gerrit Lohmann1,4 and Monica Ionita 1,5

Drought frequency and severity are projected to increase in the future, but the changes are expected to be unevenly distributed
across the globe. Based on multi-model simulations under three different future emissions and shared socioeconomic pathways, we
show that a significant drought intensification is expected in dry regions, whereby the severity depends on greenhouse gas
emissions and development pathways. The drought hotspots are located in the sub-tropical regions where a moderate to extreme
summer drought in today’s climate is expected to become a new normal by the end of the 21st century under the warmest
scenario. On average, under the warmest future scenario, the drought occurrence rate is projected to be 100% higher than that of
the low emission scenario. Further, for the regions which are currently less affected by long-lasting droughts, such as the European
continent, climate models indicate a significant increase in drought occurrence probability under the warmest future scenario.
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INTRODUCTION
In recent decades, historical climate observations have shown
that many parts of the world are experiencing longer and more
intense droughts as a consequence of observed atmospheric
warming1. As a result, hydrological conditions are changing
with potential regional climate change impacts on the society
and ecosystems2–4. Changing drought characteristics can lead
not only to increased crop failures5, but also shifts in the entire
ecosystem and vegetation zones6. Knowledge about the future
drought occurrences, intensification and spatial distribution is
therefore essential for developing adaptation policies and
strategies.
In general, future drought projection is challenging since

several relevant variables and complex processes contribute to
the occurrence and severity of droughts. However, all drought-
relevant variables are not necessary represented well in the
general circulation models (GCMs). In particular, future changes in
potential evapotranspiration (E0) and precipitation, which are
integral parts of the hydrological cycle, are of major interest7,8.
Different multimodel efforts have explored climate change
impacts on regional drought variability, e.g. the studies based
on Fifth Phase of the Coupled Model Intercomparison Project
(CMIP5)9. Based on the CMIP5 simulations, hotspots of increased
drought risk and severity have been identified10, and the
mechanisms behind the changes of the key drought related
variables, e.g., precipitation, E0 and large-scale atmospheric
circulation, have been investigated11–15. Nevertheless, it is
important to revise the previous assessment based on the
recently released state-of-the-art model simulations participating
in Phase Six of the Coupled Model Intercomparison Project
(CMIP6)16. The main motivation is that the physical descriptions of
the climate system in CMIP6 simulations, spatial resolution, and
the climate forcings have improved substantially16. To investigate
droughts several indices are available in the literature17. In this
study, the Standardized Precipitation Evapotranspiration Index
(SPEI)18,19, which represents a significant part of the atmospheric
water balance, is used20. The advantage of the index is that it can
be used for comparison across locations with different climatology

because it is a standardized index for a given location relative to
its long-term climatology21.
Using a multi-model ensemble mean drawn from CMIP6

database, we evaluate and investigate changes in the key driving
factors of droughts, namely precipitation and E0 in the historical
runs and the radiative forcing scenarios developed for Scenar-
ioMIP22. In this study, the conditions of low (Shared Socio-
economic Pathways 1–2.6; SSP1–2.6), medium (SSP2-4.5) and high
(SSP5-8.5) emission scenario are investigated. Furthermore, we
compute the occurrence rate of dry periods for the updated
regions of Sixth Assessment report (AR6) of the Intergovernmental
Panel on Climate Change (IPCC)23. The presented study focuses on
the Northern Hemisphere during summer (June, July and August
(JJA)), the season with the highest E0 and the highest spatial
distribution of droughts3. The overarching goal is to investigate
the evolution of summer temperature and precipitation across
different CMIP6 forcing scenarios, tendencies towards a wetter or
drier climate and the occurrence of moderate to extreme droughts
in three scenarios.

RESULTS
Model evaluation
In order to understand how drought is expected to change in the
future using climate models, the quality of the simulations should
be evaluated first. For this purpose, we perform a comparison
between observed averages of summer temperature, precipitation
and drought with modeled climate simulations for the period
1971 to 2000 (Fig. 1). Positive (negative) valuates indicate that the
ensemble mean of the models has a greater (lower) value than
that of the observations.
In Fig. 1a, Greenland and western Russia, parts of the Himalayas

and Southeast Asia are significantly colder in the multi-model
ensemble than in reality. In contrast, northern Canada, parts of
central North America, northern India, the Arabian Peninsula and a
band from the Mediterranean to central Asia are significantly
warmer in the modelled climate state than in reality. Another
pattern is shown in the precipitation difference (Fig. 1b) where
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large parts of North America, northern Central America, Southeast
Asia and North Asia are characterized by significantly larger
precipitation in the model ensemble mean. On the other hand,
substantial underestimation of precipitation in the multi-model
ensemble is observed in the northern Mediterranean region,
southern Sahara and northern part of India compared to the
observations. Nonetheless, the difference map of SPEI shows no
significant overall difference between the model simulations and
observations except in some small regions (Fig. 1c). Only small
parts of northern North America, West Africa and the southern
Arabian Peninsula and Greenland show a significant difference.
To investigate the consistency of the observed and climate

