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3.1 Climatic drivers

Lead authors: Peter Lang Langen, Patrick Grenier, Ross Brown
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Ingeman-Nielsen, Thomas James, Diane Lavoie, Sergey Marchenko, Steffen M. Olsen, Christian B. Rodehacke, 
Martin Sharp, Sharon L. Smith, Martin Stendel, Rasmus T. Tonboe

Key messages

 • The Earth’s climate is warming due to anthropogenic 
greenhouse gas emissions, and warming will continue 
throughout this century. Climate models are the central 
tool for constructing physically based scenarios of the future.  

 • Climate models do not provide one single projection for 
the future but rather a range of likely outcomes. This 
range arises from differences in imposed greenhouse gas 
emissions, model structures and processes, and outcomes of 
natural climate variations. For the Baffin Bay/Davis Strait 
(BBDS) assessment, medium- and high-emissions scenarios 
were used for the climate projections.

 • Continued BBDS warming is projected. Mean near-surface 
winter air temperatures are projected to increase (relative to 
1986–2005) by about 1 to 4°C by 2030 and 1.5 to 10°C by 
2080. Summer temperatures are projected to increase by about 
0.5 to 2°C by 2030 and 1 to 5°C by 2080. Projected changes 
tend to be largest in the northwestern part of the region. For 
the high-emissions scenarios, thawing-season lengths increase 
by about 1–2 months by the end of the century.

 • An increase in precipitation is generally projected for 
the BBDS region. For winter, mean total precipitation 
is projected to change by about -10% to +25% by 2030 
and -10% to +70 % by 2080. For summer, the projected 
change is about -5% to +15% by 2030 and 0% to +35% by 
2080. The projected change is generally toward increasing 
precipitation, with the largest relative changes being in 
winter and over the northwestern parts of the region.

 • Mean BBDS near-surface wind speeds are projected to 
change within ±5% by 2030 and ±10% by 2080 for all 
seasons. There is little information on projected changes in 
prevailing wind direction.  

 • Projections of weather extremes show increases in 
minimum and maximum temperatures and also 
heavy precipitation. Annual minimum temperatures 
are projected to increase by 2–6°C by 2081–2100 under 
medium emissions and >6°C under high emissions. 
Annual maximum temperatures increase somewhat less. 
Both quantities increase more on the Nunavut side of the 
region than on the Greenland side. Projections show more 
wet days, shorter dry spells, and more precipitation during 
very wet days.

 • Projections of snow-cover duration for the late 21st 
century show a decrease of approximately 40–60 
days, mainly due to later snow onset. Reductions are 
most pronounced in coastal regions. The results are quite 
sensitive to imposed emissions—e.g., with stabilization 

after decline under medium emissions and accelerating 
decreases under high emissions. Large reductions in May–
October snowpack are projected.

 • BBDS permafrost is projected to warm the most in the 
region’s coldest areas and to thaw considerably in the 
warmest areas. Ellesmere Island is an example of a cold 
area that is projected to experience pronounced permafrost 
warming. Southwestern Greenland is an example of 
a relatively warm area that is projected to experience 
pronounced permafrost thawing.

 • The Greenland Ice Sheet is projected to lose mass during 
the 21st century, with the primary mechanisms being 
increased freshwater runoff (up to a doubling or tripling) 
and glacier calving. Year-to-year variability in freshwater 
runoff is projected to increase. The Canadian Arctic glaciers 
and ice caps are similarly projected to lose mass due to 
increased runoff.

 • Projections for lake ice in 2050 indicate a 10–15 day 
earlier break-up and a 5–10 day later freeze-up, with a 
10–30 cm decrease in maximum ice thickness. Lake-ice 
response to warming is influenced by lake morphology (size 
and depth) and local changes in snow accumulation.

 • Freshening and warming of the Baffin Bay surface 
layer (about 0.2°C per decade over the next 50 years) 
is projected under the high-emissions scenario. Models 
project an increased inflow of warm Atlantic-origin water 
into the bay, a decrease of cold Arctic water flow through 
the Canadian Arctic Archipelago, and an intensification of 
the Baffin Bay counterclockwise circulation. The duration 
of ice bridges in Nares Strait, and thus the duration of the 
North Water Polynya, will likely decrease.

 • Climate models project the largest decreases in sea ice 
cover to occur in the autumn (15–20% reduction by 2080) 
due to later freeze-up, with smaller decreases in the spring 
(10–15% reduction) due to earlier ice break-up. Winter 
ice thickness is projected to decrease by about 20–30 cm, 
with the largest decreases in more northerly regions. The 
timing of the changes varies considerably across models. 
For the foreseeable future, multi-year ice is likely to remain 
a hazard for shipping in the Canadian Arctic Archipelago.

 • Relative sea level in the BBDS region is projected to fall 
at nearly all locations, due mainly to crustal uplift in 
response to past and projected ice mass decreases. For 
the year 2100 in the high-emissions scenario, projected 
median relative sea-level changes across the region range 
from approximately -90 cm to +10 cm.
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Introduction

The climate of the BBDS region is undergoing a period of 
rapid change linked to global warming (Overland et al., 2017) 
and natural climate variability (Way and Viau, 2014). The 
increase in atmospheric concentrations of greenhouse gases 
is significantly affecting the climate of the region, which in 
turn drives changes in ecosystem services and the populations 
that rely on these services (see AMAP, 2017b, and Chapter 6 of 
this report in particular). Climatic drivers are dealt with in this 
subchapter, which discusses aspects of ongoing and projected 
climate change relevant for the BBDS region. Section 3.1.1 
consists of a general discussion of changes in the global climate 
system, explaining how such knowledge is obtained and how 
it must be interpreted. Sections 3.1.2 through 3.1.6 discuss 
changes taking place specifically in the BBDS region, with each 
section discussing trends of the recent past, as well as future 
scenarios for the atmosphere, terrestrial cryosphere, ocean, 
sea ice, and sea level. The climatic components are discussed 
separately for convenience, but they are closely interconnected 
(Hinzman et al., 2013; Overland et al., 2017).

The main role of this subchapter is to provide a synthesis of 
published information on observed and projected climate 
change over the BBDS region. However, the authors recognize 
that traditional and local knowledge (TK) is an important 
complement to the larger-scale portrait provided in the 
scientific literature: TK provides the link between large-scale 
climate change and local impacts. One of the challenges of 
incorporating TK into scientific assessments is that the 
observations are anecdotal, are fragmentary in time and space, 
and are usually not published in citable literature. However, 
efforts to consolidate TK across Arctic communities reveal a 
fairly consistent picture of some of the most important climate 
and environmental changes affecting local communities. From 
the Gaden and Stern (2015) compilation of traditional climate 
and environmental observations made by Inuit in the western 
and central Canadian Arctic, the changes most consistently 
reported across the 12 communities were the following: warmer 
summers and/or more extreme warm summer temperatures, 
more variable and unpredictable weather, a longer ice-free 
season, thinner ice, earlier snow melt, lower freshwater levels, 
and the presence of new plant/animal/insect species. These 
observations are the local footprint of the large-scale climate 
changes documented in this subchapter.

Reliable information about the future evolution of climate is 
needed by decision-makers for a wide range of applications 
(Mote et al., 2011; Huard et al., 2014). The process of providing 
this information requires a detailed understanding of local 
needs and the climate sensitivities contained, for instance, in 
TK, which is difficult to incorporate into decision-making 
processes (Cuerrier et al., 2015). Making this connection is 
beyond the scope of this subchapter; the aim here is to present 
the larger-scale changes in regional climate as documented 
in the published literature. However, it should be noted that 
Cuerrier et al. (2015) propose a novel mix of qualitative and 
quantitative methods to translate TK into evidence for decision-
making and for developing environmental policy.

3.1.1 Global and Arctic climate change

The vast majority of climate scientists agree that human 
activities have put Earth’s climate on a warming path (Oreskes, 
2004; Cook et al., 2013; IPCC, 2013a), which is amplified in 
the Arctic by various processes (Pithan and Mauritsen, 2014; 
Barnes and Polvani, 2015; Overland et al., 2017). This section 
briefly explains the scientific background on global warming 
and provides information on the limitations and interpretation 
of climate scenarios. The processes responsible for Arctic 
amplification are presented in the supplementary material for 
this subchapter (Langen et al., 2016).

3.1.1.1 Climate change scenarios

The Earth’s climate is warming due to anthropogenic 
greenhouse gas emissions, and this warming will continue 
throughout this century. Climate models are the central tool 
for constructing physically based scenarios of the future.

A steady global climate is the result of an equilibrium between 
Earth’s energy input (solar radiation) and output (infrared 
radiation). Because greenhouse gases (e.g., carbon dioxide, 
methane) and aerosol particles (e.g., sulfates, black carbon) 
affect these radiative fluxes (Arrhenius, 1896; Twomey, 1977; 
Blanchet and List, 1983), the climate system responds to 
modifications in the atmospheric concentrations of these 
constituents. Basically, greenhouse gases (GHGs) absorb a part 
of the infrared radiation that would normally escape to space, 
and then reemit it back toward the Earth’s surface, resulting in a 
warming effect. Anthropogenic aerosols have a variety of effects, 
summing up to a cooling that is insufficient to compensate 
for the anthropogenic GHG warming. The amplitude of the 
net response has been assessed with detailed, physically based 
models, and the results show that human GHG emissions 
have forced the climate toward a warmer state. Moreover, it 
is practically certain that this warming process will continue 
throughout this century and into the next one, at a rate that 
depends on both past and future emissions (IPCC, 2013a).

Here, we operate with the concept of a climate scenario, which 
is, in essence, one plausible trajectory for one or more climate 
variables, among many other plausible trajectories. Although 
there are a number of methods for constructing scenarios (see 
Mearns et al., 2001, for a discussion of the various methods and 
their advantages and disadvantages), climate models remain the 
central tool for scenario construction. These models provide 
a large ensemble of physically based, plausible responses to 
the increasing concentrations of greenhouse gases in the 
atmosphere. Climate model–based scenarios assume external 
forcings, such as an anthropogenic emissions scenario, as well 
as a certain level of solar and volcanic activity. The output may 
take the form of a time series (e.g., one value for the average 
temperature at Nuuk, Greenland, for each day from here to 
2100) or of a climatic change (e.g., the percent change in 
mean annual total precipitation over Baffin Island between 
the 1986–2005 reference period and the 2081–2100 future 
period). As emphasized next, a climate scenario cannot be 
interpreted as a prediction, and a large ensemble of different 
scenarios is necessary for developing robust adaptation plans 
(Charron, 2014).
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3.1.1.2 Limitations and interpretation

Climate models do not provide one single projection for 
the future but rather a range of likely outcomes. This range 
in climate projections arises from differences in imposed 
greenhouse gas emissions, different model structures 
and processes, and different outcomes of natural climate 
variations. For the Baffin Bay/Davis Strait assessment, 
climate model projections were used for two scenarios: 
medium emissions and high emissions.

Considerable progress has been made over the past 30 years 
in climate modeling. However, this progress does not allow 
scientists to predict the exact future climatic trajectory, because 
of at least three important sources of uncertainty (Rowell, 
2006; Hawkins and Sutton, 2009): (1) uncertainty in future 
human (and natural) forcings, (2) imperfections in the models’ 
formulations of the physical, chemical, and biological processes 
that determine the climate, and (3) natural variability in the 
climate system. The first point refers mainly to the fact that 
future decisions related to GHG emissions (and land use) 
cannot be foretold exactly. The second point refers to the fact 
that different models indicate different responses to assumed 
external forcings: no single best model can be identified, since 
each one has its own strengths and weaknesses in representing 
the climate system. Finally, the third point refers to interannual 
and interdecadal variations that superimpose on the long-
term warming signal. In brief, there exist many plausible 
combinations of anthropogenic emissions scenarios, model 
formulations, and natural variability phenomena – which 
implies many plausible climate scenarios.

