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Abstract

Infrastructure construction on permafrost is challenging. Not only are north-

ern regions undergoing a faster and more intense global warming than the rest

of the world, inducing thawing of the permafrost at a worldwide scale. In ad-

dition, linear infrastructures such as gravel highways, built on embankments

to protect the underlying permafrost, change environmental conditions in vari-

ous ways, enhancing permafrost degradation. This work aims to utilize remote

sensing data and explore the physical parameters that drive permafrost degra-

dation in the regions adjacent to the Inuvik to Tuktoyaktuk Highway (ITH)

in Northwest Territories, Canada. Within the work, snow accumulation along

the embankment toe, vegetation moisture increase, surface water increase in

poorly drained areas, earlier snowmelt and vegetation increase along the road

are defined as factors that (I) enhance permafrost degradation and (II) are

observable using remote sensing techniques. The analysis is conducted using

cloud computing services, open-source software packages, and primarily freely

available datasets. Snow accumulation conditions are derived using Digital

Elevation Models (DEM) as baseline data. The cardinal direction of the road

and the predominating wind direction significantly impact the snow accumu-

lation. Moreover, the results indicate that the enhanced snow accumulation

generally reaches further distances from the road than previous studies sug-

gest. The impact from the road on vegetation moisture and vegetation condi-

tions, indicated by the Normalized Difference Moisture Index (NDMI) and the

Normalized Difference Vegetation Index (NDVI), respectively, demonstrated

significant decreases within the first 25 m from the road edge. This is in line

with previous studies. However, whether the observed effect reflects the field

conditions or if the spectral signal is affected by other factors like dust is

critically discussed. Furthermore, my study revealed that by normalizing the

median NDMI and NDVI values on an undisturbed reference area, an addi-
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tional effect is observed reaching up to 200 m from the road. The analysis of

the NIR band indicates that the downstream side became wetter throughout

the years compared to the upstream side. The snowmelt pattern indicated by

the Normalized Difference Snow Index (NDSI), derived from Landsat images,

shows that the areas next to the road are snow-free earlier in spring than the

areas further away. The result indicates that the road affects the snowmelt up

to 600 m from the road. The findings of this work highlight the importance of

future research into the impact of dust on satellite-derived indices. Further-

more, the findings contribute to a better understanding of the spatial scale of

altered permafrost drivers following the construction of the ITH.

Keywords: Canada; arctic highways; permafrost degradation; snow accumu-

lation; airborne laser scanner; remote sensing indices; Sentinel-2; Landsat
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Abstract (German)

Der Bau von Infrastrukturen auf Permafrostböden ist eine Herausforderung.

Nicht nur, dass die nördlichen Regionen einer schnelleren und intensiveren

globalen Erwärmung ausgesetzt sind als der Rest der Welt, was zu einem

weltweiten Auftauen des Permafrosts führt. Darüber hinaus verändern lin-

eare Infrastrukturen wie Schotterstraßen, die auf Dämmen gebaut werden, um

den darunter liegenden Permafrost zu schützen, die Umweltbedingungen auf

verschiedene Weise und verstärken den Abbau des Permafrosts. Diese Ar-

beit zielt darauf ab, Fernerkundungsdaten zu nutzen, und die physikalischen

Parameter zu erforschen, die die Permafrostdegradation in den an den Inu-

vik to Tuktoyaktuk Highway (ITH) angrenzenden Regionen in den kanadis-

chen Nordwest-Territorien vorantreiben. Im Rahmen der Arbeit werden die

Schneeakkumulation entlang der Böschungsspitzen, die Feuchtigkeit der Vege-

tation, die Zunahme des Oberflächenwassers in schlecht entwässerten Gebieten,

die frühere Schneeschmelze und die Zunahme der Vegetation entlang der Straße

als Faktoren definiert, die (I) die Permafrostdegradation verstärken und (II)

mit Fernerkundungstechniken beobachtet werden können. Die Analyse wird

mithilfe von Cloud-Computing-Diensten, Open-Source-Softwarepaketen und

hauptsächlich frei verfügbaren Datensätzen durchgeführt. Die Schneeakkumu-

lationsbedingungen werden mithilfe von digitalen Höhenmodellen (DEM) als

Basisdaten abgeleitet. Die Himmelsrichtung der Straße und die vorherrschende

Windrichtung haben einen erheblichen Einfluss auf die Schneeakkumulation.

Außerdem zeigen die Ergebnisse, dass die verstärkte Schneeakkumulation im

Allgemeinen weiter von der Straße entfernt ist, als frühere Studien vermuten

ließen. Die Auswirkungen der Straße auf die Vegetationsfeuchtigkeit und

den Vegetationszustand, die durch den Normalized Difference Moisture Index

(NDMI) bzw. den Normalized Difference Vegetation Index (NDVI) angezeigt

werden, zeigten eine signifikante Abnahme innerhalb der ersten 25 m vom
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Straßenrand. Dies steht im Einklang mit früheren Studien. Es wird jedoch kri-

tisch diskutiert, ob der beobachtete Effekt die Feldbedingungen widerspiegelt,

oder ob das spektrale Signal durch andere Faktoren wie zum Beispiel Staub

beeinflusst wird. Darüber hinaus ergab meine Studie, dass durch die Normal-

isierung der mittleren NDMI- und NDVI-Werte auf eine ungestörte Referen-

zfläche ein zusätzlicher Effekt zu erkennen war, der bis zu einer Entfernung

von 200 m von der Straße reichte. Die Analyse des NIR-Bandes zeigt, dass die

flussabwärts gelegene Seite im Vergleich zur flussaufwärts gelegenen Seite im

Laufe der Jahre feuchter wurde.