model ensemble trends, we compare the differences of the
temporal evolution of observed and modelled climate conditions
for the periods 1975 to 1989 and 2000 to 2014 (Fig. 2). More
specifically, we compare the relative change based on observa-
tions and historical model simulations during two historical
periods (2000–2014 vs. 1975–1989). For all three variables, a
negative value indicates a stronger trend between the two time
periods in the observations than the climate model ensemble (a
positive value represents the opposite). Comparison of tempera-
ture trends indicates that large parts of North America, Central
Asia and Northwest Africa experience a higher temperature
increase in observations than represented by the ensemble
mean (Fig. 2a). In contrast, the ensemble mean shows a more
pronounced warming trend in the eastern and northern
Mediterranean region, northern Russia and northern Canada
compared to observations. Considering precipitation (Fig. 2b),
the trend in the Indian monsoon region is it is noticeably stronger
than that of the ensemble mean of simulations. In addition, the
difference in simulated and observed SPEI between these two
periods shows that Central Europe, Central Africa and North

Greenland experience a much stronger trend in observations
relative to the ensemble mean (Fig. 2c). On the other hand, Central
North America and Northern Canada are characterized by a
stronger trend in the ensemble mean compared to the observa-
tions (Fig. 2c).

Projected summer temperature changes
Future drought conditions, among others processes, depend on
the temperature variability. Rising air temperature nonlinearly
increases the saturated water vapor pressure at a rate of
approximately 7%/K according to the Clausius-Clapeyron rela-
tionship24. The increasing water holding capacity of air can lead
to a higher amount of water that can theoretically evaporate
(increase of E0). Changes in the greenhouse gas concentration
combined with other local geographical and biophysical features
can change the spatial and temporal variability of the
temperature heterogeneously. The heterogeneity of the tem-
perature pattern is shown in Fig. 3 for the Northern Hemisphere,
where the temperature conditions for three different emissions
are represented in terms of anomaly plots, i.e., the difference
between the projected climate condition (2071–2100) and the
historical (1971–2000) baseline.
An overall significant increase of the average summer

temperature is shown in the Northern Hemisphere under all three
future scenarios (Fig. 3), but with substantial variability in the
magnitude and spatial variability among them (compare Fig. 3a, b
and c). Under SSP1–2.6 (which represents a total anthropogenic
forcing of 2.6 Wm−2)22 the temperature increase is relatively
homogenous over the whole Northern Hemisphere, with the
magnitudes varying between 1 and 3 °C. A stronger warming is
observed under SSP2–4.5 (which represents a total anthropogenic
forcing of 4.5 Wm−2)22 with summer temperature increases

a

b

c

Fig. 1 Comparison of the modeled and observed climate for the period 1971–2000 (JJA only). a–c The climate simulations are averaged
over the entire period and then subtracted from observations. a surface air temperature, b precipitation and c SPEI. The hatched areas
indicate areas with insignificant changes according to the two-sided Student’s t test (p < 0.05).
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between 3° to 5 °C across the midlatitudes and the subtropics. The
most affected areas, in terms of warming levels, are the
Mediterranean region, Central North America, parts of Greenland
and Siberia and Central Asia (Fig. 3b) located in the subtropics,
midlatitudes and the high latitudes.
Similar warming hotspots are also observed under

SSP5–8.5 scenario (Fig. 3c), which represents an anthropogenic
forcing of 8.5 Wm−2. The spatial variability of the temperature
anomalies under SSP5–8.5 is higher compared to the other two
scenarios (SSP-2.6 and SSP-4.5). In the Northern Hemisphere, the
average summer temperature increases between 3° to 8 °C, with
the hotspots (the Mediterranean region, Central North America,
parts of Greenland and Siberia and Central Asia) expected to
experience between 7° and 8 °C of increase in temperature by the
end of the century. Furthermore, it is noticeable that the tropics
experience a weaker warming rate relative to the subtropics or
mid-latitudes in all three scenarios. This is in agreement with the
future warming distribution projections from other studies based
on CMIP525 and CMIP626 (to evaluate consistency across
CMIP6 simulations see Supplementary Fig. 1).
In addition to the average summer temperature, the same

results are also presented for the maximum temperature (Tmax)
and minimum temperature (Tmin) in Supplementary Figs. 2–5. The
anomaly plots of both quantities share spatial characteristics
similar to average temperature shown in Fig. 3. Nevertheless, the
magnitudes of Tmax increases are more pronounced in the
aforementioned hot spots relative to the Tmin.