The emissions scenarios called “RCP4.5” and “RCP8.5” (van 
Vuuren et al., 2011) have been adopted as plausible lower and 
upper bounds for future emissions pathways for this report 
(“RCPs” refer to representative concentration pathways but are 
discussed here in terms of emissions, for convenience.). This 
adoption follows a recommendation to standardize scenarios 
across the Snow, Water, Ice and Permafrost in the Arctic 
(SWIPA) report (AMAP, 2017b) and the Adaptation Actions 
for a Changing Arctic (AACA) reports. The low-emissions 
RCP2.6 scenario was not considered (this scenario requires 
drastic reductions in carbon dioxide emissions); the RCP6.0 
scenario is covered by the spread between RCP4.5 and RCP8.5. 
The model outputs used are representative of the large ensemble 
of simulations from the Coupled Modeling Intercomparison 
Project Phase 5 (CMIP5; Taylor et al., 2011), which was used by 
the Intergovernmental Panel on Climate Change (IPCC) for its 
fifth assessment report (AR5), published in 2013 (IPCC, 2013a).

Due to computing limitations, global climate model simulations 
are currently produced at horizontal and vertical resolutions 
of approximately 100–300 km and 1 km, respectively (the 
atmosphere’s horizontal scale is much greater than its thickness). 
Processes occurring at a finer scale – such as wind channeling 
effects in fjords (Maxwell, 1981; Seidel, 1987) and katabatic 
“piteraq” events (Moore et al., 2015) – cannot be fully represented, 
which limits the direct utility of such model simulations for many 
local applications. Various downscaling techniques have been 
developed to overcome this limitation and produce meaningful 
local scenarios (Maraun et al., 2010; Hewitson et al., 2014).

It is important to emphasize that climate scenarios inform on 
what could happen on Earth and not what will happen. To account 
for the various plausible responses, climate scenarios may be 
presented, for example, as confidence intervals or as probabilities 
of occurrence (Kandlikar et al., 2005). Scenarios presented as 
multi-model averages have the advantage of synthesizing a 
vast amount of information. However, these types of scenarios 
must be interpreted carefully because the averaging procedure 
smooths out natural variability and between-model variability. 
A future change represented by a multi-model average often 
represents a fairly likely outcome among many others, and its sign 
is generally that of the majority of the models. However, multi-
model averages are often misinterpreted as “robust predictions.” 
Finally, spatial averages over the entire BBDS domain may mask 
geographical differences.

The following climate projections are generally based on 
multi-model assessments for the entire BBDS region. In 
addition to this set of assessments, the Danish Meteorological 
Institute (DMI) has prepared a series of reports specifically 
for Greenland, based on downscaling with the DMI climate 
model system (Christensen et al., 2015). However, because 
the DMI work relies on a single regional model and a single 
driving global model and because it covers only a portion of 
the BBDS region, the DMI results will be used only occasionally 
throughout the following discussion. The full reports (in 
Danish) may be downloaded from the DMI website (DMI 
Scientific Report 15-04, www.dmi.dk/laer-om/generelt/dmi-
publikationer/videnskabelige-rapporter/).

3.1.2 Atmosphere

In this section, scenarios are presented for 21st-century changes 
(relative to the reference period 1986–2005) in near-surface air 
temperature, precipitation, and wind speed. Expectations related 
to meteorological extremes are also discussed. The figures 
represent new calculations that are based on published CMIP5 
model results but are specific to the BBDS region (see land and 
sea boundaries in Figure 2.1). The results are discussed in light 
of other recent results published in the scientific literature.

3.1.2.1 Temperature

Continued warming is projected for the BBDS region. 
Mean near-surface winter air temperatures are projected 
to increase by about 1 to 4°C by 2030 and 1.5 to 10°C by 2080 
(relative to 1986–2005). Summer temperatures are projected 
to increase by about 0.5 to 2°C by 2030 and 1 to 5°C by 2080. 
Projected changes tend to be largest in the northwestern 
part of the region and smallest in the southeast. For the 
high-emissions scenarios, thawing-season lengths increase 
by about 1–2 months by the end of the century.

Observed trends

Air temperature data from climate stations in the region indicate 
a slight cooling from 1950 to about the mid-1990s; at that time, a 
period of rapid warming began, culminating with 2010 as likely 
the warmest annual mean temperature in the instrumental 
record. Annual mean near-surface air temperatures in the 
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region warmed at rates of approximately 1°C per decade over 
this period (Brown et al., 2018), with the greatest warming 
occurring over more northerly areas (Hamilton and Wu, 2013). 
The spatial pattern of this recent warming is characterized 
by a maximum over the eastern Canadian Arctic, with the 
seasonal pattern showing the greatest warming in the autumn 
and early winter period (Rapaić et al., 2015). Near-surface air 
temperatures indicate regional cooling since 2010, mainly in the 
winter. This cooling is consistent with a return to more positive 
values of the North Atlantic Oscillation, which exhibited large 
negative anomalies in 2010.

Projected changes

In this subsection, temperature-change scenarios based on the 
CMIP5 ensemble are presented and discussed. A particular 
focus is placed on natural variability – namely, the year-to-year 
and decade-to-decade fluctuations that cause the climate to 
vary around the long-term warming trajectory.

During the current century, average near-surface air 
temperatures in the BBDS region are expected to increase, 
with a very high likelihood. However, the magnitude of this 
warming cannot be exactly predicted due to the reasons stated 
above, in the discussion of model limitations and interpretation. 
Figure 3.1 shows the evolution of observed warming (black 
lines) and projected warming (colored envelopes) for the BBDS 
region for each season (land area only). Observed interannual 
variability is much larger in winter than in the other three 
seasons. The green and red bands summarize the 20-year 
moving averages of regionally averaged temperature projections 
from 95 CMIP5 simulations (56 and 39 simulations for the 
RCP4.5 and RCP8.5 emissions scenarios, respectively). The 
simulation results show that much larger warming is expected 
for winter than for the other seasons. At approximately 2035, 
the RCP4.5 and RCP8.5 envelopes start diverging. Over time, 
each envelope widens, reflecting model-related uncertainty 
(primarily) and natural variability (secondarily) (Hawkins and 
Sutton, 2009).
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Figure 3.1 Observed and projected anomalies in 2-meter air temperature averaged over the land portion of the BBDS region, relative to the 1986–2005 
average. The black lines represent observations (specifically, the CRU TS 3.23 tmp observational product) (Harris et al., 2014). The colored envelopes 
represent the likely evolution of the 20-year averages up to 2090 under the RCP4.5 (green) and RCP8.5 (red) emissions scenarios, based on CMIP5 
simulations for (a) winter (December-January-February, DJF), (b) spring (March-April-May, MAM), (c) summer (June-July-August, JJA), and (d) 
autumn (September-October-November, SON). The CRU data are presented up to 2014. Average anomalies for each simulation are first calculated for 
each year and then averaged over 20-year blocks from 1986–2005 (attributed here to the year 1996) through 2080–2099 (attributed to 2090). For each 
attribution year, the 10th and 90th percentiles among the simulations are next calculated; fourth-order fits on these two percentile times series define 
the envelope boundaries. 
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The expected amount of warming can also be presented as 
intervals (Figure 3.2). The model results show that a few 
simulations project negative temperature anomalies for 
2016–2035, whereas for 2081–2099 such cases are rare (only 
for RCP4.5 and only over the sea). The inter-simulation spread 
in anomalies is larger over sea than over land. Anomaly results 
for minimum and maximum daily temperature (not shown) are 
similar to those for average temperature (Figure 3.2).

The spatial pattern of projected temperature change is shown 
in Figure 3.3, in terms of the 25th, 50th and 75th percentiles 
for annual mean air temperature. This way of visualizing 
the spread in the range of changes projected by the climate 
model ensemble is recognized by the IPCC as “a simple, albeit 
imperfect, guide to the range of possible futures (including the 
effect of natural variability)” (IPCC, 2013b, p. 1313). (See 
also the introductory discussion above, regarding limitations 
and interpretation of climate models.) Overall, the projected 
warming shows a gradient of greatest warming toward the 
northwest. This pattern is associated with general Arctic 
amplification and the gradual disappearance of sea ice in 
the region. The corresponding seasonal maps for winter and 
summer reveal similar patterns but with larger amplitudes 
during winter (see Langen et al., 2016). Although large-scale 

patterns emerge in these figures from the model ensemble, 
it is important to note that the actual climate evolution may 
turn out to have a significantly different pattern (just as with 
any single model version) (Deser et al., 2014).

Due to natural variability, which occurs at various timescales, 
temperatures are not expected to change as smoothly as depicted 
in the multi-model averages. Natural variability is strong enough 
that temporary local cooling trends, with durations of up to 
25 years or more, can be expected with significant probabilities 
(Grenier et al., 2015). Figure 3.4 illustrates these concepts by 
presenting three plausible RCP8.5-based climate scenarios for 
winter temperature at Clyde River (Baffin Island, Nunavut) over 
2011–2035 (following observations over 1962–2010). Each 
scenario (a, b, and c) is based on a different global climate model 
(GCM). Successive 15-year trends are represented by the red 
(warming) and blue (cooling) lines. The FIO-ESM scenario 
(Figure 3.4a) presents a marked cooling phase centered on 
~2020, with average winter temperatures around 2030 being 
no different than what has been observed in the past. The 
MIROC-ESM scenario (Figure 3.4b) also presents a temporary 
cooling centered on 2020, followed by pronounced warming. 
The GFDL-CM3 scenario, on the other hand, continues the 
sustained warming observed during 1990–2010 (Figure 3.4c).
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Figure 3.3 Changes in annual mean near-surface air temperature (°C) for RCP4.5 and RCP8.5 for the time periods 2016–2035 and 2081–2100 (relative 
to 1986–2005): 25th, 50th, and 75th percentiles. The 50th percentile corresponds to the median value, and the 25th and 75th percentiles correspond to 
the values dividing the distribution of projected changes into the coldest 25% and warmest 25% of models, respectively. (Data source: IPCC, 2013b.)
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With changing annual and seasonal average temperatures, 
many temperature-derived climate indicators are also 
projected to change. For example, the Arctic summer length 
(defined here as the time between melt onset in spring and 
freeze onset in autumn) is projected by the CMIP5 RCP8.5-
based simulations to increase by ~40 days over land and 
~80 days over sea ice during the 21st century, with substantial 
differences among models (Mortin et al., 2014). Sillmann et al. 
(2013b) report consistent decreases in the number of frost 
days between the time periods 1981–2000 and 2081–2100, 
with decreases varying across the domain (land only) by 
about 0 to 30 days under RCP4.5 and about 5 to 70 days 
under RCP8.5. For Greenland, Christensen et al. (2015) found 
thawing season increases of approximately 45 days by 2081–
2100 for RCP8.5 (~15 days for RCP4.5), using the HIRHAM5/
EC-Earth climate model at 5 km resolution. Other indicators, 
such as the frequency of freeze–thaw cycles, could change 
monthly but not necessarily annually, as reported for other 
northern regions such as Nunavik and Nunatsiavut (Allard 
and Lemay, 2012). For Greenland, results from the HIRHAM5 
model showed marked regional differences but an overall 
increase in the number of freeze–thaw cycles with projected 
warming (Christensen et al., 2015). Analysis of the frequency 
of winter thaw days over Baffin Island showed only small 
increases projected for 2050 (Barrette, 2013).

3.1.2.2 Precipitation

An increase in precipitation is generally projected for the 
BBDS region. For winter, mean total precipitation (liquid 
and solid) is projected to change by about -10% to +25% by 
2030 and -10% to +70 % by 2080 (relative to 1986–2005). For 
summer, total precipitation is projected to change by about 
-5% to +15% by 2030 and 0% to +35% by 2080. The projected 
change is generally toward an increase in precipitation, with 
the largest relative changes being in winter and over the 
northwestern parts of the region.