Das Schneeschmelzmuster, das durch den aus Landsat-Bildern abgeleiteten

Normalized Difference Snow Index (NDSI) angezeigt wird, lässt erkennen, dass

die Gebiete in Straßennähe im Frühjahr früher schneefrei sind als die weiter

entfernten Gebiete. Das Ergebnis zeigt, dass die Straße die Schneeschmelze

bis zu einer Entfernung von 600 m von der Straße beeinflusst. Die Ergeb-

nisse dieser Arbeit machen deutlich, wie wichtig künftige Forschungen über

die Auswirkungen von Staub auf satellitengestützte Indizes sind. Darüber

hinaus tragen die Ergebnisse zu einem besseren Verständnis des räumlichen

Ausmaßes der veränderten Permafrosttreiber nach dem Bau der ITH bei.

Schlüsselwörter: Kanada; arktische Straßen; Permafrostdegradation; Schneeakku-

mulation; Airborne Laserscanner; Fernerkundungsindizes; Sentinel-2; Landsat
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1
Introduction

Due to the Arctic amplification, high latitudes are currently undergoing a
more intense and faster global warming than other parts of the world, induc-
ing thawing of the permafrost at a global scale [1]. Approximately a quar-
ter of the terrestrial land areas in the northern Hemisphere are underlain by
permafrost. Permafrost is defined as frozen ground remaining at or below a
temperature of 0°C for at least two years [2]. Depending on the percentage
underlain by permafrost it is classified into four classes; continuous (more than
90% of the area), discontinuous (50 % to 90 %), sporadic (10 % to 50 %) and
isolated permafrost (less than 10%) [3]. The permafrost ground is divided into
the annual freezing and thawing active layer and the perennially frozen ground
below this layer. Biological processes, including the formation and decomposi-
tion of organic material, are restricted to the active layer [4]. When permafrost
thaws, organic carbon stored in the soil can be mobilized and released as the
greenhouse gases CO2 and CH4. Furthermore, permafrost degradation changes
the landscape in various ways, including locally confined and abrupt processes
forming thermokarst terrain but also relatively uniform and gradual isotropic
thaw subsidence [5]. Ground subsidence can have a severe impact on infras-
tructure [6]. Nevertheless, more infrastructure is required by the expanding
resource development in northern regions. Over 175 infrastructure projects
have been funded in the Northwest Territories, Canada since 2002. 57% of
these projects are roads and highways [7].

Irrespective of global warming, infrastructure construction on permafrost is
challenging because it changes environmental conditions, enhancing permafrost
thaw and ground subsidence. Roads are often built on embankments to protect
the underlying permafrost. Snow drifting in the lee of the road and winter road
maintenance lead to snow accumulation at the toe of the embankment [8, 9].
Snow has five to twenty times lower thermal conductivity compared to mineral
soil [10]. Consequently, snow cover is an effective insulator and prevents the
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Introduction

soil from cooling during the winter months [11]. However, the insulating effects
of snow are linked to snow depth, a thin snow cover may result in a cooling
of the underlying soil because of the high albedo and emissivity of snow [10]
and the insulating effect increases with snow depth [12]. Process-based land
surface model results by Park et al. [13] showed that permafrost loss is more
significant when snow depths increase in autumn rather than in winter, due
to insulation of the soil resulting from early cooling, especially in areas with
continuous permafrost.

Snow accumulation and water ponding at the shoulder and toe of the em-
bankment were identified as key processes for increased soil temperatures and
road degradation [14]. Roads can interrupt the natural channel drainage and
result in water ponding at the embankment toe. Ponding is often related to
the upstream side [15–17] due to clogging, bowing or poor inlet conditions of
the culverts [16] or because of interception of the suprapermafrost water flow
[17]. Grandpre et al. [18] measured ground temperatures under the side slope
of a road embankment of the Alaska Highway. The ground temperatures were
around 0 °C between September and November which implies high soil mois-
ture, delaying the freeze back of the soil due to latent heat (zero curtain effect).
Suprapermafrost water flow over land or in channels during winter, which is
inhibited by a road embankment, can lead to upstream pressure within the con-
fined thawed layer leading to an uplift of the overlying frozen materials and
formation of injection ice [19]. Continuing water supply can lead to pressure
release through fissures allowing the development of surface icings or ”aufeis”
[20].

Another road-related impact is the dust loading from gravel roads on the sur-
rounding terrain. Road dust on snow has lower albedo, resulting in an earlier
spring snow-melt and, consequently, increasing thaw-depth [21]. The dust
loads decrease logarithmically and most dust falls within a zone of 300 m while
areas beyond are largely unaffected [22]. Auerbach et al. [23] compared the ef-
fects of road and road dust disturbance on acidic and non-acidic tundra. They
found that despite higher graminoid biomass near the road in both tundra
types and higher deciduous shrub biomass in non-acidic tundra, total biomass
was lower near the road in both tundra types. Tall shrubs with relatively
low nutrient use efficiencies may be favored as the soil nutrient availability
increases with the dust deposition [24]. The shrubs may act as a windbreak,
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altering the insulating effect of the snow cover because of snow accumulation
on and leeward of shrub patches [25]. Furthermore, tall shrubs reduce light,
water, and nutrient availability for mosses and heavy dust deposition kills low-
growing mosses and lichens [26]. Reduced moss cover and thickness may lead
to less thermal insulation of the ground in summer, further amplifying soil
warming.