Projected precipitation and potential evapotranspiration
The hydrological cycle is strongly dominated by the variability and
amount of precipitation as the key driver of other variables such as

runoff and soil moisture. Change in precipitation variability in the
multi-model simulations and observations under the three
scenario runs are shown in Fig. 4. The smallest absolute changes
are found under SSP1–2.6 (Fig. 4a). Results show significantly more
precipitation (20–40mm) over a central band from East to West
Africa and Southeast Asia. A smaller rate of precipitation increase
is found in North Asia, Alaska and eastern coasts of North America.
However, a significant precipitation deficit is shown in Central
America and parts of the Mediterranean region. This is in
agreement with previous studies based on CMIP527 and CMIP628

that indicate strengthening of the future Asian–northern African
monsoon leading to wetter conditions, and weakening of the
North American monsoon causing a drying pattern. According to
recent findings28, the greenhouse gas forcing induces a stronger
‘land-warmer-than-ocean’ pattern, which enhances the Asian and
West African monsoon low pressure system leading to increases in
monsoon rainfall in these regions, and an El Niño–like warming,
which reduces the North American monsoon rainfall.
The precipitation changes for the other two scenarios (Fig. 4b

and Fig. 4c) look very similar to SSP1–2.6 from a spatial point of
view. However, the precipitation anomalies are larger and more
spread out spatially relative to the presented hotspots in Fig. 4a.
See for example the positive precipitation anomalies on the east
and north coasts of Asia, North America and Europe in Fig. 4c
relative to 4a. The precipitation increase on the east shores of
Asia and North America is likely because of higher water holding
capacity of the atmosphere and warm water transport from
ocean circulation. Fig. 4c indicates that Central America, Europe
(except Northern Europe), North Africa, Central Asia will likely
experience a significant negative precipitation anomaly com-
pared to the historical observations. To evaluate consistency of

a

b

c

Fig. 2 Differences in trends in climate model simulations and observations. a–c The differences are shown for the periods 1975–1989 and
2000 to 2014 (JJA only) in CMIP6 historical simulations relative to observations. A value of 0 represents that the trend in observations is the
same as that of the model ensemble. Negative values indicate that trend in observations is stronger than in the model ensemble, whereas
positive values show the opposite case. a Surface air temperature, b precipitation and c SPEI.
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the multi-model CMIP6 ensemble members the interested reader
is referred to Supplementary Fig. 6.
The E0 is another essential component of the climatic and land

surface water balance, because it represents the atmospheric
demand for moisture. Recent studies indicate that the projected
E0 in the CMIP6 multi-model simulations is higher than in CMIP5
under a comparable emission scenario, possibly because CMIP6
models simulate stronger warming for a given forcing or
scenario29. Due to the relation between E0 and temperature,
the anomaly figures of E0 for the different SSPs show similar
characteristics as the projected temperature changes in Fig. 3.
The strongest significant increase of E0 is found for the
subtropics and the midlatitude under SSP1–2.6 (Fig. 5a). The
hotspots for the strongest increase of the E0 are Central North
America, the Mediterranean region, Central Asia, the Arabian
Peninsula and North Africa. However, no significant change
of E0 is shown for parts of India and northern Nigeria. Similar
insignificant changes in the same locations are also observed
under SSP2–4.5, while significant increase of E0 in the hotspots is
more pronounced in this scenario (Fig. 5b). Under SSP5–8.5
(Fig. 5c), the highest positive anomalies are shown over Spain,
around the Black Sea and parts of North Africa. A belt of strong
E0 increase is shown from Spain and North Africa towards Central
Asia. Also, an increase in E0 is shown over the central and
southern parts of North America. It is noticeable that the increase
in E0 is lower in the tropics compared to the subtropics and mid-
latitudes in all three scenarios. Evaluating consistency of the
multi-model CMIP6 ensemble members indicates similar results
with the exception of the African tropics, India and parts of
Greenland (Supplementary Fig. 7).

Drought conditions by the end of 21st century
Projected changes in drought characteristics are closely asso-
ciated with the presented changes to temperature, precipitation
and E0 (Fig. 6). Under SSP1–2.6 (Fig. 6a), significant drier
conditions are projected over North Africa, Saudi Arabia, Central
America, the Mediterranean region, Central America and the
southwest of the USA, which are indicated by the negative SPEI
values. The projected drying trend under SSP1–2.6 is primarily
driven by the expected temperature increase (Fig. 3a) leading to
a higher E0 (Fig. 5a). The higher E0 cannot be compensated
by an increase in precipitation (Fig. 4a, see also Supplementary
Figs. 8–9) leading to overall drier conditions in the summer. In
contrast, significant wetter conditions are detected for parts of
the coastal regions of Asia, parts of the east coast of North
America, eastern parts of Greenland and Alaska. In these regions,
the increase in precipitation is more pronounced relative to
increase in E0, resulting in overall wetter conditions (Figs. 4a, 5a,
6a, Supplementary Figs. 8–9).
SSP2–4.5 (Fig. 6b) exhibits similar hotspots to those of SSP1-2.6

(e.g., significant negative SPEI anomalies over North Africa, Central
Asia and Saudi Arabia). However, regions with a negative SPEI
anomaly are more spreadout and drier mainly driven by projected
reduction in precipitation (Fig. 4b, Supplementary Figs. 8–9) as
well increase in E0 (Fig. 5b). Over North America, significant drier
conditions are found in Western North America and Central
America. The drier conditions in Central America are also driven by
a significant increase in E0 (Fig. 5b) and a precipitation deficit
(Fig. 4b, Supplementary Figs. 8–9). On the other hand, East Asia,
Greenland and Alaska are characterized by a tendency towards
wetter conditions.