Observed trends

Estimating trends in precipitation over the BBDS region is a 
particular challenge, for a number of reasons: precipitation 
is notoriously difficult to measure in Arctic environments, 
the surface station network is sparse and biased to 
coastal locations, there is strong interannual variability in 
precipitation time series, data sets are rarely homogeneous, 
and satellite sources do not always provide long enough 
periods of data for reliable trend analysis. Nevertheless, 
Mernild  et  al. (2014) analyzed trends in Greenland 
precipitation data (derived from coastal meteorological 
stations and ice cores) for various 30-year periods during 
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Figure 3.4 Selected winter 
climate scenarios for Clyde 
River in Nunavut (70°28'26" N, 
68°35'10" W), based on the r1i1p1 
member of the RCP8.5 experiment 
performed with the following 
global climate models: (a) FIO-
ESM (green), (b) MIROC-ESM 
(orange), and (c) GFDL-CM3 
(cyan). Gridded (10×10 km) 
data from Natural Resources 
Canada (Hopkinson et al., 2011) 
are used as observations over 
1962–2010 (black line). Climate 
scenarios over 2011–2035 are 
obtained by statistically adjusting 
the simulations with a procedure 
termed quant i le  mapping 
(Grenier  et  al., 2015). Linear 
trends over 15-year segments 
are represented in red when 
positive and blue when negative. 
The gray envelope represents the 
time-smoothed 10th and 90th 
percentiles for yearly values in 
an ensemble of 15 RCP8.5-based 
climate scenarios (comprising the 
three presented here).
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1890–2012. While statistically significant trends were found, 
the results were spatially heterogeneous with both increasing 
and decreasing precipitation trends, even for sites a relatively 
short distance apart. None of the analyzed normal periods 
exhibited large-scale simultaneous agreement on positive 
or negative precipitation trends. Analysis of adjusted 
climate station precipitation data over the Canadian sector 
of the BBDS region from Mekis and Vincent (2011) shows 
evidence of statistically significant increases in precipitation 
over the 1950–2010 period: 5% per decade for rainfall and 
3% per decade for snowfall (Brown et al., 2018). However, 
Rapaić et al. (2015) found that trends computed using the 
adjusted Mekis and Vincent (2011) station data were about 
two times larger than those obtained from a multi–data set 
estimate. They concluded that while there was strong evidence 
of long-term increases in precipitation over the Canadian 
Arctic, there were large uncertainties in the magnitude of 
the change. Hamilton and Wu (2013) reported a statistically 
significant trend of about +10 mm per decade from the 
60-year precipitation record at Alert. The observed long-
term increases in precipitation over the region are a response 
to both warming (warmer air can hold more water vapor) 
and loss of sea ice (Kopec et al., 2016; Thomas et al., 2016).

Projected changes

Precipitation is expected to increase over the BBDS region in 
response to warming and reductions in sea ice cover (Kattsov et al., 
2007; Zhang et al., 2012; Bintanja and Selten, 2014; Kopec et al., 
2016; Thomas et al., 2016). However, the climate change signal for 
precipitation is less marked than for air temperature.

Figure 3.5 shows the projected range in precipitation changes 
for the BBDS region (land only). The range of the RCP4.5 
scenarios (green) is consistent with no change for some seasons. 
As with temperature, recent past interannual variability, as well 
as the range of future changes, is much larger in winter than 
in summer. RCP-related uncertainty becomes considerable 
around 2050, and both envelopes show ranges that widen with 
time due to model-related uncertainty and natural variability. 
It must be stressed that large relative changes can occur with 
small absolute changes for areas of the High Arctic where 
total precipitation amounts are low – e.g., the mean annual 
precipitation is only about 200 mm at Resolute in the Northwest 
Territories (Mekis and Vincent, 2011). Projections for changes 
in other variables of the atmospheric branch of the water cycle 
are discussed in the supplementary materials provided for this 
subchapter (Langen et al., 2016).
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3.1.2.3 Wind

Mean BBDS near-surface wind speeds are projected to 
change within ±5% by 2030 and ±10% by 2080 for all seasons. 
There is little information on projected changes in prevailing 
wind direction.

Observed trends

It is difficult to reach clear conclusions about wind-speed trends 
in the BBDS region. Trend analysis of surface wind speed 
observations is complicated by strong interannual variability 
and by the sensitivity of these observations to instrumentation 
(anemometer type and height) as well as the location and 
exposure of the observing site. There are relatively few studies 
of trends in wind speeds in the BBDS region. Wan et al. (2010) 
presented wind speed trend analysis results for homogenized 
wind speed records at a number of Canadian stations in the 
BBDS region over the period 1953–2006. The results show 
increasing wind speeds at Alert and Resolute but decreases at 
stations on Baffin Island. The observed increase in annual mean 
wind speed at Alert over the 1954–2011 period was +0.33 m/s per 
decade (Hamilton and Wu, 2013). Trends in geostrophic winds 
(the wind speed derived from surface pressure observations) 
indicate decreasing wind speeds over most of the BBDS region 

(Wan et al., 2010). Stopa et al. (2016) report increasing over-water 
wind speeds in Baffin Bay for the recent 1992–2014 period (from 
the Climate Forecast System reanalysis).

Projected changes

During the current century, average near-surface wind speeds 
in the BBDS region are likely to remain close to the reference 
value. There are relatively few studies of projected changes in 
wind direction (e.g., McInnes et al., 2011; Gorter et al., 2014), 
and this aspect is not further discussed here.

Dynamical phenomena involved in future wind regime and storm 
activity changes are complex, not fully understood, and some of 
their effects work in opposite directions (Bengtsson et al., 2006; 
Harvey et al., 2013; Gorter et al., 2014). Hence, the sign of the 
sum (net) impact on surface winds at the scale of relatively small 
regions, such as the BBDS, is not consistent from one model to 
another. This inconsistency means that weak, positive, and negative 
21st century changes all represent plausible outcomes. Figure 
3.6 shows near-surface (10-meter) 20-year average wind speed 
anomalies relative to the period 1986–2005 for a large ensemble 
of CMIP5 simulations. This figure suggests that adaptation plans 
should consider ±5% changes in mean wind speed for the period 
2016–2035 and ±10% changes for 2080–2099.
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Examples of CMIP5 global models that project positive 
trends in surface wind speeds include EC-Earth; indeed, 
Dobrynin et al. (2012) find increases on the order of 0–10% 
over the maritime portion of the BBDS region from the mid–
19th century to the end of the 21st century (with RCP4.5 and 
RCP8.5 emissions scenarios). Using an ensemble of CMIP3 
models, McInnes et al. (2011) also obtained no consensus 
among models regarding the sign of the signal in mean wind 
speed over the BBDS region from 1981–2000 to 2081–2100. 
However, for some maritime parts of the BBDS region, at least 
two-thirds of the CMIP3 simulations do agree on a 0–10% 
reduction in winter wind speed.

3.1.2.4 Extreme events

Projections of weather extremes for the BBDS region show 
an increase in annual minimum and maximum temperatures 
and an increase in heavy precipitation. Annual minimum 
temperatures are projected to increase by 2–6°C in the 
medium-emissions scenarios and more than 6°C in the high-
emissions scenarios by 2081–2100, relative to 1981–2000. 
Annual maximum temperatures increase somewhat less. 
Both quantities increase more on the Nunavut side of the 
region than on the Greenland side. Projections show large 
(40–150%) increases in the amount of precipitation during 
very wet days, as well as increases in the number of wet days 
and decreases in the length of dry spells. Projected changes 
in extreme winds have different signs across the region.

In climatology, an extreme event is the occurrence of a value 
near the lower or upper range of the distribution of all 
observed values (IPCC, 2012). Because extreme events occur 
only rarely, their frequency in observational records may 
not be representative of their true probability of occurrence, 
and theoretical assumptions must compensate for the small 
sample size (Coles, 2001; Katz, 2013). This consideration 
poses an additional difficulty for obtaining reliable scenarios 
for the distribution extremes (Wehner, 2013), whose climatic 
change is not necessarily the same as that of the distribution 
mean (Kunkel, 2003; Katz, 2010). Extreme atmospheric events 
manifest in different forms, and each application requires 
specific indicators. Several global studies have focused on 
indices for extreme temperature and precipitation, discussing 
observed recent trends (e.g., Alexander  et  al., 2006), the 
performance of global models during the recent past 
(e.g., Sillmann et al., 2013a), and model projections for the 21st 
century (e.g., Tebaldi et al., 2006; Orlowsky and Seneviratne, 
2012). Extreme winds have been investigated somewhat less.

Observed trends

Analysis of surface stations (Peterson et al., 2008; Donat et al., 
2013; Wang et al., 2014) shows the BBDS region following trends 
similar to those of the rest of the Arctic – toward significant 
warming of temperature-extreme indices, particularly for 
indices based on daily minimum temperatures. Matthes et al. 
(2015) find most of the BBDS experiencing significant increases 
(decreases) in the duration of winter warm (cold) spells over the 
1979–2013 period (in the ERA-Interim reanalysis). Trends in 
precipitation extremes vary greatly among stations; hence there 

is no clear regional pattern of change in extreme-precipitation 
indices over the region.

Projected changes

An analysis of CMIP5 simulations by Sillmann et al. (2013b) 
indicates that over the BBDS region (land only), between 
1981–2000 and 2081–2100, the multi-model median of the 
average annual minimum temperature (index “TNn”) changes 
by about +2 to +6°C under RCP4.5 and by more than +6°C 
under RCP8.5. For the multi-model median of the average 
annual maximum temperature (“TXx”), the projected changes 
are about +0 to +4°C under RCP4.5 and +1 to +7°C under 
RCP8.5 (the ranges represent differences across the region). 
For both TNn and TXx, increases are larger on the Canadian 
side than on the Greenland side of the region. On a seasonal 
basis, increases in TNn are more pronounced for winter than 
summer. Sillmann et al. (2013b) also report decreases in cold 
spell duration indices and increases in warm spell duration 
indices. Regarding precipitation extremes over the BBDS region 
(land only), their study indicates that the multi-model median 
of the annual amount of precipitation falling during very wet 
days (index “R95p”) changes between about +40% and +100% 
under RCP4.5 and between +70% and +150% under RCP8.5. 
Also, the multi-model median of the annual number of days 
with precipitation above 10 mm (“R10mm”) increases by 0.5 
to 4 days (RCP4.5) and by 0.5 to 10 days (RCP8.5), whereas 
the multi-model median of the length of the longest dry-day 
sequence (“CCD”) decreases by about 1 to 10 days (under both 
RCP4.5 and RCP8.5). For the CCD index, these results are not 
statistically significant over southern Greenland.

Only a few studies examine future wind extremes for the BBDS 
region. Using an ensemble of scenarios based on eight CMIP3 
global climate models, Cheng et al. (2014) found that the annual 
number of hours with wind-gust speeds exceeding specific 
thresholds (28, 40, 70, and 90 km/h) is likely to increase at 
Resolute, Nunavut. The percentage increases are approximately 
5–85% for 2046–2065 and approximately 15–170% for 
2081–2100 (reference period 1994–2009; higher percentage 
increases associated with higher gust thresholds). Seasonal 
results for the 70 km/h threshold in 2081–2100 indicate a larger 
percentage increase in summer than in other seasons, partly 
due to lower summer values during the reference period. Wind-
gust scenarios from Cheng et al. (2014) also indicate increases 
at Eureka, Pond Inlet, Clyde River, Hall Beach, and Iqaluit, 
though not in all seasons (a decrease is projected for Hall Beach 
in winter). Assuming that 850 hPa winds co-vary with near-
surface winds, the results from Gastineau and Soden (2009) 
indicate geographical differences in 21st century changes in 
the annual frequency of extreme daily winds: a decrease over 
Davis Strait, an increase over the Canadian archipelago, and a 
relatively weak change over Baffin Bay. No equivalent multi-
model results have been found for the Greenland side.

It is important to note that the reliability of scenarios for 
precipitation and wind extremes is tightly connected with the 
ability to model cyclones (McCabe et al., 2001; Pfahl and Wernli, 
2012). In the BBDS region, these storms often enter from the 
south (Maxwell, 1981). Evaluating the cyclone climatologies of 
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climate models in this region is a challenge because estimates 
of the relative frequency of cyclones vary widely depending on 
which study periods, reanalysis data sets, and storm tracking 
algorithms are used (e.g., Zhang et al., 2004; Serreze and Barry, 
2005; Vavrus, 2013; Tilinina et al., 2014). Models are found 
to perform well at capturing the spatial pattern and seasonal 
variations in cyclone frequency but with large between-
model diff erences in the numbers of cyclones (Vavrus, 2013; 
Zappa et al., 2013). Topographically driven wind extremes, such 
as the katabatic piteraq events of southern Greenland, require 
high-resolution models (Moore et al., 2015) and cannot be 
represented in global climate models.

3.1.3 Terrestrial cryosphere

3.1.3.1 Snow

Projections of snow-cover duration for the end of the 21st 
century show a decrease of approximately 40–60 days. Th is 
change is mainly due to later snow onset, with reductions 
being most pronounced in coastal regions. Th e results are 
quite sensitive to the imposed emissions scenario – e.g., with 
stabilization by 2100 under the medium-emissions scenario 
and with accelerating decreases under the high-emissions 
scenario. Annual maximum snow depth shows little response 
to warming, but for the May–October period, large relative 
reductions in snowpack are projected.