Roads have a linear structure, often intersecting varying terrain with different
ecological and hydrological environments over a long distance. In situ mea-
surements help to derive important information on processes on a local scale.
However, such local information may not be applicable or extendable to an-
other region along the road. Remote sensing has the benefit of broad spatial
and temporal coverage, which can retrieve physical surface parameters serving
as indicators of permafrost degradation on a larger scale. Previous studies have
used multispectral SPOT imagery (Satellite pour l’Observation de la Terre) to
quantify the dust deposition pattern along the Dalton Highway in Alaska [27].
Time series of Unmanned Aerial Vehicle (UAV) baseline datasets were used
along sections of Dempster highway and Inuvik to Tuktoyaktuk Highway (ITH)
to examine thaw-related creep of road embankments and terrain uplift due to
injection ice [19]. Moreover, Landsat image-derived biophysical indices have
been utilized to evaluate the impacts of oil and gas development in west Siberia
[15]. However, dust deposition on vegetation leaves has been shown to alter
the spectral response of the leaf and thus, negatively biasing the Normalized
Difference Vegetation Index (NDVI), which is used as an estimate of vegetation
biomass [28].

In the scope of the expansion of infrastructure construction in northern re-
gions and its influence on permafrost, this work aims to examine drivers of
permafrost degradation using remote sensing techniques. The focus of the
study is the regions adjacent to a gravel highway built on permafrost. Few
studies have focused on the relatively new (opened in 2017) ITH, which is the
first Canadian highway entirely constructed on thaw sensitive continuous per-
mafrost [29]. During the construction, many measures were taken to protect
the underlain permafrost. For example, the construction took place during the
winter months, the organic cover was left in place, culverts were installed at
all low points to enable surface water movement and the road is watered to
reduce the dust effects [29]. Despite these measures, the road will likely impact
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the permafrost below and in its vicinity. Therefore, more research is required
to detect and monitor the changes along ITH and in the adjacent regions.

In this work, five physical parameters are identified as potential permafrost
degradation drivers which additionally can be examined with means of remote
sensing: (I) snow accumulation [12–14], (II) vegetation moisture [15], (III)
water ponding [14–17], (IV) snowmelt [21] and (V) vegetation [21, 24, 28].
Against this background, the hypotheses that guide this work are:

1. Snow accumulates next to the embankment toe.

2. Vegetation moisture content and surface water increase in poorly drained
areas along the embankment toe.

3. The snow melts faster in the vicinity of the highway.

4. Vegetation increases along the road.
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2
Datasets &

Methods
In the following, the study area and the different characteristics of the datasets
are explained. Subsequently, the pre-processing steps and methods for inves-
tigating the specified research questions are described. I predominantly pre-
processed the Sentinel-2 and Landsat-8 using the Google Earth Engine (GEE)
python application programming interface (API). GEE provides cloud com-
puting service over a web-based interactive development environment (IDE)
or over python API for big data analysis and visualization of geospatial data.

2.1 Study Area

The study site is the ITH, which is a 137 km all-weather gravel highway to the
east of the Mackenzie Delta in Northwest Territories, Canada (Fig. 2.1). It
is located within the continuous permafrost zone in the Beaufort Mackenzie
Basin. It traverses the physiographic regions Anderson Plain and Tuktoyaktuk
Coastlands [30]. The region south of the treeline (whithe dashed line in Fig.
2.1) is characterized by a mix of tundra (lichen, mosses, herbs and low shrubs)
with heights below 0.5 m, shrub tundra (deciduous shrubs) with heights be-
tween 0.5 m to 3.0 m, tall shrub (1.25 m to 3.0 m) and trees (black spruce)
above 3.0 m [31]. Sedges, grass, ericaceous shrubs and lichens dominate the
low arctic tundra at the northern side of the treeline [32].
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Figure 2.1: The study area in Northeast Territories, Canada. The map shows
the ITH in Universal Transverse Mercator (UTM) Zone 8 projection. The tree-
line is from [33] and the underlying base map source is ESRI satellite (Sources:
Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping,
Aerogrid, IGN, IGP, swisstopo, and the GIS User Community). The inset map
indicates the location of the study area (yellow dot) in Canada.

The elevation above sea level along the route is illustrated in Fig. 2.2. The first
half of the route, beginning at Inuvik, is generally located at higher elevations
above sea level than the second half. The maximum elevation of 140 m is at
35 km from Inuvik and close to Tuktoyaktuk the minimum elevation of −5 m
at 137 km is found. The landscape is characterized by a lake-rich, hummocky
and rolling terrain with predominantly ground moraine (fine-grained and stony
tills) subsurface materials originating from the Glacial Episode in Late Wis-
consin [34] with some interceptions of Alluvial, Glaciofluvial and Lacustrine
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deposits. These subsurface materials are frequently ice-rich and consequently
sensitive to climate change [35].
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Figure 2.2: Profile elevation of ITH from Inuvik (beginning at the distance
0 km) to Tuktoyaktuk. The maximum and minimum elevations are annotated
with arrows. The elevations are derived using the Arctic Digital Elevation
Model (DEM) [36]. For the filling of closed depressions and re-sampling of the
ArcticDEM to 10 m I used QGIS.

The mean annual air temperatures 1990–2020 were −7.1 and −8.9 °C at Inuvik
and Tuktoyaktuk, respectively [37]. The monthly mean air temperatures in
Inuvik for the years 2016–2020, which represent the years of main focus in the
work, are shown in Fig. 2.3. In Tuktoyaktuk the temperature graphs look
similar to Inuviks and hence, it is not included in the illustration. The month
with the highest temperatures was in July 2017, with a mean temperature of
15.5 °C. The year 2020, meanwhile, shows the lowest air temperatures for July
with a mean temperature of 11 °C. Furthermore, January 2020 was the coldest
month in the time series, with the mean air temperature reaching −27.7 °C.
The mean annual ground temperatures range from approximately −1 °C in
the taiga regions near Inuvik to approximately −6 °C in low-shrub tundra
near Tuktoyaktuk [38]. The permafrost depth ranges from 100 m near Inuvik
to 500 m in the northern parts of the study area [38].
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Figure 2.3: Monthly mean air temperature in Inuvik (2016–2020) [37].