a

b

c

Fig. 3 Projected changes to the Northern Hemisphere summer temperature. a–c Spatial distribution of the summer temperature anomalies
in the Northern Hemisphere based on the multi-model projected changes (2071–2100) based on SSP1-2.6 (a), SSP2-4.5 (b) and SSP5-8.5 (c)
scenarios relative to the historical summer temperature during the 1971–2000 baseline period. All changes are significant according to the
two-sided Student’s t test (p < 0.05).
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An even stronger drying trend is visible under SSP5–8.5 (Fig. 6c)
with hotspots expanding over the Mediterranean region, Saudi
Arabia, North Africa, Central Asia, Central Europe, Central America,
Central North America, West North America and the Middle East.
The drier conditions in these regions are driven by increases
in E0 (Fig. 5c) compared to SSP1-2.6 (Fig. 5a) and SSP2-4.5 (Fig. 5b)
as well as decreases in precipitation (Fig. 4c, Supplementary
Figs. 8–9). Comparing different scenarios, an expansion of dry
conditions is noted from the subtropics towards the midlatitudes
by the end of the 21st century. This is also shown for drought
conditions in spring (Supplementary Figs. 11–13). The drought
hotspots identified in this study are broadly consistent with
regional and global studies based on CMIP53,8,10,30–32 and CMIP633

simulations. However, parts of Greenland, East Asia, North East
Asia, Alaska and Scandinavia show a positive SPEI anomaly
indicating wetter conditions in the future (Fig. 6c). The reason for
that is the precipitation increases in these regions and the
corresponding small increase in E0 (Figs. 4c and 5c). The majority
individual members in the multi-model CMIP6 simulations
confirm the presented results based on the ensemble mean (see
Supplementary Fig. 15).

Occurrence of dry periods and extreme droughts at the end of
21st century
Based on the results presented in the previous section, we have
shown that the projected warming has an influence on the
global distribution of dry regions and the severity of dryness
based on the ensemble mean of CMIP6 simulations. However,
anomaly plots of a 30 years period do not offer any insights on
temporal variability of dry conditions. Therefore, the occurrence
rate (see Methods for the definition) of SPEI <−1.5 for the
updated AR6 regions23 are computed to investigate the risk of

moderate to extreme droughts under the same three future
scenarios. Since the SPEI is a standardized index based on a
reference period (here, 1971 to 2000), each standardized value
corresponds to an occurrence probability. The selected SPEI <
−1.5 refers to 6.7% occurrence probability (approximately one
drought event in 15 years).
In Fig. 7, the occurrence rate is shown for selected regions in

Europe and Asia (for more regions see Supplementary Figs. 15–20).
The occurrence rate λ is the probability of SPEI falling below −1.5
during one year. If λ(a)−1= 1, it means that a SPEI value below
−1.5 can be observed every year whereas λ(a)−1= 0.5 would mean
that this SPEI threshold is reached every two years. For the
Mediterranean region (MED), it is shown that the risk of a SPEI
below −1.5 is projected to change over time and is highly
dependent on the choice of scenario (Fig. 7a). Under SSP1–2.6, a
significant positive trend is shown until 2030 whereas a small
negative trend can be found thereafter. From 2038 onwards, the
occurrence rate decreases. It is noted that the median stabilizes at
λ(a)−1= 0.45 from 2064 onwards.
Under SSP2–4.5 and SSP5–8.5, an entirely different pattern is

projected. Under SSP5–8.5, the ensemble median is characterized
by a significantly increasing (p < 0.01) occurrence rate reaching
the maximum of λ(a)−1= 1 in 2081. The 75th percentile is
characterized by a steep trend towards a λ75(a)−1= 1 and remains
at this high level from 2029 onwards. This indicates that a drought
event which is characterized by a SPEI <−1.5 in today’s climate is
projected to occur every year by the end of the 21st century. The
strong increase in the drought risk is driven by the projected
increase to E0 and decrease to precipitation (Figs. 4c and 5c),
associated with a projected widening of the Hadley Circulation
that shifts downwelling and inhibits precipitation34. The occur-
rence rates under SSP2–4.5 also show significant increases

a

b

c

Fig. 4 Changes to summer precipitation under SSP1-2.6, SSP2-4.5 and SSP5-8.5. a–c Averaged anomalies of summer precipitation under
SSP1-2.6 (a), SSP2-4.5 (b) and SSP5-8.5 (c) in the Northern Hemisphere. A reference period of 1971–2000 relative to the period 2071–2100 is
used for deriving anomalies. The hatched areas indicate areas with insignificant changes according to the two-sided Student’s t test (p < 0.05).
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(p < 0.01), reaching a median occurrence rate of λ(a)−1= 0.91 by
the end of the 21st century. The 75th percentile, however, reaches
the upper bound of λ75(a)−1= 1. This shows that despite the lower
warming compared to SSP5–8.5, the drought risk under SSP2–4.5
is projected to enhance by the end of the 21st century. The
weaker occurrence rate in SSP2-4.5, in comparison to SSP5-8.5, is
related to the lower total and input rate of greenhouse gas
emissions in SSP2-4.522. Results show that the MED region will be
one of the hotspots for dryer conditions by the end of the 21st