Seasonal snow is present over most of the BBDS region from 
early October to mid-June, with permanent or semipermanent 
snow cover over higher elevations. Changes in snow cover 
timing and amount have important implications for living and 
non-living resources (see Chapters 6 and 7; Bokhorst et al., 
2016; Brown et al., 2017). Such changes also infl uence the 
Arctic climate system and cryosphere due to the refl ective 
and insulating properties of snow. For example, the timing 
and amount of snow accumulation on sea ice is an important 

control on ice cover formation and growth (Barber et al., 2017). 
Snow accumulation varies considerably in space and time, 
with several variables exerting strong infl uences on maximum 
snow accumulation at regional to local scales: proximity to 
moisture sources, elevation, surface topography (exposure to 
wind), and prevailing vegetation. Th e regional patterns of snow 
cover duration (SCD) and of mean annual maximum snow 
accumulation (Figure 3.7) highlight the strong coastal gradients 
in snow cover around Baffi  n Bay.

Observed trends

Th e longest available satellite-based information for estimating 
trends in annual snow cover duration over the BBDS region 
is the U.S. National Oceanic and Atmospheric Administration 
(NOAA) climate data record (Estilow  et  al., 2015), with 
complete data since 1972. Th e utility of this data set is limited by 
its coarse resolution (190.5 km) and an absence of information 
over Greenland. However, the regionally averaged annual SCD 
series from NOAA agrees well with estimates obtained from 
in situ observations over the Canadian side of the BBDS (see 
Langen et al., 2016). Th e two series combined provide evidence 
of a decrease of approximately 3 weeks in the duration of snow 
on the ground since 1950. Station data show that most of the 
decrease is related to a later start to the snow cover season, 
which refl ects the enhanced warming observed in autumn over 
the region (Rapaić et al., 2015).

Th ere are large uncertainties in documenting trends in annual 
snow accumulation because of the sparse network of in situ 
measurements and the fact that snow-depth observations made 
at climate stations in open terrain may not be representative of 
snow conditions in the prevailing land cover. According to the 
available Canadian in situ snow-depth data, maximum snow 
depths have decreased over the Canadian side of the BBDS 
by an average of about 20% since 1950 (Brown et al., 2018). 

Figure 3.7 Left : Mean annual number 
of days with snow on the ground 
(snow cover duration, SCD) from the 
NOAA IMS 24 km daily snow cover 
analysis (Helfrich et al., 2007) over 
snow seasons 1998/99 to 2013/14. 
Right: Mean annual maximum snow 
water equivalent (SWE) (mm) over 
the 1979/80 to 2008/09 snow seasons, 
from the snow cover reconstruction 
of Liston and Hiemstra (2011).
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Estimates of trends in maximum annual snow water equivalent 
(SWEmax) from other sources, such as passive microwave 
satellite data (GlobSnow; Takala et al., 2011) and the reanalysis-
driven reconstruction of Liston and Hiemstra (2011), do not 
agree on the sign of change over the BBDS region in spite of 
evidence that precipitation is increasing over the region (AMAP, 
2011; Lindsay et al., 2014; Vincent et al., 2015).

Projected changes

Projections of snow cover change for the BBDS region 
were obtained from the SWIPA 2017 report (Brown et al., 
2017), which examines monthly snow cover and snow water 
equivalent (SWE) output from 16 independent CMIP5 
models for 3 sets of experiments: historical (1986–2005), 
RCP4.5 (2006–2099), and RCP8.5 (2006–2099). Maps of 
relative change in annual snow cover duration and annual 
maximum SWE over Arctic land areas were generated for 
three 20-year scenario windows: near-term (2016–2035), 
mid-term (2046–2065), and long-term (2081–2100), all 
expressed with respect to the 1986–2005 reference period 
(shown in Langen et al., 2016). SCD was also computed for 
the first half of the snow season (August–January) and the 
second half (February–July), to capture changes in snow cover 
onset and snow-off (end of spring melt) dates. Regionally 
averaged results were computed over non-glacier gridpoints 
in the BBDS domain (approximated by the latitude/longitude 

box of 60–85°N, 45–95°W). The following general points can 
be made from the CMIP5 model results:

 • Annual maximum SWE shows little response to warming in 
the BBDS region (-10 to +15% range by 2100 for RCP8.5) 
and is relatively insensitive to emissions scenario (Figure 3.8, 
left panels). However, large relative reductions in SWE 
are projected to take place in the May–October period 
(Figure 3.8, right panels).

 • Annual snow cover duration shows strong sensitivity to 
warming (Figure 3.9, top panels), with decreases of 15–25% 
projected by 2100 for RCP8.5. These percentage changes 
correspond to decreases of approximately 40–60 days, based 
on the mean annual SCD (255 days) observed at Canadian 
communities in the BBDS region (see Langen et al., 2016). 
SCD is also sensitive to emissions scenario: the RCP4.5 
results indicate a stabilization of snow cover duration toward 
the end of this century, at levels about 5% lower than today, 
while the RCP8.5 results indicate accelerating reductions in 
snow cover throughout the century.

 • Snow cover duration is projected to decrease more rapidly 
in the start of the snow season than at the end of the snow 
season (Figure 3.9, bottom panels). This feature is also found 
in snow cover trends from in situ observations and in high-
resolution regional RCP4.5 and RCP8.5 model projections 
for Greenland (Christensen et al., 2015).
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Figure 3.8 Left panels: Projected change (%) in BBDS-averaged maximum snow water equivalent (SWEmax) relative to 1986–2005, from 16 CMIP5 
models: 25th, 50th and 75th percentiles (fourth-order polynomial smoothing). Right panels: Projected change (%) in monthly snow water equivalent 
(SWE) over BBDS non-glacier land areas for the year 2055 under the RCP4.5 and RCP8.5 scenarios: 25th, 50th, and 75th percentiles of 16 CMIP5 models. 
Results for the 2025 and 2090 periods are provided in the supplementary material for this subchapter (Langen et al., 2016). 
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More detailed information on the spatial pattern of projected 
snow cover changes from the CanRCM4 regional climate model 
(0.22° Arctic CORDEX experiment, run 1) (Scinocca et al., 
2016; see Langen et al., 2016) shows evidence of strong coastal 
gradients in SWEmax change in several areas (e.g., southern 
Baffin Island, southwestern Greenland, Ellesmere Island), with 
decreases along the coastal margins and increases over higher 
elevations farther inland. The stronger climate response of snow 
cover in coastal regions is consistent with the conclusions of 
Brown and Mote (2009) regarding the higher climate sensitivity 
of snow cover in marine areas. This greater sensitivity is 
related to the warmer cold season temperatures and higher 
precipitation in these areas.

3.1.3.2 Permafrost

BBDS permafrost is projected to warm the most in the 
region’s coldest areas and to thaw considerably in the 
warmest areas. Ellesmere Island is an example of a cold 

area that is projected to experience pronounced permafrost 
warming. Southwestern Greenland is an example of 
a relatively warm area that is projected to experience 
pronounced permafrost thawing.

The thermal state of the ground is closely linked to climate – 
particularly air temperature and precipitation, which are the main 
drivers influencing thermal-state variability and temporal and 
spatial changes. Other local environmental drivers – such as wind, 
snow drift dynamics (Stieglitz et al., 2003; Zhang, 2005), vegetation 
cover growth (Lantz et al., 2012), drainage, and subsurface material 
properties (including ice/moisture content) – greatly influence 
ground temperature and its spatial and temporal variability. In such 
contexts, trends in shallow ground temperature can be sensitive 
to short-duration variations and regional comparisons can be 
challenging. Deeper ground temperatures reflect longer-term 
trends in climate. A recent review of changing Arctic permafrost 
and the impacts of these changes is provided in Chapter 3 of the 
SWIPA update (Romanovsky et al., 2017).
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Figure 3.9 Top panels: Projected change (%) in annual snow cover duration relative to 1986–2005, averaged over non-glacier land points in the BBDS 
region, from 16 CMIP5 models: 25th, 50th, and 75th percentiles. Bottom panels: Projected change (%) in snow cover duration over the first half (SCD 
Autumn) and second half (SCD Spring) of the snow season, relative to 1986–2005, from 16 models: 50th percentiles. 
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Observed trends

Figure 3.10 shows permafrost temperatures for several sites 
in the BBDS region. On the Canadian side, the mean annual 
ground temperatures generally decrease with increasing 
latitude, ranging from about -5°C in the southern portion 
of Baffin Island to about -15°C at the northernmost sites of 
Ellesmere Island (e.g., Smith et al., 2010; Smith et al., 2013). On 
Baffin Island, the thickness of the active layer (the seasonally 
thawed surface layer above permafrost) ranges from less than 
1 m to about 2 m (Ednie and Smith, 2010; Ednie and Smith, 
2011); limited observations indicate thicknesses generally 
less than 1 m for the northernmost sites. Since the 1980s, 
permafrost temperatures at Alert have increased at rates of 
about 0.5 and 0.3°C per decade at depths of 15 and 24 m, 
respectively (Figure 3.11 and Table 3.1), which is consistent with 
air temperature trends (Smith et al., 2012; Romanovsky et al., 
2015). Higher rates of permafrost warming were observed 
in the period 2000–2014, with a warming of 0.7 to 1°C per 
decade at 24 m depth and 1.3°C per decade at 15 m depth. 
Record-high permafrost temperatures were observed at Alert 
in 2012, with mean annual ground temperatures in the upper 
25 m reaching more than -11°C at one site (Romanovsky et al., 
2015). Shallow (<5 m) permafrost temperatures recorded in 
Iqaluit show warming rates of about 0.2°C per year between 
1993 and 2004 (Throop et al., 2010). The shorter time series 
records (4–5 years) at 10 to 15 m depth at other sites on Baffin 
Island and the surrounding islands show warming patterns 
similar to those recently observed at Alert. These patterns are 

part of a consistent pan-cryospheric response to warming 
(Derksen et al., 2012).

On the Greenland side of the BBDS region, permafrost 
temperatures are relatively warm (close to 0°C) in coastal 
zones and south of the Arctic Circle; inland and farther north, 
temperatures are colder. Data from four shallow boreholes 
covering the period 2007–2009 (Figure 3.10) indicate that mean 
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Figure 3.10 Permafrost temperatures (derived from Christiansen et al., 2010; Smith et al., 2013) and permafrost zones (from the map of Brown et al., 
2014). The temperatures represent mean annual ground temperature at the depth of zero annual amplitude (the depth below which there is no significant 
seasonal variation in ground temperature) or at the depth of the closest measurement. The data were generally collected since 2008. The permafrost zone 
categories, indicated by the dark-to-light gray shading, are continuous (90–100% cover), discontinous (50–90% cover), and sporadic (10–50% cover). 

Table 3.1 Change in permafrost temperature over time for selected sites in 
the BBDS region (Smith et al., 2012; Romanovsky et al., 2015; Throop et al., 
2010; Ednie and Smith, 2015; plus updates).

Site 
(and measurement 
depth)

Time period Rate of temperature 
change 

(°C per year)

Alert BH1 (24 m) 1978–2014 0.03

2000–2014 0.07

Alert BH2 (24 m) 1978–2014 0.03

2000–2014 0.10

Alert BH5 (15 m) 1978–2014 0.05

2000–2014 0.13

Resolute (15 m) 2008–2012 0.33

Eureka (10 m) 2009–2012 0.29

Arctic Bay (15 m) 2008–2013 0.18

Pond Inlet (15 m) 2008–2013 0.15

Iqaluit (5 m) 1993–2004 0.20
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annual ground temperatures at depths near 4 m range from 0.2°C 
at Nuuk (sporadic permafrost) to -3.4°C at Ilulissat (continuous 
permafrost) (Christiansen et al., 2010). Th e Ilulissat borehole is 
located in a fi ne-grained marine deposit with a residual salinity 
that increases with depth. Th e resulting depression of the freezing 
point (relative to zero-salinity conditions) means that permafrost 
at this site is relatively close to thawing (Ingeman-Nielsen et al., 
2010). In the northernmost part of West Greenland, a borehole 
at Th ule has a mean annual ground temperature of -10°C (Bjella, 
2012). Th ese observed values are in agreement with simulation 
results obtained from the Geophysical Institute Permafrost Lab 
(GIPL; University of Alaska, Fairbanks) model forced using year 
2005 data from the Climate Research Unit 3.1 database (CRU-3.1).