The highway’s construction began in 2014 and officially opened in 2017. The
highway (8 m to 9 m wide) is built on an embankment (with 33% side slopes) to
protect the underlying thaw-sensitive permafrost [39]. The embankment height
varies along the road depending on the underlain terrain and ice content. The
embankment height is 1.4 m for terrain characterized as relatively dry, ice-poor
and stable (till and outwash deposits). For till and outwash deposit terrain
with medium to rich ice content, the embankment height varies from 1.4 m to
1.6 m. The embankment height for regions with ice-rich permafrost (wet silts
and clays or thick organic peatlands) ranges from 1.6 m to 1.8 m [39].

8



Datasets & Methods

2.2 Airborne Laser Scanner Data

The method to analyze the snow depths along the highway relies on two
datasets, one snow-covered and one snow-free DEM. I assumed that only the
snow influences the elevation differences. As snow-free dataset, I used an Air-
borne Laser Scanner (ALS) Digital Terrain Model (DTM) (not yet published)
with a spatial resolution of 1 m in the coordinate system WGS 1984, UTM
8N (EPSG 32608) from the 22 August 2018. Alfred Wegener Institute (AWI)
conducted the second ALS dataset during an ALS survey onboard the AWI’s
POLAR-5 science aircraft on 10 April 2019, as the landscape was snow-covered.
The laser scanner was a Riegl VQ-580 which is specially designed to measure
on snow and ice [40]. According to Climate Change Initiative (CCI) stan-
dards, the dataset format was binary point cloud data of processing level 1b,
which means the data has been converted to sensor units, according to Climate
Change Initiative (CCI) standards.

To create a DEM from the binary point-cloud data, I extracted the xyz-data
and applied an atmospheric backscatter filter using the python-package awi-
als-toolbox [41]. Then, I indexed and chunked the point clouds into tiles with
a temporary buffer of 20 m to avoid edge artifacts during the classification
using LAStools. To classify the ground points from non-ground points, I ap-
plied the Simple Morphological Filter (SMRF), which is based on the approach
outlined in [42]. I interpolated the ground-classified dataset with inverse dis-
tance weighting (IDW) using the Points2Grid approach integrated into the
Point Data Abstraction Library (PDAL). Points2Grid uses a circular neigh-
bourhood defined around each grid cell a search radius = grid resolution *
sqrt(2) / 2. I saved the final gridded dataset as GeoTIFF with 1 m cell size
and the coordinate system NAD83 / UTM zone 8N (EPSG: 26908).

This work will focus on the intersection of the datasets and the sections that
cover ITH. I reprojected the snow-covered dataset to EPSG 32608, then sub-
tracted the snow-free DEM from the snow-covered DEM to obtain the snow
depths and snow distribution. Furthermore, I draw an exact road centerline
for the intersecting segments using the ALS datasets as baseline data. Then,
I created 500 m long transects (n = 3169) perpendicular to the road every
1 m over the ITH centerline using GRASS GIS. I extracted the pixel values
from the whole transects but chose to analyze only 150 m centered on the road
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since the snow distribution did not show any substantial changes beyond that
distance. To test for the accuracy of the snow depths, I used the transects
over the road, assuming that the road should be snow-free in both datasets,
and therefore, showing no to little difference in elevation. Finally, I created
boxplots for the snow accumulation distribution along the transects and classi-
fied the transects based on their direction (east-west or north-south). For the
boxplots I use the following convention throughout the work: the line in the
box is the median and the box top and bottom represent 75 and 25 percentiles
(i.e., Q3 and Q1), respectively. The top and bottom whiskers in the boxplot
mark values within 1.5 interquartile range (IQR) and outliers are excluded.

2.3 Sentinel-2

The Sentinel-2 mission consists of a constellation of two polar-orbiting satel-
lites; Sentinel-2A (launched on 23 June 2015) and Sentinel-2B (launched on 7
March 2017). The satellites provide a temporal resolution of five days at the
equator [43]. Due to the overlap between adjacent orbits, the revisit time for
the study region is one to three days [43]. One scene has 290 km field of view
and the spatial resolution of the 13 bands ranges from 10 m to 60 m spanning
the visible (VIS), NIR and SWIR spectrum [44] (see Table 2.1). The images
are subdivided into 100x100 km2 tiles, following the naming convention of the
Military Grid Reference System (MGRS) with a UTM/WGS84 projection [43].
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Table 2.1: The spectral region, wavelength range and spatial resolution of
each Sentinel-2 Multispectral Instrument (MSI) satellite band.

Sentinel-2 MSI
Band Spectral region Wavelength Resolution

range (µm) (m)
B1 Aerosols 0.42 - 0.46 60
B2 Blue 0.44 - 0.53 10
B3 Green 0.54 - 0.58 10
B4 Red 0.65 - 0.68 10
B5 Red Edge 1 0.69 - 0.71 20
B6 Red Edge 2 0.73 - 0.75 20
B7 Red Edge 3 0.77 - 0.80 20
B8 NIR 0.77 - 0.91 10
B8A Red Edge 4 0.85 - 0.88 20
B9 Water vapor 0.93 - 0.96 60
B10 Cirrus 1.34 - 1.41 60
B11 SWIR 1 1.54 - 1.68 20
B12 SWIR 2 2.07 - 2.31 20

Bottom of Atmosphere (BOA) reflectance (Level-2A product) Sentinel-2 prod-
ucts are provided by GEE from 2017 onward. For consistency of the images,
I chose to work with the orthorectified and map-projected top of Atmosphere
(TOA) Reflectance Level-1C Sentinel-2 products with availability from 2015
onward. However, only images from 2016 and onward were available for the
study site. The workflow included the pre-processing steps (I) initial filtering,
(II) atmospheric correction, (III) cloud and cloud shadow masking followed
by (IV) indices calculation, (V) co-registration and (VI) pixel-based analysis
(Fig. 2.4.
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Figure 2.4: Processing steps for the Sentinel-2 data.