century. In contrast to SSP1-2.6, no decrease of the occurrence
rate is shown for the MED region under SSP2-4.5 and SSP5-8.5.
The northern bordering region of Central Europe (CEU) is

characterized by totally different occurrence rates for the three
different SSPs. Under SSP1-2.6, the occurrence rate of the median,
75th percentile and 25th percentile do not exhibit significantly
increasing trends (p > 0.01). While the median of the occurrence
rate under SSP2-4.5 does not show a significantly increasing (p >
0.01), the 75th percentile does and reaches λ75 (a)−1= 0.52 by the
end of the 21st century. In contrast to the occurrence rates under
SSP1-2.6 and SSP2-4.5, the occurrence rate under SSP5-8.5 exhibits
a significantly increasing trend (p < 0.01). From around 2050 the
median increases and reached λ(a)−1= 0.55. Based on the results,
it can be concluded that the drought risk in Central Europe is main
projected to increase significantly under the SSP5-8.5 scenario.
In East Europe (EEU) and West Siberia (WS), one can see a similar

behavior as in the CEU. For both regions, no significant increasing
trend (p > 0.01) of the occurrence rate can be found under SSP1-
2.6 and SSP2-4.5, whereas a significant increasing trend (p < 0.01)
appears under SSP5-8.5 which starts around 2050. The median,
25th and 75th percentiles in EEU and WS by the end of 21st century

can be summarized as follows: EEU λ(a)−1= 0.41 (λ25(a)−1= 0.31,
λ75(a)−1= 0.78); WS λ(a)−1= 0.46 (λ25(a)−1= 0.22, λ75(a)−1= 0.79).
The occurrence rate of SPEI below −1.5 during one year is also

investigated over the North America (Fig. 8). The West North
America (WNA) region is characterized by a clear separation of the
different occurrence rates under the three analyzed SSPs. From
2050, a significant increase (p < 0.01) of the drought occurrence
rate is shown under SSP5-8.5. The occurrence is significantly
increasing with the median and lower and upper bounds reaching
λ(a)−1= 0.78 (λ25(a)−1= 0.49, λ75(a)−1= 1), respectively. In con-
trast, no significant trend in the occurrence rate is shown under
SSP1-2.6 and SSP2-4.5, where the occurrence rates by the end of
the 21st century are λ(a)−1= 0.22 (λ25(a)−1= 0.03,λ75 (a)−1= 0.32)
and λ(a)−1= 0.36 (λ25(a)−1= 0.25,λ75 (a)−1= 0.46), respectively.
Similar to CEU, WS and EEU, Central North America (CNA) does

not show a significant trend in the occurrence rate of dry
conditions under SSP1-2.6 and SSP2-4.5. Another similarity is that
the occurrence rate under SSP5-8.5 shows a significant increasing
trend (p < 0.01). The positive trend starts around 2050 with the
occurrence rates reaching λ(a)−1= 0.45 (λ25(a)−1= 0.35, λ75(a)−1

= 0.85) by the end of the 21st century.
The region of North Central America (NCA) shows a similar

occurrence rate that of the MED region. The strongest and
significant increase (p < 0.01) of the occurrence rate is observed
under SSP5-8.5 with λ(a)−1= 0.98 (λ25(a)−1= 0.85, λ75(a)−1= 1).
Fig. 8c displays that 75th percentile reaches an occurrence of
λ75(a)−1= 1 around 2082 and remains thereafter. A not as
pronounced yet significant increasing trend (p < 0.01) is projected
under SSP2-4.5 with λ(a)−1= 0.79 (λ25(a)−1= 0.59, λ75(a)−1= 0.87)
by 2100. Despite the weaker warming in SSP2-4.5, the risk of
drought is still projected to increase without levelling off.

a

b

c

Fig. 5 Changes to summer potential evapotranspiration under SSP1-2.6, SSP2-4.5 and SSP5-8.5. a–c Averaged anomalies of summer
potential evapotranspiration under SSP1-2.6 (a) and SSP2-4.5 (b) and SSP5-8.5 (c) in the Northern Hemisphere for the period 2071–2100
relative to the baseline period of 1971–2000. The hatched areas in all three subfigures indicate areas with insignificant changes according to
the two-sided Student’s t test (p < 0.05).
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Furthermore, the occurrence rate under SSP1-2.6 is projected to
increase until 2050 and decrease then after with λ(a)−1= 0.23
(λ25(a)−1= 0.07, λ75(a)−1= 0.32) by the end of the 21st century
without showing a statistically significant trend (p < 0.01).