Projected changes

Th e recent CMIP5 generation of climate and earth system 
models shows a wide range of abilities in the simulation of 
current permafrost distribution and active-layer characteristics. 
Most models are not designed to simulate deep ground 
temperatures. Computed temperatures are sensitive to soil 
layer and lithologic discretization, realistic representation of 
surface snowpack and organic soils, realistic treatment of heat 
and water fl ow in soils, and the numerical precision of the 
computer running the climate model (Paquin and Sushama, 
2015). In addition, Slater and Lawrence (2013) found that 
some models had signifi cant air temperature and snow depth 
biases that adversely aff ected their ability to simulate realistic 
permafrost conditions.

It is therefore practical to employ a dedicated permafrost 
model driven by climate model output. Figure 3.12 shows 
the result of one such experiment (using the model GIPL2; 
Marchenko et al., 2008). Under RCP4.5 (Figure 3.12, upper 
panels), the simulated permafrost temperatures at 5 m depth 
show warming of about 2–4°C over large areas of the cold 
permafrost regions on the Canadian side of the region by 

the years 2081–2100. Th e Greenland side also shows ground 
temperatures increasing by up to 2–4°C. Th is warming results 
in degradation of the permafrost, especially in the southern 
part of the region (Gent et al., 2011). Under RCP8.5 (Figure 
3.12, lower panels), the largest increase in the 5 m temperature 
could reach 8–10°C by the 2081–2100 period; most of the 
permafrost on the Canadian side could warm by about 6–8°C. 
On the Greenland side, where the permafrost is already fairly 
warm (between 0 and -5°C), large areas are projected to have 
temperatures cross the 0°C threshold by 2081–2100. Th ese 
results, which refl ect only one model (GIPL2) and do not 
account for local variability, may not accurately correspond 
to site-specifi c observations.

3.1.3.3 Land ice

Th e Greenland Ice Sheet is projected to lose mass during 
the 21st century, with the primary mechanisms being 
increased freshwater runoff  (up to a doubling or tripling) 
and glacier calving. Year-to-year variability in freshwater 
runoff  is projected to increase. Th e Canadian Arctic glaciers 
and ice caps are similarly projected to lose mass due to 
increased runoff .

Th e BBDS region encompasses ice sheets and glaciers in both 
Greenland and the Canadian Arctic Archipelago. Ice sheets and 
glaciers gain mass through precipitation, and they lose mass 
primarily through meltwater runoff , iceberg calving, and melting 
in direct contact with ocean water. Th e diff erence between the 
mass gain and loss is called the total mass balance. Th e surface 
mass balance is the diff erence between accumulation from 
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Figure 3.11 Permafrost temperature (annual mean) time-series records 
(reproduced from Smith et al., 2015) for Canadian Forces Station (CFS) 
Alert, at depths of 15 and 24 m (updated from Smith et al., 2012, and 
Romanovsky et al., 2015) and three communities on Baffi  n Island (data 
from Ednie and Smith, 2015, and Romanovsky et al., 2015). Alert BH1 is 
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Figure 3.12 Projected change for BBDS permafrost, expressed as the change 
in average temperature (°C) at 5 m depth for the periods 2016–2035 (left  
panels) and 2081–2100 (right panels). Th e results are based on the GIPL2 
transient permafrost model forced with the CCSM4 GCM and emission 
scenarios RCP4.5 (upper panels) and RCP8.5 (lower panels). Changes are 
computed relative to the reference period 1986–2005. 
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precipitation and mass loss from surface ablation (sublimation, 
drifting snow erosion, and runoff of meltwater). The loss of 
mass through iceberg calving and melting in direct contact with 
the ocean is termed the dynamical mass loss. An Arctic-wide 
perspective on observed and projected changes in land ice is 
provided in Chapter 4 of the SWIPA update (Box et al., 2017).

Observed trends

According to a reconstruction by Box (2013), meltwater runoff 
from the Greenland Ice Sheet as a whole increased 63% over 
the 1840–2010 period. This reconstruction suggests that the 
ice sheet surface mass balance had an insignificant decreasing 
trend due to nearly equal increases in accumulation and runoff 
rates. In the early 1990s, the surface mass balance started to 
decrease, due almost entirely to increased melting and runoff, 
with changes in accumulation being small (Sasgen et al., 2012; 
Vernon et al., 2013). The increase in melting is driven by regional 
warming that is associated with both anthropogenic changes 
(e.g., Fyke et al., 2014b) and prevailing atmospheric circulation 
patterns that are favorable for melting (e.g., Fettweis et al., 2013).

The ice sheet changes led to 20–50% increases in freshwater 
input to the seas adjacent to Greenland between 1992 and 
2010 (Bamber et al., 2012). Mernild and Liston (2012) modeled 
regional changes in the magnitude and timing of runoff since 
1960. Runoff increase is attributed mainly to an increase in areal 
melt extent, with smaller contributions from an increase in melt 
duration and a countering decrease in melt rates. The length of 
the simulated discharge season was longest in the south (about 
4–6 months) and shortest in the north (about 2–3 months). The 
length of the discharge season increased between 1960–1969 
and 2000–2010, with changes ranging from 11 days in the north 
to 27 days in the south and southwest. The mass loss and ocean 
freshwater input from increased runoff has been augmented 
by an increased iceberg calving flux since the early 1990s from 
southern and western Greenland (Bigg et al., 2014).

Reconciliation of results from various methods estimating the 
total mass balance of the Greenland Ice Sheet (e.g., Shepherd et al., 
2012) has documented a sharp increase in the total mass loss 
over recent decades. The IPCC’s AR5 (IPCC, 2013a) reports 
an acceleration from 0.1 mm sea-level equivalent per year 
(1992 –2001) to 0.6 mm per year (2002–2011). According to 
Enderlin et al. (2014), the relative contribution of dynamical 
mass loss to the total loss decreased from 58% before 2005 to 
32% between 2009 and 2012. In the southwest, recent mass loss 
has been mainly through surface mass balance, while in the west 
and northwest, surface mass balance and dynamical mass loss 
contribute approximately equally. The majority of the current 
Greenland total mass loss (about 60%) is attributed to West 
Greenland (Andersen et al., 2015).

Outside the ice sheets of Greenland and Antarctica, the 
Canadian Arctic Archipelago (CAA) contains the largest area 
of land ice (~150,000 km2) on Earth. Recent estimates of mass 
loss identify the CAA as the single largest land ice contributor 
to sea level rise outside the two ice sheets (Gardner et al., 2011; 
Sharp et al., 2011; Gardner et al., 2013; Sharp et al., 2014). 
Observations show that most of the land ice in the CAA has 

lost mass, thickness, and area over the past half century as 
a result of climate warming. Since 2007, more intense and 
sustained melt has occurred in response to a trend toward 
more frequent summer anticyclonic circulation over the region 
(Overland et al., 2012; Gascon et al., 2013; Sharp et al., 2014; 
Bezeau et al., 2015). The CAA mass losses are dominated by melt 
and runoff, with iceberg calving playing a varying but apparently 
minor role (Williamson et al., 2008; Van Wychen et al., 2014). 
Floating ice shelves at northern Ellesmere Island have also been 
strongly affected by the recent warming, with some fjords in 
the region now ice free for the first time in over 3,000 years 
(Sharp et al., 2014; White et al., 2014).

Projected changes

Although snowfall accumulation is projected to increase in 
the future (Krasting et al., 2013), all studies indicate that the 
Greenland surface mass balance will continue to decrease 
because projected increases in runoff are greater than projected 
increases in accumulation (Church et al., 2013a). Rae et al. 
(2012) compared regional climate models over Greenland, 
driven by different global models. Depending on the model 
combinations employed, projected runoff rates increase by 
about a factor of 2–3 over the 21st century in the A1B scenario 
(which lies between the RCP4.5 and RCP8.5 scenarios). In a 
single-model experiment using the RCP8.5 scenario, Fyke et al. 
(2014a) found an approximately 50% increase in year-to-year 
variability in surface mass balance; this increase was dominated 
by increased variability in runoff.

Increasing dynamical ice loss has been linked to the arrival of 
warm ocean water (Holland et al., 2008; Straneo et al., 2010, 2012) 
and a reduction of ice in the fjord ahead of a glacier terminus, 
thus increasing the calving rate (Amundson et al., 2010). As 
noted by Church et al. (2013a), 19 coupled global atmosphere–
ocean climate models show a warming of about 2°C in scenario 
A1B around Greenland over the 21st century (Yin et al., 2011), 
indicating that the increased outflow may be expected to continue 
into the future. We do not currently have three-dimensional 
models of iceberg calving and energy exchange at the ice–ocean 
interface, but flowline modeling by Nick et al. (2013) suggests 
speed-ups of up to 70% for a suite of four major outlet glaciers. 
These speed-ups tend to occur mainly in the early part of the 
21st century; after that, the speeds level out.

Model projections of future mass loss components were 
synthesized by Church  et  al. (2013a), and the projected 
Greenland Ice Sheet contribution to sea level rise is given in 
Table 3.2. The median total contribution is found to be about 
10 cm of sea level, with an upper range of about 20 cm.

Table 3.2 Projected Greenland Ice Sheet contribution to sea level rise (in 
meters) by 2081–2100, relative to 1986–2005: median values [and likely 
ranges] (Church et al., 2013a).

Surface mass 
balance (m)

Dynamical mass 
loss (m)

Total (m)

RCP4.5 0.04 [0.01 to 0.09] 0.04 [0.01 to 0.06] 0.08 [0.04 to 0.13]

RCP 8.5 0.07 [0.03 to 0.16] 0.05 [0.02 to 0.07] 0.12 [0.07 to 0.21]
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As with the Greenland Ice Sheet, the indications are that 
the currently observed trend of CAA glacier mass loss will 
continue into the future, as enhanced meltwater runoff 
is not sufficiently compensated by increased snowfall 
(Lenaerts et al., 2013). However, it should be stressed that 
there is considerable model variability in the sign, magnitude, 
and timing of projected changes in snowfall and accumulated 
snow mass over the region; in addition, most climate models 
do not represent local moisture sources such as the North 
Water Polynya, which is an important contributor to the 
mass balance of the Manson and Prince of Wales ice fields 
(Boon et al., 2010). Radic et al. (2013) used downscaled 
output from 14 different global climate models forced by 
emissions scenarios RCP4.5 and RCP8.5 to drive a glacier 
mass balance model. For the period 2006–2100, they found 
glacier volume reductions of 10–60% in the Queen Elizabeth 
Islands and 20–100% in the Baffin/Bylot region. The glaciers 
of the Queen Elizabeth Islands have a relatively low sensitivity 
to the first 2°C of warming, but their sensitivity increases 
as warming increases beyond that point. Relative to other 
regions, the CAA has a relatively low sensitivity of mass 
balance to climate warming, but this still results in large 
projected mass losses due to the relatively large warming 
projected over this region.

3.1.3.4 Freshwater ice

Projections for lake ice in 2050 indicate a 10–15 day earlier 
break-up and a 5–10 day later freeze-up, with a 10–30 cm 
decrease in maximum ice thickness. Lake-ice response to 
warming is influenced by lake morphology (size and depth) 
and local changes in snow accumulation.

The following material is taken largely from the ArcticNet Eastern 
and Central Canadian Arctic Integrated Regional Impact Study 
(IRIS) report (Stern and Gaden, 2015) and the Eastern Canadian 
Arctic IRIS report (Brown et al., 2018).

Lake and river ice are integral components of the northern 
environment, and they influence a wide range of related 
climate-sensitive ecosystem services and numerous ecological 
and water quality characteristics (Beltaos and Prowse, 2009; 
Prowse et al., 2011a). Ice is also a critical component of cold-
region hydrologic systems, affecting extreme floods and low 
winter flows (Beltaos and Prowse, 2009). Ice cover formation, 
melt, and dynamics are sensitive to a variety of meteorological 
variables, and changes in any of these variables can influence 
ice composition, thickness, and stability, as well as the complex 
interactions among hydrodynamic, mechanical, and thermal 
processes (Beltaos and Prowse, 2009). Lake and river ice 
regimes also respond to non-climatic controls such as lake 
morphology and depth (Brown and Duguay, 2010) and 
changes in the terrestrial hydrologic regime (Prowse et al., 
2011a, 2011b).