2.3.1 Initial Filtering

The processing chain of the Sentinel-2 imagery started with image selection
and filtering of the image collection, using only images for the period July
and August. These months represent the peak growing season and have also
been used in e.g. [15] to analyze land cover changes along with anthropogenic
disturbances in the Arctic. In an initial step, I selected all images for 2016–
2020 with cloud cover less than 20 %. I also chose the MGRS tile 08WNB from
orbits 14, 57, and 100 as the initial filter because it included the whole research
area. I noticed that the image collection on some dates featured remarkably
similar images (same values, same bounding box). The only variation between
these images was the time stamp, which differed by a few seconds. Therefore,
I visually inspected the images to delete duplicates. Furthermore, I removed
some images from 2016 because they only represented a small segment of the
study area. Further, I manually removed one image from 12 July 2017 from
the image collection since the image showed very high brightness compared
to the other images. The initial filtering resulted in a total of 28 images for
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all years, 2 images for 2016, 7 for 2017, 5 for 2018, 7 for 2019 and 7 for 2020
(Figure 2.5)
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Figure 2.5: Number of utilized Sentinel-2 images per year and month.

2.3.2 Atmospheric Correction

The electromagnetic radiation reflected from the ground and recorded by a sen-
sor is influenced by atmospheric interactions, such as scattering and absorption
of radiation by clouds, aerosols and gases [45]. The quality of vegetation in-
dices and spectral signals, extracted by satellite measurements, is negatively
influenced by atmospheric effects [46]. Therefore, I applied an atmospheric
correction to obtain Level-2A BOA products from the Level-1C TOA using
the open-source tool 6S (Second Simulation of the Satellite Signal in the Solar
Spectrum) [47] with GEE in an interface through Python (Py6S) [48] with a
code based on [49]. The Py6S has been tested and evaluated for the quality
of the Level-2 A in [50]. First, I converted the TOA reflectance RT OA to TOA
radiance (LT OA) with the formula:

LT OA(λ) = ESUN(λ) cos(θ)RT OA(λ)
πd2 (2.1)

where ESUN(λ) is the solar exoatmospheric spectral irradiance in wavelengths
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corrected for daily variations, θ solar zenith angle in radians and d the Earth-
Sun distance [49].

The TOA radiance can further be described as follows:

LT OA = τρ(Edir + Edif )/π + Lp (2.2)

where LT OA is TOA radiance, τ is transmissivity, ρ is surface reflectance, Edir

is the direct solar irradiance, Edif is diffuse solar irradiance and Lp is path ra-
diance. The four unknown atmospheric terms (τ , Edir, Edif and Lp) are solved
using the 6S radiative transfer code considering atmospheric parameters like
the total amount of water and ozone in a vertical path through the atmo-
sphere and the aerosol optical thickness value. These atmospheric parameters
are derived from the image metadata. The parameter altitude of the target is
specified using the ArcticDEM [36]. Therefore, the surface reflectance can be
solved as follows [49]:

ρ = π(LT OA − Lp)/τ(Edir + Edif ) (2.3)

Figure 2.6 gives an example of a true color composite before (Fig. 2.6a) and
after atmospheric correction (Fig. 2.6b) with Py6S depicting the visual im-
provement after the correction.

(a)

1 km

(b)

Figure 2.6: True color composites of (a) TOA reflectance of a Sentinel-2
image of 19 August 2017 and (b) BOA reflectance of the same image after
atmospheric correction with Py6S.
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2.3.3 Cloud Masking

The detection and masking of clouds and cloud shadows are mandatory when
working with optical remote sensing since the measured electromagnetic sig-
nal is affected by cloud presence which thus alters the received information
[51]. Cloud and cloud shadow masking is essential in northern regions where
persistent cloud cover has been identified as one of the major limiting factors
(besides steep sun angles and low light intensities) for passive satellite systems
[52].

In this work, I used the machine learning-based cloud detector
S2cloudless, which has been developed by Sentinel Hub’s research team us-
ing as ground truth the cloud masks produced by MAJA [53]. Compared to
other widely used cloud detection algorithms, S2cloudless has a high cloud
detection rate and a lower misclassification rate of land and snow as clouds
[54]. Each pixel is assigned a cloud probability based on the pixel’s 10 Sen-
tinel-2 band values [55] and the cloud shadow is defined by cloud projection
intersection with low-reflectance NIR pixels [56].

Cloud probability at 10 m scale is provided for every image in the Sentinel-2
archives in GEE, giving each image a corresponding S2cloudless image. The
cloud masking has been implemented in the script [56] giving the user the
control to decide on different threshold parameters to optimize the masking.
In this work, I tested several different thresholds for cloud probability, NIR
reflectance and maximum distance to search for cloud shadows from cloud
edges on a sample of images. I achieved the best result with 50%, 0.15 and
2 km, respectively. Furthermore, I set a buffer of 50 m to dilate the edge of
cloud-identified objects. Fig. 2.7 shows an example of the cloud and cloud
shadow detection for a Sentinel-2 image with the customized thresholds. Fig.
2.7a shows a true color composite of a partly cloud-covered landscape with
some lakes visible and Fig. 2.7b shows the true color composite with the cloud
and cloud shadow masks.
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(a)

2 km

(b) Cloud
Cloud/shadow

Figure 2.7: True color composites of a Sentinel-2 image with (a) visible clouds
and (b) the same image with the cloud mask in pink and the cloud and cloud
shadow mask including buffer in yellow.