DISCUSSION
In this study, we have quantified changes in the drought
occurrence based on the newly published CMIP6 simulations16.
Our results based on the anomaly and frequency analysis indicate
an increase in the occurrence of summer droughts and an
intensification of droughts in the majority of the subtropics and
parts of the midlatitudes, mainly due to an increase of greenhouse
gases20. In addition, hotspots for drought occurrence, such as the
Mediterranean region, can experience more widespread events
depending on the magnitude of greenhouse gas emissions and
Shared Socioeconomic Pathways. Some of the hotspots identified
in our study have also been identified in studies based on the
CMIP53,8,10,30–32,35 and CMIP633 which gives additional confidence
to our results. For this reason, we confirm previous findings that
the projected droughts33 and drought risk in CMIP5 and CMIP6 are
broadly consistent.
One reason for intensification of droughts in the Northern

Hemisphere subtropics is that the summer temperature is
projected to rise leading an increase in E0 and sometimes a
decrease in precipitation10,30–32. The increase in E0 is suggested to
double the percentage of the global land area projected to
experience significant drying based on CMIP5 simulations by the
end of 21st century33 and is a key variable to understand drought
variability7. Recent studies indicate that the projected E0 is more

pronounced in CMIP6 multi-model simulations than in CMIP529,
mainly because of the changes in the total anthropogenic
forcing22. As a result, more intense droughts are projected based
on CMIP6 simulations in comparison to studies based on CMIP 511.
Previous studies addressing changes in hydrological conditions

based on CMIP633 have projected declines in soil moisture and
runoff as a consequence of continued greenhouse gas emissions.
Although the SPEI index does not include soil parameters in the
calculation, many of the predicted trends in soil moisture across
the soil column match the drought hotspots presented in our
results (Fig. 9a–c, Supplementary Fig. 10). For example, soil
moisture projections indicate robust and significant decreases in
soil moisture in large parts of the Mediterranean, Central America,
North Central America and North South America (Fig. 9,
Supplementary Fig. 10). This is consistent with the projected of
precipitation and temperature (Figs. 3–4). Nevertheless, there are
differences too. For example, the SPEI indicates that large parts of
Central Asia, parts of Northwest India and the Middle East are at
greater risk of drought depending on the strength of emissions
(Fig. 6), whereas soil moisture is projected to increase in the same
regions (Fig. 9) that require future investigation.
The projected increase in occurrence rate of droughts over the

selected AR6 regions indicates a significant stress on economy36,
agriculture37, migration38, and ecosystems39 of the regions in the
future. Northward shifts in forests and vegetation6 leading to shifts
in the habitat distributions40 is among major ecosystem impacts.
Changes to habitats can also contribute to significant alteration of
the carbon cycle41. Furthermore, the projected climate conditions
are likely to increase vegetation mortality due to droughts and
other relevant drivers such as fires and infestation42.

a

b

c

Fig. 6 Changes to summer drought conditions under SSP1-2.6, SSP2-4.5 and SSP5-8.5. a–c Averaged anomalies of summer droughts under
SSP1-2.6 (a) and SSP2-4.5 (b) and SSP5-8.5 (c) in the Northern Hemisphere for the period 2071–2100 relative to the baseline period of
1971–2000. The hatched areas in all three subfigures indicate areas with insignificant changes according to the two-sided Student’s t test
(p < 0.05).
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We acknowledge that the model simulations and SSPs are
uncertain and characterized by different limitations that have
been evaluated in different studies43. Some challenges include
limitations associated with physical representation of clouds and
uncertainty in precipitation projections in GCMs44. Furthermore,

current land surface models do not simulate all the hydrological
subsurface processes well contributing to uncertain projections3.
Also, dynamical phenomena like atmospheric blocking, which are
relevant for climate extremes, are generally poorly represented
by climate models or are subject to biases45. In addition, PET
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Fig. 7 Projected drought conditions for selected AR6 regions23 in Europe and Asia. a–d Temporal evolution of occurrence rate of SPEI
below −1.5 under different future climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5). λ(a)−1=1 indicates a SPEI value below −1.5 can be observed
every year. The SPEI is derived based on the baseline period of 1971 to 2100. The medians of the model ensemble from CMIP6 are highlighted.
The 25th and 75th percentiles of the model ensemble for each scenario are indicated with shaded color around the median.
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estimation is also subject to high uncertainty which leads to biases
in drought projections. Other challenges include uncertain and
complex role of vegetation processes14,46 in a warming climate,
different climate sensitivity of GCMs47 or uncertainties in future
radiative forcing3 all of which contribute to uncertainties in
drought projection.
Despite the uncertainties of the GCMs, they can reasonably

simulate the general tendencies of regional drought trends and
patters in the future. As shown in this paper, our historical
evaluation exhibits reasonable consistency between spatial
patterns in climate model simulations and observations (Fig. 1).
However, there are differences in how well the models represent
trends in drought conditions – e.g., multi-model ensemble
underestimating the drying trend in Central Europe (Fig. 2). We
note that the presented results are consistent with drought
hotspots identified in prior studies. Our findings indicate that
projected droughts are sensitive to the greenhouse gas emissions
and Shared Socioeconomic Pathways. The warmer the future

climate, the more intense are the projected droughts spreading
from the subtropics to the mid-latitudes. In a relative sense,
droughts under SSP1-2.6 are less intense compared to more
unfavorable scenarios which highlights the need to reduce
greenhouse emissions to reduce future drought impacts.