Compiling information on trends in lake and river ice cover is 
a challenge. Few in situ records exist, and satellite observations 
have a variety of limitations related to resolution, frequency, 
consistency, and duration of coverage. Latifovic and Pouliot 
(2007) used Advanced Very High Resolution Radiometer 
(AVHRR) satellite imagery to analyze lake freeze-up/break-

up trends over the period 1985–2004, including four lakes 
distributed across the Canadian side of the BBDS region. 
Their analysis showed evidence that these lakes were part 
of a consistent Canadian Arctic–wide trend toward later 
freeze-up and earlier break-up. The average change observed 
over the four lakes for the 20-year period was a 15-day 
later freeze-up and a 24-day earlier break-up. Lake Hazen, 
near Alert, exhibited the largest trends and also the only 
statistically significant trends. Paquette et al. (2015) provided 
evidence of recent significant changes at Ward Hunt Lake 
on northern Ellesmere Island, from analysis of field records, 
aerial photographs, and satellite imagery. These records show 
that the summer perennial ice regime was relatively stable 
from 1953 to 2007 but then experienced rapid thinning in 
2008 and became ice free in 2011. Further evidence of rapid 
lake ice changes over the region was provided by Surdu 
(2015), who observed widespread decreases in lake ice 
cover over the Canadian Arctic Archipelago from analysis 
of RADARSAT data for the 1997–2011 period. There is also 
evidence that some lakes may be transitioning from perennial 
to seasonal ice regimes (Mueller et al., 2009), which has 
major consequences for freshwater ecosystems and related 
ecosystem services (Vincent et al., 2012).

A variety of methods are used to generate scenarios of projected 
change in river and lake ice because these quantities are 
typically not resolved in global climate models. Recent studies 
have applied lake ice models to estimate the responses of lake 
ice characteristics to changes in temperature and precipitation: 
lake ice freeze-up/break-up, ice thickness, and the potential for 
white ice formation (Brown and Duguay, 2011; Dibike et al., 
2011, 2012). White ice results from the incorporation of 
melted surface snow into the ice. Over the BBDS region, these 
studies project a 10–15 day earlier break-up and a 5–10 day 
later freeze-up for 2050. These numbers are comparable to an 
estimated decrease in river ice duration over most of Canada of 
approximately 20 days by 2050, provided by Prowse et al. (2007), 
based on the observed temperature sensitivity of river ice. Ice 
thickness is projected to decrease by 10–30 cm, with only small 
increases in the amount of white ice formation. These model 
simulations are based on an “idealized lake” of fixed depth. In 
reality, lake response will vary with lake morphology (size and 
depth) and local changes in snow accumulation, as shown by 
Brown and Duguay (2011).

3.1.4 Ocean

A freshening and warming of the Baffin Bay surface layer 
(about 0.2°C per decade over the next 50 years) is projected 
under the high-emissions scenario. This change is expected 
to reduce convection depth during winter and increase 
water column stability during the ice-free months. Models 
project an increased inflow of warm Atlantic-origin water 
into the bay, a decrease of cold Arctic water flow through 
the Canadian Arctic Archipelago, and an intensification of 
the counterclockwise circulation in Baffin Bay. Under these 
projected changes, the duration of ice bridges in Nares 
Strait, and thus the duration of the North Water Polynya, 
will likely decrease.
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3.1.4.1 Physical oceanography of the region

Baffi  n Bay connects the Arctic Ocean with the western North 
Atlantic through three narrow CAA passages (Nares Strait, 
Jones Sound, and Lancaster Sound). Depth-averaged summer 
temperature and salinity over the upper 100 m (Figure 3.13) 
displays an east–west diff erence that refl ects the relatively warm 
and salty West Greenland Current fl owing northward along 
the west Greenland slope and the cold and fresh Arctic water 
fl owing southward through the CAA and along the western 
side of Baffi  n Bay and Davis Strait. Th e relatively fresh water 
nearshore on the west Greenland shelf is a continuation of the 
East Greenland Coastal Current, which rounds the southern 
tip of Greenland to then fl ow northward, hugging the western 
Greenland coast; ice sheet runoff  further freshens this water 
as it travels northward.

Vertically, Baffi  n Bay has a three-layer structure consisting 
of cold and fresh Arctic water in the top 300 m, a warm and 
salty middle layer from about 300 to 800 m, and a cold and 
slightly fresher deep layer (Tang et al., 2004). A similar three-
layer structure is observed in Davis Strait (Figure 3.14) to the 
south, although the deep layer in the strait, in contrast to the 
bay, is not fresher than the middle layer. Th e winter mixed 
layer depth, resulting from wind mixing and sea ice formation, 
reaches about 100 m (Tang et al., 2004). In the summer, a strong, 
shallow pycnocline develops, reducing the mixed layer depth to 
about 10–30 m (e.g., Harrison et al., 1982; Jensen et al., 1999).

A summary of observation-based mean freshwater inputs and 
outputs for Baffi  n Bay is shown in Figure 3.15. Th e data upon 
which many of the numbers are based are extremely limited, and 
they do not refl ect the strong interannual variability observed 
at locations where measurements have been taken long enough 
to identify lower-frequency variability as an important feature 
of these Arctic Ocean exports.

Th ere are three principal inputs of fresh water to Baffi  n 
Bay: the CAA passages, the East Greenland Coastal Current 
extension, and the Greenland Ice Sheet. Combining estimates 
from the CAA passages (Melling et al., 2008; Munchow 
and Melling, 2008; Rabe et al., 2012; Peterson et al., 2012; 
Hamilton and Wu, 2013; see Langen  et  al., 2016, for 
Barrow Strait/Lancaster Sound time series) gives a mean 
volume transport through the entire CAA of about 1.5 Sv 
(1 Sv = 1 million m3 per second) and a freshwater transport 
of 81 mSv. Th ese inputs show strong seasonal variability 
(with summer transport being 2–3 times larger than winter 
transport) and strong interannual variability (up to a factor 
of 4). Along West Greenland, Curry et al. (2014) derived 
northward mean volume transports of 0.4 Sv on the shelf 
and 0.7 Sv on the slope (Irminger Sea water) and a freshwater 
transport of 24 mSv. For the western half of Davis Strait, they 
reported a southward mean volume transport and freshwater 
transport in the Baffi  n Island Current of 2.9 Sv and 117 mSv, 
respectively. Glacial freshwater (solid and liquid) also enters 
Baffi  n Bay, principally off  the Greenland Ice Sheet but also 
from glaciers on Baffi  n and Ellesmere islands. According to 
Bamber et al. (2012), 80% of the total Greenland discharge 
enters the ocean on the western and southeastern coasts. 
Th e rate of freshwater discharge from these glacial sources 
is increasing (Rignot et al., 2011; Bamber et al., 2012).

3.1.4.2 Observed trends

Hamilton and Wu (2013) used archived summer temperature 
and salinity data from 1950 to 2005 to derive trends in Baffi  n 
Bay and Davis Strait. Although interannual variability was 
high, particularly in the upper ocean, some signifi cant trends 
were observed:
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Figure 3.13 Summer (August to October) temperature (left  panel) and 
salinity (right panel) in the upper 100 m of the Baffi  n Bay/Davis Strait 
water column. Derived from available archived data between 1910 and 
2009. Th e transect line indicates the location of the cross-sections shown 
in Figure 3.14. (Modifi ed from Hamilton and Wu, 2013; see their report 
for data-set details. © Her Majesty in Right of Canada, as presented by the 
Minister of Fisheries and Oceans.)
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Figure 3.14 Davis Strait cross-sections of mean summer temperature 
(T, top) and salinity (S, bottom). Derived from available archived data 
between 1910 and 2009. Th e three-layer structure of Baffi  n Bay is also 
refl ected in these Davis Strait data. Th e location of the cross-sections is 
indicated by the black transect line in Figure 3.13. (Reproduced from 
Hamilton and Wu, 2013; see their report for data-set details. © Her Majesty 
in Right of Canada, as presented by the Minister of Fisheries and Oceans.)
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 • Freshening on the Baffi  n Island shelf (-0.06 psu per decade 
[psu is practical salinity unit]). Th is rate is similar to the 
fi ndings of Zweng and Munchow (2006), who computed 
a freshening trend of -0.086±0.039 psu per decade using 
data from 1916 to 2003. Most of the change occurred in the 
1980–2005 period. Hamilton and Wu (2013) excluded data 
from the top 50 m, using data only within the 50–200 m 
interval because inclusion of the highly variable surface 
data masked the trend.

 • Highly signifi cant warming over the 600–800 m depth 
interval: 0.13°C per decade over the last 50 years (Hamilton 
and Wu, 2013). Th is observed warming trend is consistent 
with the fi nding of Zweng and Munchow (2006), who give 
0.11±0.06°C per decade for warming of the intermediate 
layer of Baffi  n Bay.

According to Vaughan et al. (2013), the rate of Greenland Ice 
Sheet mass loss during the decade 2002–2011 was 215 Gt/yr 
(7 mSv). Rignot et al. (2011) found this loss rate to be increasing 
at 0.76 mSv/yr (based on an 18-year record). Th is increase in 
rate is corroborated by Bamber et al. (2012), whose results 
further indicate that between 1992 and 2010, direct discharge 
along the shores of Baffi  n Bay, the Labrador Sea, and the 
Irminger Sea increased by 22%, 48%, and 49%, respectively.

3.1.4.3 Projected changes

Circulation

As noted in Section 3.1.1, projections of regional-scale changes 
are typically associated with large uncertainties, and ocean 
circulation changes are no exception, especially in the Northwest 
Atlantic/Baffi  n Bay region (e.g., Loder et al., 2015). Due to their 
coarse resolution, global models generally lack an adequate 
representation of the CAA channels, which, as mentioned 
above, are one of the main Arctic freshwater fl ux pathways 
(see the discussion above, regarding the region’s general 
physical oceanography). Moreover, in these models, runoff  
from the Greenland Ice Sheet is oft en distributed uniformly 
over a large region of the northern North Atlantic, rather than 
close to the Greenland coast. Jahn et al. (2012) showed that a 
realistic representation of the CAA channel confi guration, sea 
ice thickness, and local ice sheet runoff  appears necessary to 
obtain consistent projections of circulation and freshwater fl ux 
changes in Baffi  n Bay.

High-resolution regional models, on the other hand, have a 
better representation of the CAA but do not necessarily include 
all forcings, such as changes in wind stress, large-scale sea 
surface height, and Greenland Ice Sheet melt. Nevertheless, 

Figure 3.15 Mean freshwater fl uxes (mSv) into Baffi  n Bay, based on observations reported by the referenced investigators. Th e coloring of the block 
arrows denotes the portion of the fl ux that is liquid (blue) versus ice (white). 
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some common trends do emerge when considering results 
from a few global and regional models.

Figure 3.16 shows projected changes in the strength of near-
surface currents for the two periods 2016–2035 and 2081–2100 
(relative to 1986–2005) for the RCP8.5 scenario for three global 
models (see Langen et al., 2016, for the RCP4.5 case). Of the 
seven available models that incorporated biogeochemistry at 
the time the Lavoie et al. (2013) study was initiated, these three 
provided a reasonable representation of the counterclockwise 
circulation in Baffi  n Bay (Figure 3.16, left  column). In the 
projections of future conditions, this basic circulation pattern 

generally persists across the diff erent models. Th e strength of 
the circulation is the characteristic that changes.

As illustrated in Figure 3.16, the disagreement among the three 
global models in projected changes in current strengths is 
comparable in magnitude to the changes themselves. Th e models 
all include a representation of ice calving (Swingedouw et al., 
2009; Dunne et al., 2012; Voldoire et al., 2013) but only in 
the GFDL-ESM2M model (Figure 3.16, middle row) is the 
meltwater distributed close to the ice sheet. Th is characteristic 
may explain the GFDL model’s better agreement with the 
following regional model results.
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Anomalies (m/s) for 0−50m : CNRM−CM5
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Figure 3.16 Labrador Sea/Baffi  n Bay mean near-surface current velocities (0–50 m) over the reference period (1986–2005), plus projected changes for 
the periods 2016–2035 and 2081–2100 under the RCP8.5 scenario. Th e projected changes are expressed as diff erences between the future period and 
the historical period. Each row shows the output of a diff erent model. 
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Several regional model studies project a decrease in the flow 
of cold Arctic water through the CAA due to an increase 
in sea surface height in Baffin Bay, an intensification of the 
counterclockwise circulation, and an increased transport of 
freshwater along the west Greenland coast (Hu and Myers, 2014; 
Castro de la Guardia et al., 2015; Lique et al., 2015).