2.3.4 Indices

I utilized the Sentinel-2 imagery for the vegetation, water, and moisture anal-
ysis. I utilized Sentinel-2 images, knowing the disadvantage of using Sentinel-2
imagery because there were no images before construction. Having images be-
fore construction would help to examine how the physical parameters’ values
and spatial patterns were dispersed in the original and undisturbed landscape.
However, the benefit of using Sentinel-2 images is the finer spatial resolution
compared to Landsat (Fig. 2.8), making it more likely to identify small scale
changes along the road. From the atmospheric corrected, cloud and cloud
shadow masked Sentinel-2 imagery, I calculated the indices Normalized Dif-
ference Moisture Index (NDMI), Normalized Difference Water Index (NDWI)
and NDVI in GEE Python API.

Figure 2.8: Bandwidths and band names for Landsat-7, Landsat-8 and Sen-
tinel-2. Modified after [57]
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NDMI is sensitive to liquid water in vegetation and is computed using the
short-wave-infrared (SWIR) and NIR reflectance [58]. NIR reflectance is af-
fected by the leaf dry matter and the leaf internal structure but not by the
water content. At the same time, the SWIR band reflects changes in both the
vegetation water content and the mesophyll structure. By combining these
two bands, the variation induced by leaf internal structure and leaf dry matter
content is removed and thus, improving the accuracy in retrieving the vege-
tation water content [59].The values range from -1 to 1, with negative values
indicating water stress and positive values indicating water logging [60]. NDMI
is defined as follows:

NDMI = (NIR − SWIR)
(NIR + SWIR) (2.4)

NDWI was proposed by [61] to delineate open water features. The index aims
to use the green band to maximize the reflectance of the water body and the
high absorption of NIR wavelengths to minimize it [61]. It is defined as the
difference between the green and NIR bands divided by their sum. The NDWI
values will range from -1 to 1 with water bodies having positive values whereas
soil and terrestrial vegetation features having zero or negative values [61] and
is defined as follows:

NDWI = (Green−NIR)
(Green+NIR) (2.5)

When inspecting the output raster images, I revealed a limitation of using the
NDWI to extract information about possible water ponding along the road.
According to [61], water bodies should have positive values, whereas build-up
areas and vegetation should have negative values. This index relies on the
typically higher reflectance of NIR and low reflectance of green wavelengths
for vegetation (giving negative values) and a higher reflectance of green wave-
lengths than the NIR for water bodies (giving positive values).

However, some water bodies in the study area show negative values (Fig. 2.9),
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which means that for these water bodies, the green reflected light is lower than
the NIR. This finding reveals that NDWI is insufficient for analyzing water
ponds along the road. The road has negative values, as well as little water
ponds with shallow water close to it. This atypical appearance of water pixels
in the visible spectrum is typical at high latitudes where low sun zenith and
shallow water bodies promote sun glint, turbidity and lake bottom reflectance
[62]. Instead, I used only the NIR band to analyze any changes of open water
bodies along the road, relying on water’s high absorption in NIR compared to
non-water areas [63–65].

NDWI
< -0.5
-0.3
-0.1
> 0

NIR
0

> 0.5

(a) (b) (c)

Figure 2.9: Water body and small water ponds next to ITH displayed in (a)
true colors, (b) NDWI and (c) NIR from a Sentinel-2 image (from 20 Januar
2018) with a resolution of 10 m.

NDVI can be used as an indicator to quantify the greenness of plants be-
cause of the inverse relationship between vegetation brightness in the red and
near-infrared (NIR) spectrum. Healthy vegetation absorbs red light by the
chlorophyll and has a high reflectance in the NIR region due to high scatter-
ing in the mesophyll tissue. In contrast, unhealthy vegetation reflects more
red radiation and less NIR [66]. Consequently, healthy vegetation will have a
higher NDVI. NDVI values lower than 0.1 correspond to bare soil or snow [67].
Moderate NDVI levels may be a result of sparse vegetation like shrubs and
grasslands or by senescing crops (approximately 0.2 to 0.5) [67]. The NDVI is
calculated as follows:
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NDV I = (NIR −Red)
(NIR +Red) (2.6)

2.3.5 Co-registration

Misregistration of images occurs between sensors or even within a sensor. For
Sentinel-2 the nominal geolocation uncertainty reach up to 12.5 m [68], which
is more than one pixel. The displacements of the images, might negatively
influence the results, especially when analyzing changes along a road, where
the spatial extent of the hypothesized changes is rather small. Therefore, after
downloading the images from GEE, I conducted a subpixel co-registration of
the images using a local co-registration tool in the Automated and Robust
Open-Source Image Co-Registration Software (AROSICS 2.0) [69] in Python.
In the local co-registration, a reference image and a target image are used to
detect the geometric shift using a moving window for each point of a dense grid.
The detected tie points are subsequently validated using a multistage workflow
described in [69]. To compute the parameters of an affine transformation, only
those tie points that aren’t tagged as false-positives are employed [69]. As a
reference image, I used a cloud-free Sentinel-2 image from 28 August and I set
the moving window size to 256 × 256 pixels and maximum iterations to 10.

2.3.6 Pixel-based Analysis

I used the NDVI band from one image 2016 to vectorize all the road area
(including embankment) in QGIS using a threshold of 0.4. Using the vec-
torized road, I could derive the road’s centerline in QGIS. To quantify the
distance effect of the road, I generated 120 buffers in 5 m intervals along the
vectorized road, excluding the road and embankment (Fig. 2.10a). I chose
the maximum distance of 600 m assuming that areas beyond this distance re-
main undisturbed. Furthermore, I created a 20 m buffer zone around the road,
excluding the road and embankment (Fig. 2.10b) and divided the polygon
into upstream and downstream sides, based on the watersheds from Ensom,
T. (unpublished data), for the water ponding analysis.