METHODS
Data
In this study, we analyze four climate variables from the CMIP616

simulations from historical simulations (1850 to 2014) and future
projections (2015 to 2100) based on different shared socioeconomic
pathways (SSPs)22. To present the analysis for a wide range of scenarios, we
used divers SSPs including SSP1-2.6, SSP2-4.5 and SSP5-8.5. The criteria for
selecting climate models include:47 models must (i) provide the relevant
variables, (ii) include simulations for the period 1850 to 2100, and (iii) not
have duplicate time steps or missing time steps.
The maximum surface temperature (Tmax), minimum surface tempera-

ture (Tmin), mean surface temperature (T), soil moisture, precipitation,
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Fig. 8 Projected drought conditions for selected AR6 regions23 in North America. a–d Temporal evolution of occurrence rate of SPEI below
−1.5 under different future climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5). λ(a)−1 = 1 indicates a SPEI value below −1.5 can be observed
every year. The SPEI is derived based on the baseline period of 1971 to 2100. The medians of the model ensemble from CMIP6 are highlighted.
The 25th and 75th percentiles of the model ensemble for each scenario are indicated with shaded color around the median.
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wind speed, and cloud area fraction are downloaded with a monthly
temporal resolution. The regional means are calculated from the original
grid resolution, whereas for the maps the simulations are regridded onto a
1° x 1°grid using a bilinear interpolation approach. We considered all
available ensemble members from each model at the time we started this
study. The names of models and their ensemble member counts are listed
in Table 1.

Computation of the SPEI drought index
The SPEI index18 is a multiscalar drought index calculated from monthly
precipitation (P) and potential evapotranspiration (E0). Computation of SPEI
index is based on the so-called climatic water balance defined as Di=Pi-E0i.
One advantage of SPEI index is that it can be obtained for different
accumulation periods, by aggregating the values of the climatic water
balance over different time scales. This allows investigating different types
of droughts by adjusting the accumulation period48,49. In our study, we use
an accumulation period of 6 months (SPEI6) to capture the seasonal
development of the drought and a WMO standard period from 1971 to
2000 as the reference period. A 6-month accumulation period is
reasonable and widely used in the literature as it filters out short term
anomalies, captures seasonal development of drought (e.g., from snow
drought in winter to “classical rainfall deficit droughts” in summer) and
correlates well with hydrological droughts50. The climatic water balance
accumulations over 6 months periods are then standardized with a log-
logistic distribution. Based on this distribution function, the SPEI values are
standardized into a consistent scale and hence can be compared across
space regardless of the climatology. Positive and negative SPEI values
correspond to relatively wet and dry conditions, respectively whereas a
SPEI of near 0 indicates near normal climatology (i.e., ~50th percentile of
the cumulative distribution function). For further details, we refer the
interested reader to18.
We used precipitation (P) directly from the CMIP6 simulations. The

monthly E0, however, is computed with the FAO-56 Penman-Monteith
equation (using a short reference crop with a height of 0.12m):51

E0 ¼
0:408 ´ Δ ´ ðRn � GÞ þ γ 900

Tþ273 ´U ´ ðea � edÞ
Δþ γð1þ 0:34UÞ (1)

where Δ is the slope of the saturation vapor pressure function, γ is the
psychrometric constant, T is the mean air temperature and U2 is the
average near surface wind. Furthermore, ea and es are mean saturation

a

b

c

Fig. 9 Averaged anomalies of summer soil moisture (entire column) under SSP1-2.6, SSP2-4.5, and SSP5-8.5. a–c Averaged anomalies of
summer soil moisture under SSP1-2.6 (a) and SSP2-4.5 (b) and SSP5-8.5 (c) in the Northern Hemisphere for the period 2071–2100 relative to
the baseline period of 1971–2000. The hatched areas indicate areas where 10 of the 11 CMIP6 models show the same sign of change (data
from the AWI-CM-1-1-MR model are not used in this figure because the required variable does not exist).

Table 1. Description of the used climate model ensemble for the
historical run and three future scenarios.

Number of used
realizations

Historical SSP1-2.6 SSP2-4.5 SSP5-8.5 References

ACCESS-CM2 2 1 1 1 57

ACCESS-ESM1-5 3 3 3 3 58

AWI-CM-1-1-MR 2 1 1 1 59

EC-Earth3 3 1 1 1 60

EC-Earth3-Veg 2 3 3 3 61

INM-CM4-8 1 1 1 1 62

INM-CM5-0 10 1 1 1 63

IPSL-CM6A-LR 32 6 6 6 64

MIROC6 10 3 3 3 65

MPI-ESM1-2-HR 7 2 2 2 66

MPI-ESM1-2-LR 10 10 10 10 67

MRI-ESM2-0 5 1 1 1 68
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vapor pressure of the air and saturation vapor pressure at the kPa which
are determined by minimum and maximum temperature. Rn and G are
the net radiation and the soil heat flux (more details and the
corresponding parametrization of Rn-FAO and G are presented in
Ref. 51). The Rn is estimated by cloud cover, minimum, and maximum
temperature, whereas G is determined by the average temperature. The
required input datasets include the maximum and minimum tempera-
ture, wind speed, and cloud area fraction and a 1° elevation data from the
Rand Corporation/Scripps Institution of Oceanography (accessed through
the Cooperative Institute for Climate, Ocean, and Ecosystem Studies
http://research.jisao.washington.edu/data_sets/elevation/).
SPEI6 and E0 were computed for the mean of the realizations of each

model separately using the R package SPEI18,19. Furthermore, the SPEI6 and
the E0 dataset are averaged seasonally (December, January and February
(DJF); March, April and May (MAM); June, July and August (JJA); September,
October and November (SON)) to obtain a more comprehensive
perspective about summer season droughts. Ensemble means of both
SPEI6 and E0 are then computed for summer (JJA). To study droughts
regionally, area averaged estimates are computed for the selected climate
regions introduced in the IPCC (AR6) Assessment reports23.