Mixed layer depth

Considering the different water masses flowing into Baffin 
Bay, the uncertainty in future circulation changes, and the 
low horizontal and vertical resolution of the global models, 
confidence in the details of projected mixed layer depth changes 
are low. However, based on recent and projected near-surface 
air temperature trends (Loder and van der Baaren, 2013; 
Steiner et al., 2015) and surface layer freshening (see below), 
some conclusions can be drawn.

The global models analyzed by Lavoie et al. (2013), as well as 
the regional North American Arctic–Nucleus for European 
Modelling of the Ocean (NAA-NEMO) model of Hu and Myers 
(2014), project a mean warming of the surface layer of about 
0.2°C per decade over the next 50 years under the RCP8.5 
scenario (see Steiner et al., 2015). A freshening trend of the sea 
surface layer is also projected by these models, although with 
a greater uncertainty. The multi-model ensemble mean trends 
calculated by Lavoie et al. (2013) are -0.12 (±0.12) and -0.19 
(±0.12) psu per decade for RCPs 4.5 and 8.5 (with ± indicating 
model spread). The regional NAA-NEMO model projects a 
freshening of about half that rate (i.e., -0.09 psu per decade; 
Steiner et al., 2015).

Warming and freshening of the surface layer is expected 
to stabilize the surface layer, reduce convection depth in 
winter, and increase water column stability during the ice-
free months. The subset of models used by Lavoie et al. (2013) 
does project a modest decrease of the monthly maximum 
mixed layer depth. The multi-model ensemble mean trends 
are -0.7 (±0.6) m per decade for RCP4.5 and -1.0 (±0.6) m 
per decade for RCP8.5. The mean mixed layer depth trend is 
associated with an even higher uncertainty than the monthly 
maximum mixed layer depth. The projected shallowing is of 
only 2–3 m over the next 50 years. Warming and freshening 
of the surface layer thus appears to have a greater impact 
on stratification below the mixed layer, with strengthening 
stratification potentially resulting in reduced vertical mixing 
and a reduction of heat loss from the warm subsurface layer. A 
warming of the intermediate layer has indeed been simulated 
in different studies (e.g., Castro de la Guardia et al., 2015; 
Lique et al., 2015; and references therein).

Projections examined by Holland et al. (2007) consistently 
showed increased freshwater storage in the Arctic Ocean 
and increased freshwater export into the North Atlantic in 
response to increased precipitation, river runoff, and melting. 
However, the magnitude of these projected changes is highly 
uncertain. Possible changes in the relative importance of the 
pathways for freshwater export, i.e., Fram Strait versus CAA, 
are also unclear. The future impact of increased freshwater 
input on mixing and circulation in the North Atlantic will 

depend on whether future conditions favor one pathway 
over the other.

3.1.4.4 The North Water Polynya

The North Water Polynya is one of the Arctic’s largest and most 
productive polynyas (Deming et al., 2002; see also Chapters 2 
and 6). The polynya forms seasonally under the action of strong 
northerly winds that push sea ice southward, away from an 
ice bridge that forms in Nares Strait/Smith Sound (at the 
constriction point between Greenland and Ellesmere Island), 
thus leaving behind an area of open water (Melling et al., 2001; 
Dumont et al., 2010). Once the polyna is open, upwelling of 
warm water along the Greenland coast contributes to its 
maintenance (Melling et al., 2001; Dumont et al., 2010).

Arctic waters, advected through Nares Strait, and Atlantic 
waters, advected with the West Greenland Current, are 
both present in the North Water Polynya (Melling et  al. 
2001; Lobb et al., 2003). Arctic waters cross the polynya 
as a southward flow, while the West Greenland Current, 
entering through Melville Bay, splits and then recirculates 
into the southward flow at different locations (Melling et al., 
2001; Dumont et al., 2010). During northerly wind events, 
upwelling can occur both along the Greenland coast and 
along the landfast ice edge (ice bridge), depending on the 
ice configuration (Dumont et al., 2010). The warm upwelled 
waters, rich in nutrients, contribute to the high primary 
production reported for this area (Tremblay et al., 2002).

The presence of an ice bridge is necessary for the formation 
of the polynya (Melling et al., 2001). With the observed and 
projected changes (e.g., warming, freshening, thinning of 
sea ice; more mobile sea ice), the duration of ice bridges in 
Nares Strait/Smith Sound – and thus the duration of the 
North Water Polynya – will likely decrease. The existence 
of the North Water Polynya could be at risk in the future, 
with significant consequences for primary production 
(Michel et al., 2015). An important reduction in primary 
production in the polynya was indeed observed in the last 
decade and was attributed to freshening and increased 
stratification resulting from fresher Arctic water flowing 
through Nares Strait and from increased Greenland glacier 
melt (Bergeron and Tremblay, 2014). The changes in the ice 
bridge (i.e., its shorter duration) have also led to an increased 
advection of multi-year ice through Nares Strait and along 
the western side of Baffin Bay in recent years (Barber and 
Massom, 2007; Michel et al., 2015).

3.1.5 Sea ice

Climate models project the largest decreases in sea ice 
cover to occur in the autumn (15–20% reduction by 2080) 
due to later freeze-up, with smaller decreases in the spring 
(10–15% reduction) due to earlier ice break-up. Winter ice 
thickness is projected to decrease by about 20–30 cm, with 
the largest decreases in more northerly regions. The timing 
of the changes varies considerably across models. For the 
foreseeable future, multi-year ice is likely to remain a hazard 
for shipping in the Canadian Arctic Archipelago.
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The sea ice season in the BBDS region extends from 
approximately October to July (Figure 3.17), with seasonal 
concentration and thickness responding to the combined 
infl uences of air temperature, atmosphere and ocean circulation 
(winds, currents, sea surface temperatures), leads and polynyas, 
and, when ice is compressed against the west side of Baffi  n Bay, 
ridging and raft ing. Th e infl uence of the North Water Polynya 
is clearly visible in the Figure 3.17 break-up plot (lower panel), 
with northern Baffi  n Bay being the fi rst area to be ice-free. 
Break-up dates range from June to mid-August, with some 
northern areas of the region remaining ice covered for most of 
the year (e.g., Nares Strait, Kane Basin, and the northern coast of 
Ellesmere Island) (Tivy et al., 2011). On the Greenland side of 
the region, ice conditions are much lighter due to the infl uence 
of the relatively warm, north-fl owing West Greenland Current. 
Th e ice cover in West Greenland is seasonal even in regions 
that receive imports of advected multi-year ice.

Only a small amount of multi-year ice enters Baffi  n Bay from 
Nares Strait and Lancaster Sound, and it is mainly restricted 
to the western side of the bay (Tang et al., 2004; Kwok et al., 
2010). Sea ice is transported down the western side in the 
southward-fl owing portion of the Baffi  n Bay gyre at speeds of up 
to 20–30 km/day (Canadian Ice Service, 2011a). Th e average ice 
drift  velocity from northern Baffi  n Bay to the southern Labrador 
Sea is typically about 10–15 km/day but can exceed 20 km/day 
with variations in wind speed serving to speed up or slow down 
this motion (Kwok, 2007; Canadian Ice Service, 2011a).

Ice thickness can vary considerably over the region. For 
example, ice formed in newly opened leads is typically <0.5 m 
thick, whereas ice formed at the start of the winter season 
can eventually reach thicknesses of approximately 1.5 m 
(Tang et al. 2004). When the pack is compressed against the 
coastline, ridging and raft ing can generate ice thicknesses of 
over 3 m. Weekly landfast ice thickness measurements made at 
Canadian coastal communities around Baffi  n Bay during the 
1961–1990 period (Canadian Ice Centre, 1992) show average 
maximum ice thicknesses ranging from approximately 1.5 m 
around southern Baffi  n Island to over 2 m for Alert and Eureka 
on Ellesmere Island.

3.1.5.1 Observed trends

Th e BBDS region experienced a 20% loss in July–November 
sea ice extent over the period 1981–2014 (see Langen et al., 
2016), with most of the change occurring in the time aft er 1998. 
Th e year 2006 had the lowest ice cover seen in the period of 
regular satellite observations. Analysis of trends in ice extent 
from passive microwave satellite data (Figure 3.18) shows 
decreases in nearly all months in the BBDS region, with Baffi  n 
Bay, Hudson Strait, and Davis Strait experiencing some of the 
largest Canadian Arctic decreases in summer total sea ice area 
and multi-year sea ice area (Howell et al., 2009; Tivy et al., 
2011). Stroeve et al. (2014), using passive microwave satellite 
data, examined trends in the dates of fi rst melt and fi rst freeze-
up of sea ice over the Baffi  n Bay region. For the 1979–2013 

Break-up dates

No ice - June 04

June 04

June 18

July 02

July 16

July 30

August 13

August 27

Minimal ice extent - Sept 10

Land

No data

Freeze-up dates

Minimal ice extent - September 10

September 24

October 8

October 22

November 5

November 19

December 4

No ice - December 4

Land

No data

1981-2010
GREENLAND

Baffin
Bay

Davis
Strait

CANADA

Baffin Island

1981-2010
GREENLAND

Baffin
Bay

Davis
Strait

CANADA

Baffin Island

Figure 3.17 Mean dates (1981–2010) 
of sea ice freeze-up (upper panel) and 
break-up (lower panel) (Canadian 
Ice Service, 2011b.) (Th ese maps are 
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by the Government of  Canada. 
These reproductions have not been 
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period, they found a statistically signifi cant trend to earlier 
melt onset, of 4.6 days per decade. Th ere was also evidence of a 
trend to a later freeze-onset date of 0.8 days per decade, but this 
trend was not statistically signifi cant. Th is Baffi  n Bay fi nding 
contrasts with the case of the CAA, which was dominated by 
signifi cant trends to later freeze-up, of 2.2 days per decade. 
Th e larger changes in the freeze-up period over the CAA are 
consistent with recent temperature trends over the region, 
which show the strongest warming in the October–December 
season (Rapaić et al., 2015). Th ese ice changes are a reaction 

to (and in turn provide positive feedbacks to) the increasing 
air and sea surface temperatures and changes in atmospheric 
circulation (Overland et al., 2012; Sharp et al., 2014) that are 
driving the rapid rates of climate change observed over the 
region in the past decade.

Analyses of U.S. National Ice Center weekly sea ice charts 
from 1976 to 2007 by Yu et al. (2014) show that landfast ice 
extent around the Arctic Basin was relatively extensive from 
the early to mid-1980s but then declined in many coastal 
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Figure 3.18 Trends in monthly average ice concentration (%) over the Canadian Arctic and adjacent waters, 1979–2012, expressed as percent change per 
decade (based on the passive microwave satellite data set of Cavalieri et al., 1996, updated to 2012). 
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regions of the Arctic, particularly aft er the early 1990s. Yu et al. 
(2014) documented a 4.5% per decade decrease in winter 
landfast ice area over Baffi  n Bay over the 1976–2007 period, 
but this trend was not statistically signifi cant. However, their 
Baffi  n Bay regional time series of winter landfast ice area (see 
Langen et al., 2016) shows a reduction of ~50% in landfast 
ice extent over the period 1994–2005. Analysis of Canadian 
landfast ice conditions with Canadian Ice Service digital charts 
from 1983 to 2009 by Galley et al. (2012) showed signifi cant 
decreases in landfast ice cover duration over the CAA from 
later ice onset and/or earlier breakup. Th e study highlighted 
major reductions in landfast ice cover duration for most of 
Baffi  n Bay’s coastal regions. Th ree BBDS communities (Arctic 
Bay, Pond Inlet, and Clyde River) were identifi ed as being 
located in areas that were most aff ected by decreasing landfast 
ice duration. In the interior of the Northwest Passage, landfast 
sea ice duration was not observed to have undergone any 
statistically signifi cant change over the period analyzed. Th ese 
observed decreases in landfast ice duration are consistent with 
Inuit community observations of thinner ice and a shorter ice 
season (observations summarized by Gaden and Stern, 2015). 
Th e impacts of the changing ice regime on Inuit hunting are 
discussed in Section 6.5.2.