I extracted the pixel values in each buffer zone using the extract function
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in the eo-box Python package [70]. At the moment, eo-box can only handle
single-band images [70]. Therefore, I extracted the bands in the multiband
images using the translate utility in the Geospatial Data Abstraction Library
(GDAL). After extracting all the single bands, I utilized the extract function
in eo-box. The function creates a mask by rasterizing the buffer zones using a
template raster. The template raster is the first raster in the list by default.
That means, that the mask’s pixel centers correspond to the first raster’s pixel
centers. Each image pixel value could be extracted and further quantified using
this mask.

The utilized methods and statistics for the pixel-based analysis differ depend-
ing on the index. In an initial step, I combined the extracted pixel values for
each index into annual pixel stacks. For the study of the NDVI, I calculated
the maximum NDVI of each pixel stack. I did this to overcome the influence of
different phenological stages. Furthermore, I excluded values below 0.4 from
the analysis to ensure that it only implied vegetation [67]. Compared to the
NDVI, I used the median value in the annual pixel stacks for the NDMI study.
I utilized the median NDMI to eliminate the influence of extreme NDMI values
(caused by, e.g., local precipitation). Further, I masked the larger water bodies
in the NDMI using the NDWI of a cloud-free image from 2 July 2018. In sum-
mary, this resulted in each pixel coordinate storing two values per year: (I) the
maximum NDVI and (II) the median NDMI. Then, I grouped each year in 5 m
steps from the road edge with the help of the buffer zones. The grouped NDVI
and NDMI index values per year and pixel served the distribution analysis.

The absolute values of the indices can fluctuate significantly across years [15],
making it difficult to compare the road effect between them. To focus on
the road effect exclusively, I normalized the median NDMI and median NDVI
on a distance of 500 m. The selection of distance is based on the findings
of [22, 28], who found no significant effect of the road after 300 m and 625 m,
respectively. Therefore, I used the 500 m distance as a reference site. I achieved
the normalization by subtracting the individual annual index value at 500 m
from all values in the corresponding year.
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(a) (b)

Figure 2.10: Sentinel-2 true-color image with (a) the borders of the ITH
in yellow and the buffer zones in 5 m steps displayed in black and (b) 20 m
buffer zone excluding road and embankment and divided into upstream and
downstream.

For the water ponds analysis, I used the NIR bands of the images. Finding a
threshold value for water using a not normalized single-band index might be
challenging because of different illumination and acquisition geometry of the
images [62]. Additionally, the road exhibits low reflectance in NIR and may
sometimes show NIR reflectances similar to water (Fig. 2.11).

2016/08/06

NIR Reflectance

2017/07/12 2018/07/12

2019/07/13 2020/07/11
0

0.5

Figure 2.11: Development of a water pond in the vicinity of the road through
the years visualized with the NIR band from one Sentinel-2 image per year
(2016–2020) during the summer months.
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I used a threshold value of 0.128 for water, which showed high accuracy in [64].
I visually inspected several images to confirm the threshold’s transferability to
the scenes used in this work. Then, I calculated the median NIR value for
each pixel and year to exclude any outliers from the analysis. Outliers can
occur when pixels affected by clouds or cloud shadows are missed during the
automatic masking processes [71] (outlined in the section 2.3.3) as well as
when local precipitation has influenced the reflectance. Then, in the annual
time series, I preserved every pixel that had values equal to or less than the
threshold value at least once throughout the pixel time series (Fig. 2.12). I
used this method to compare the upstream and downstream sides over the
years.

2016

2020

<= 0.128 NIR reflectance
> 0.128 NIR reflectance

Preserve Ignore

Figure 2.12: Illustration of two examples of NIR band pixel time-series.
Each square represents a pixel of the median NIR reflectance of the year. I
preserved the whole time series if at least one pixel in the time series was below
the threshold.

2.3.7 Landsat

Datasets before, during and after construction were needed to analyze the
snowmelt pattern in the vicinity of the ITH. For this purpose, I utilized Land-
sat-7 ETM (Enhanced Thematic Mapper) and Landsat-8 OLI (Operational
Land Imager) images. The United States Geological Survey (USGS) satellites
orbit Sun-synchronously at 705 km altitude with an equatorial revisit time of
16 days [72]. Because of the high side overlap of the WRS-paths (Worldwide
Reference System) at the higher latitudes, the study site has a revisit frequency
of 3-5 days [73].
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Landsat-7 was launched in April 1999 and is still operating. However, a failure
of the Scan Line Corrector (SLC) in 2003 results in stripes of missing data on
either side of the images [72]. Landsat-8 was launched in February 2013. The
spatial resolution for the Landsat-8 bands ranges from 15 m (panchromatic),
30 m (VIS, NIR, SWIR) to 100 m (thermal) (Tab. 2.2).

Table 2.2: The spectral region, wavelength range and spatial resolution for
each Landsat-8 OLI satellite band.