Model evaluation
To evaluate the consistency of the climate model simulations with
observations, we perform two different comparisons. We use data from
CRU TS v. 4.0552 to evaluate temperature and precipitation simulations and
data from SPEIbase v.2.618 to assess drought conditions. The former
compares the average climate of WMO standard period 1971 to 2000 in
summer considering three climate variables. To determine deviations
between modelled and observed climate conditions, the ensemble mean
from model simulations during 1971–200 was subtracted from the average
value of the observations. A positive (negative) value indicates that the
ensemble mean of the models has a greater (smaller) value than the
observations (overestimation).
We also compare the differences between the means of two time

periods: 1975 to 1989 (t1) and 2000 to 2014 (t2) in model simulations (m)
and observations (o). By comparing the change in the two periods one can
compare change in model simulations relative to the observations
(d=m-o). A negative value indicates a stronger trend between the two
time periods in the observations than the climate model ensemble
(a positive value represents the opposite).

Occurrence rate statistics
The initial data set for the computation of the extreme statistics consists of
the SPEI time series for the AR6 regions from all models and their
corresponding ensemble means. The advantage of using this drought
index is that it is standardized on a given period and a predefined
distribution. Therefore, each SPEI value corresponds to a predefined
probability. Here, we choose the threshold of −1.5 meaning that all
occurrences of SPEI below the threshold would be considered as drought.
This threshold generally corresponds to a moderate to extreme drought
event. The probability that a value is below this threshold is predefined by
the distribution function a 6.7% (approximately one event in 15 years). This
or similar thresholds have been used in previous studies of extreme
droughts8,53. Then, time series of extreme droughts defined as SPEI value
<−1.5 are generate for analysis of occurrence probability.
Using the extreme drought time series, one can calculate the occurrence

probability. The occurrence can be considered as an indicator of risk over a
time interval as follows:54

λ̂ Tð Þ ¼ h�1
X

m
j¼1K

T � TextðjÞ½ �
h

� �
(2)

The variable h is the bandwidth, Text(j) is an extreme year, m is the
sample size of extremes and K is the Gaussian kernel. The size of the
bandwidth defines how many data points contribute to the occurrence
rate estimation. To find the most appropriate bandwidth for the dataset,
the cross-validation bandwidth selector based on Ref. 55 is used. Based on
the cross validation analysis a bandwidth of h= 9 is used in this study
which is consistent with the physical knowledge of underlying processes.
Sample size plays an important role in analysis of extremes. In methods

that involve a window or bandwidth, some samples from the beginning or
end of the record may not be used – an issue know as boundary effect/
bias. Since our time series is temporally limited to the time frame of the
SSPs, we aimed to use the entire period and the largest sample possible.

Follwing54, an elegant way to deal with the boundary bias problem is the
generation of pseudo data outside the observation period, which can be
achieved through the reflection of the dataset at boundaries. We used
the reflection technique to be able to ensure using the largest possible
sample size. We note that we computed the median of the occurrence rate
as the average of the occurrence rates of all models.
Furthermore, it is also important to obtain a measure of uncertainty and

to determine if it is significant. For this purpose, we computed the 25th and
75th percentile of the occurrence rates for all models. This technique
provides more information about the ensemble spread.
It is also possible to use occurrence rate computation for hypothesis

testing54. In our case, we tested whether the occurrence rate is constant
(H0) or increasing/decreasing (H1) using the following test statistics:56

UCL ¼
Pm

j¼1
Text jð Þ
m � T nð Þ þ T 1ð Þ½ �=2

T nð Þ � T 1ð Þ½ �ð12mÞ1=2
(3)

where n is the total sample size. Since the distribution of Ucl approaches a
standard normal shape with increasing sample size (m), a p-value can be
calculated to reject or not reject H0

54. UCL test statistics allows investigating
the alternative hypothesis as changing, increasing or decreasing occur-
rences using the corresponding m.

DATA AVAILABILITY
All data from CMIP6 simulations (historical, SSP1-2.6, SSP2-4.5 and SSP5-8.5) used in
our analyses are freely available from the Earth System Grid Federation (https://esgf-
data.dkrz.de/projects/cmip6-dkrz/)57–68.

CODE AVAILABILITY
The postprocessing of the model output data has been done with the Climate Data
Operators69 and the corresponding Python binding. Furthermore, the computation of
the FAO-56 Penman-Monteith E0 and of SPEI have been done with the SPEI package
(https://cran.r-project.org/web/packages/SPEI/SPEI.pdf; version 1.7) in R (version
4.0.2). The used tools and packages are freely available.
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