Analyses of weekly ice thickness data from six Canadian 
coastal BBDS communities with long-term weekly ice thickness 
measurements (since the late 1950s; Brown et al., 2018) show 
that maximum ice thicknesses experienced an abrupt decrease 
of approximately 20 cm aft er 2000. Th is decline represents 
about a 10% reduction in maximum thickness (Figure 3.19). 
Th e regionally averaged date of annual maximum ice thickness 
advanced by approximately 3 weeks over the same period in 
response to earlier melt.

3.1.5.2 Projected changes

CMIP5 models project a continuation of observed trends to 
a shorter ice season and thinner ice but with a large spread in 
the rate and timing of sea ice changes (Stroeve et al., 2012). 
Projected changes in autumn and winter ice concentration 
and ice thickness for RCP4.5 are shown in Figures 3.20 and 
3.21, respectively. (Results for all seasons and for the RCP2.6 

and RCP8.5 scenarios are shown in Langen et al., 2016.) Th e 
largest decreases in sea ice concentration (15–20% by 2080) are 
projected for the autumn (SON) season, related to a later freeze-
up. Decreases of 10–15% are projected over most of the region 
in the summer (JJA), in response to earlier break-up. Winter ice 
thickness is projected to decrease by approximately 20–30 cm, 
with the largest decreases occurring in more northerly regions. 
A large spread in model-projected changes is evident over Baffi  n 
Bay and Foxe Basin.

It should be noted that the temporal evolution of simulated 
Arctic sea ice cover is strongly infl uenced by internal variability 
(Jahn et al., 2012; Stroeve et al., 2012) and that averaging over 
a model ensemble will smooth out the infl uence of those 
models that show early rapid ice loss events (Döscher and 
Koenigk, 2013). Wang and Overland (2012) determined a 
model consensus for nearly ice-free Arctic summers by the 
2030s, using a subset of models that best represented the 
observed sea ice regime and historical trends. However, most 
of these models do not resolve the CAA and the regional 
ice dynamics that involve the import of multi-year ice from 
the Arctic Ocean (Howell et al., 2008, 2013). Sea ice change 
scenarios from a high-resolution coupled ice–ocean model 
for the Canadian Arctic (Hu and Myers, 2014) do not show 
completely ice-free summers in the CAA before 2100, in 
agreement with Sou and Flato (2009). Th e future response 
of multi-year ice in the CAA depends on other factors in 
addition to air temperature (Derksen et al., 2012). For the 
foreseeable future, ice is likely to remain a hazard for shipping 
(Haas and Howell, 2015). Additional simulations from high-
resolution coupled ice–ocean models driven with a range of 
climate model outputs are needed to reach robust conclusions 
about the projected magnitude and timing of changes in BBDS 
sea ice cover in coastal waters.

3.1.6 Sea level

Relative sea level in the BBDS region is projected to fall 
at nearly all locations, despite projected global sea level 
rise. Th e BBDS pattern is mainly due to crustal uplift  in 
response to past and projected ice mass decreases. For the 
high-emissions scenario, the projected median relative sea-
level change (at 2100, relative to 1986–2005) ranges over the 
region from a fall of nearly 90 cm to a rise of nearly 10 cm.

3.1.6.1 Observed trends

Global sea level rose at a mean rate of 1.7 (±0.2) mm/yr 
between 1901 and 2010 (Church et al. 2013a; IPCC, 2013a), 
with considerable decadal-scale variability of the average rate of 
rise during the 20th century (Church and White, 2006). Between 
1993 and 2010, sea level rose at a faster rate of 3.2 (±0.4) mm/yr 
(Church et al., 2013a).

Relative sea level, in contrast to global mean sea level, is the 
sea level experienced at a single fi xed location on the earth’s 
solid surface. Changes to relative sea level are the net eff ect of a 
combination of changes in global sea level, local vertical crustal 
motion, and other factors described below. If the land is rising, 
then (all else being equal) relative sea level is lowered; if the 
land is sinking, then relative sea level is increased. Vertical land 
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Figure 3.19 Regionally averaged annual anomalies in maximum ice 
thickness, 1958–2013 (with respect to a 1959–1987 average) from six 
Canadian BBDS stations with long-term weekly ice thickness measurements. 
(Ice thickness data were obtained from the Canadian Ice Service, www.
ec.gc.ca/glaces-ice/.) 
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Figure 3.20 Projected change in autumn (SON) and winter (DJF) sea ice concentration (change in percent concentration relative to the 1986–2005 
average) for the RCP4.5 scenario, according to a 29-member CMIP5 multi-model simulation. Results are shown for three periods in the future: 2016–2035 
(labeled 2020s), 2046–2065 (labeled 2050s), and 2081–2100 (labeled 2080s). The figures illustrate the 25th, 50th, and 75th percentile changes projected 
by the CMIP5 models. For a list of the 29 models, see Table 4.1 of AMAP (2017a). 
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Figure 3.21 Projected change in autumn (SON) and winter (DJF) sea ice thickness (change in meters relative to the 1986–2005 average) for the RCP4.5 
scenario, according to a 29-member CMIP5 multi-model simulation. See Figure 3.20 for an explanation of the panels. 
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motion exerts a strong control on relative sea level changes in 
the Arctic region (Figure 3.22).

Glacial isostatic adjustment, also known as postglacial rebound, 
is the response of the solid earth to changes in glaciers and 
ice sheets. During ice ages, the glaciated surface of Earth is 
depressed beneath large ice sheets. At great depths within the 
planet, mantle material is displaced through slow, viscous fl ow. 
When glacial ice masses shrink and retreat, such as over much 
of Canada, the surface loading on the earth’s surface is reduced. 
Th e earth responds, and areas that were depressed due to the 
weight of the ice begin to rise toward their previous elevations. 
Th is gradual process continues for thousands of years aft er ice 
loads have diminished. In regions that were once at the margins 
of the great ice sheets or were peripheral to the great ice sheets, 
the land rose during glaciation. Following deglaciation, these 
marginal and peripheral regions subside.

In areas such as Greenland and portions of the northern and 
eastern CAA, which are still glaciated, the solid earth also 
responds to past ice mass changes. Superposed on this viscous 
response to past ice mass changes is a faster elastic response 
of the solid earth to present-day ice mass changes. Close to ice 
masses that are presently undergoing large changes, this elastic 
crustal response can be large – up to a few millimeters per year. 
Th is response can provide a dominant contribution to observed 
or projected relative sea-level change.

Other factors that contribute to relative sea-level change, 
introducing additional spatial variability, include dynamic 
oceanographic eff ects, which add 15–20 cm to projected BBDS 
sea level rise by 2100 in the RCP8.5 scenario (e.g., Yin et al., 
2010; Yin, 2012). Th e gravitational response of the ocean to ice 
mass changes (Mitrovica et al., 2001) is very important close 

to large masses of ice that are undergoing large changes or are 
projected to undergo large changes. Th e reduced Greenland 
Ice Sheet, for example, now causes less gravitational upward 
“pull” of the surface of the ocean. Tide gauge records are 
sparse for the Arctic, but an intermittent record at Alert, at 
the northern tip of Ellesmere Island, indicates that sea level 
there has been falling at an average 1.5 mm/yr since the mid-
1960s (Atkinson et al., 2016). In contrast, a tide gauge on the 
southwestern coast of Greenland at Nuuk indicates that relative 
sea level at that location has been rising at about 2 mm/yr for the 
time range 1958–2002 (Spada et al., 2014) – more slowly than 
the 1993–2010 global average of 3.2 mm/year (IPCC, 2013a).

3.1.6.2 Projected changes

Climate projections using the RCP scenarios (see Section 3.1.1) 
in the IPCC’s AR5 (IPCC, 2013a) include global mean sea 
level change. Global sea level at 2100 is projected to be higher 
by 36–71 cm (RCP4.5) to 52–98 cm (RCP8.5), relative to 
1986–2005 (Table 13.5 in Church et al., 2013a). In the BBDS 
region, relative sea-level projections depart strongly from global 
values and site-specifi c projections are required.

Relative sea-level projections have been generated for the 
Canadian side of the BBDS region (James et al., 2014, 2015). 
These projections utilized regional sea-level projections 
provided by the AR5 (Church et al., 2013b), incorporated 
vertical crustal motion from global positioning system (GPS) 
observations (James et al., 2014), and included regional dynamic 
oceanographic eff ects and the elastic crustal and gravitational 
eff ects of changing ice masses.

Under the high-emissions scenario (RCP8.5), relative sea level 
by 2100 is projected to fall at nearly all locations in the region 
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Figure 3.22 Present-day vertical crustal 
motion estimated by the ICE-6G glacial 
isostatic adjustment (GIA) model (described 
in Peltier et al., 2015). Regions of large uplift  
(warm colors) indicate former centers of 
the Laurentide Ice Sheet; subsiding regions 
(cool colors) were close to the ice-sheet 
margin or were peripheral to the ice sheets. 
In Greenland, the modest amounts of crustal 
uplift and subsidence are largely due to 
modeled changes in the Greenland Ice Sheet. 
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(Figure 3.23), even though mean global sea level will have risen 
signifi cantly by then. Th e projected sea level fall results from 
the combination of large amounts of crustal uplift  at some 
sites, due to glacial isostatic adjustment (for example, Igloolik 
is measured to be rising at about 11.5 mm/yr, generating large 
projected sea level fall) and proximity to the Greenland Ice 
Sheet, which is projected to lose mass through the 21st century 
(Section 3.1.3). Th is latter eff ect is particularly strong at Alert, 
which is close to the Greenland Ice Sheet and has large values 
of projected sea level fall. Although proximity to the changing 
ice sheet makes detailed relative sea-level projections for sites 
on the Greenland coast less accurate under the present analysis, 
sea-level projections for western Greenland are also strongly 
negative (Church et al., 2013a).

Projections through the 21st century for Iqaluit (Figure 3.24, 
upper panel) show that the RCP8.5 projected relative sea level 
is higher (more positive) than the RCP4.5 case, similar to 
global projections in which larger emissions scenarios give 
larger projected global sea level rise. Th is correspondence 
is generally expected and projected at most locations. An 
exception is seen at Alert (Figure 3.24, lower panel), where the 
largest emissions scenario (RCP8.5) has the largest amount 
of projected relative sea-level fall. Here, the elastic crustal 

response to projected shrinking of the ice sheet gives larger 
amounts of crustal uplift  for larger scenarios, thus leading to 
larger amounts of projected sea level fall. Th is phenomenon 
is also expected for western Greenland.

For Iqaluit, uncertainties are such that sea level rise or fall on 
the order of 40 cm is possible for all RCP scenarios; at Alert, 
sea level fall is favored. A scenario that considers the eff ect 
of an additional 65 cm contribution to global sea level rise 
from partial collapse of the West Antarctic ice sheet, added 
to the median projection of RCP8.5, provides larger amounts 
of projected sea level rise or reduced amounts of sea level fall 
(green triangles in Figure 3.24).
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Figure 3.23 Projected relative sea-level change at the year 2100 (in cm) for 
the median RCP8.5 value at coastal locations in the Canadian sector of the 
Baffi  n Bay/Davis Strait region (aft er James et al., 2014).Values range from 
−84 cm to −1 cm and are relative to 1986–2005. Locations mentioned in 
the text are labeled. 

Figure 3.24 Projected relative sea-level change for Iqaluit and Alert (aft er 
James et al., 2014), based on the IPCC AR5 (Church et al., 2013a, 2013b) 
and also vertical crustal motion (uplift  rate, given to nearest 0.5 mm/yr) 
derived from GPS observations. Projections are given through the century 
for the RCP2.6, RCP4.5, and RCP8.5 scenarios. Th e rectangles show the 90% 
confi dence interval (5% to 95%) of the average projection for the period 
2081–2100 for each of those three scenarios and also RCP6.0. Th e dashed 
red line gives the 95th percentile value for RCP8.5. Th e projected value at 
2100 is also given for a scenario in which West Antarctica contributes an 
additional 65 cm of global sea level rise, added to the median projection 
of RCP8.5 (RCP8.5+W.Ant; green triangle). 
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