Landsat-8 OLI
Band Spectral region Wavelength Resolution

range (µm) (m)
B1 Coastal aerosol 0.43 - 0.45 30
B2 Blue 0.45 - 0.51 30
B3 Green 0.53 - 0.59 30
B4 Red 0.64 - 0.67 30
B5 NIR 0.85 - 0.88 30
B6 SWIR 1 1.57 - 1.65 30
B7 SWIR 2 2.11 - 2.29 30
B8 Panchromatic 0.52 - 0.90 15
B9 Cirrus 1.36 - 1.38 15
B10 Thermal infrared 1 10.60 - 11.19 30*
B11 Thermal infrared 2 11.50 - 12.51 30*
BQA QA Bitmask
* resampled from 100m to 30m

The band names and bandwidths differ slightly between Landsat-7 and Land-
sat-8. Furthermore, Landsat-8 has two new spectral bands not present in
Landsat-7; a coastal/aerosol band (band 1) and a cirrus band (band 9) (Fig.
2.8). Atmospherically corrected surface reflectance images are available from
the two satellites on GEE for all years. Therefore, no pre-processing of the
images is needed. The snowmelt pattern analysis followed the workflow in Fig.
2.13. I selected one cloud-free image per year in May-June, which corresponds
to a period when the snow is partially melted in the landscape. To illustrate
”before construction conditions,” I utilized one image from 2002 (Landsat-7)
and one image from 2013 (Landsat-8) and Landsat-8 for the period during
and after road construction. I calculated the Normalized Difference Snow In-
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dex (NDSI) for all images. NDSI helps to discriminate snow, ice and water
from bare soils and clouds [74] by taking advantage of the high exoatmospheric
reflectance characteristics of snow and ice in the visible spectrum and the ab-
sorption in SWIR1. It is defined as the difference between the green band and
the SWIR1 band divided by their sum [75]:

NDSI = (Green− SWIR1)
(Green+ SWIR1) (2.7)

According to [75], ice, snow, and water were identified by a surface reflectance
threshold value of > 0.4, whereas bedrock and bare soils were identified by a
value of < 0.4. Therefore, I used this threshold in this work. I created a water
mask using the NDWI of a snow-free image from August 2019 and applied it
to all images to remove the water bodies.

Surface 
Reflectance 

Landsat 7 & 8
Summer image

One late-spring 
cloud-free 
image/year 

NDWI Thresholding

Other WaterNDSI Thresholding

Snow-free + water Snow + ice

Water masking

Snow-free Snow Water + ice

Figure 2.13: Process chain for snow discrimination using Landsat data.
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The product was one raster image for each year with pixels with values of 0
indicating ice-covered water bodies or open water, values of 1 indicating snow
and values of 2 indicating snow-free areas (Fig. 2.14). For the pixel-based
analysis, I used the 5 m buffer zones along the road created in section 2.3.6 as
well as the same workflow to extract the pixel values.

(a) (b) Water+ice
Snow
Snow-free

Figure 2.14: (a) A true color composite from a Landsat-8 image with snow
cover from a partly melted landscape (5 May 2018) and (b) threshold NDSI
values with snow-covered pixels shown in white and snow-free pixels shown in
orange, the water bodies in blue were masked using the NDWI from an image
in late summer.
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Results

3.1 Snow Accumulation

The main result of the ALS point cloud processing is a DEM over a snow-
covered landscape. I obtained the snow depths as visualized in (Fig. 3.1) by
subtracting a snow-free DEM from the snow-covered DEM. The total length of
the road covered by both the snow-free and snow-covered DEM is 4.4 km. The
spatial distribution of the snow depths appears to be in accordance with the
underlying terrain of the area. There is less variation and smaller snow depths
on the flat tundra terrain and greater snow depths at valley slopes and along
the embankment toe of the road. The only snow-free feature distinguishable in
the map is on top of the road, indicating active snow removal before the ALS
data was collected. By visually inspecting the map, it seems that more snow
has accumulated on the western side of the road. The average snow depth of
the surrounding tundra reaches about 40 cm (Fig. 3.1).

I extracted the pixel values from the snow-free and snow-covered DEM from
150 m long transects with 1 m spacing to validate the snow-covered DEM and
to quantify and visualize the snow accumulation along the road (Fig. 3.2).
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Figure 3.1: Snow depths derived from the intersecting regions from one snow-
free and one snow-covered DEM along the ITH (yellow line). Example of snow
depth transects are marked by blacked lines (not to scale). In total, I extracted
and analysed the pixel values of 3169 transects with 1 m spacing.

The transect in Fig. 3.2a is extracted from the southern part of the study area
(Fig. 3.1a). Over the 150 m, the elevation decreases 3 m from the north to the
south. The embankment height for this transect is 0.6 m. The accumulated
snow reaches the maximum depth of 1.4 m at a distance of 23 m from the road
center at the northern side of the road. The maximum snow depth of 0.8 m on
the southern side is located closer to the road (13 m). Increased snow depth
reaches up to 40 m from the road center (northern side) and 17.5 m on the
southern side.

The second transect (Fig. 3.2b) is extracted from the southern part of the
study segment located in the north (Fig. 3.1b). The embankment height for
this transect is 1.7 m and it is located on a surface with almost flat terrain.
The maximum snow accumulation is located in the absolute vicinity of the
embankment with snow depths of 0.9 m (western side) and 1.3 m on the eastern
side. The snow accumulation enhancement reaches approximately 20 m from
the road center on both sides.
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Fig. 3.2c depicts the transect with the greatest snow depths out of all 3169,
located in the northern part of the study area (Fig. 3.1c). The transect shows
two peaks of maximum snow depths on each side of the road. The embankment
height is 1.7 m at this transect location with a decrease in relative elevation
on both sides towards the road. The snow depth exceeds more than 2.4 m
on the western side and 1.3 m on the eastern side. The snow accumulation
reaches up to a distance of 20 m on the western and 30 m on the eastern side
for this transect. Significant for the transect (Fig. 3.1c) is the generally larger
snow depths on the western side on distances beyond 20 m (average of 0.5 m)
compared to the eastern side (average of 0.25 m).
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Figure 3.2: Three example of transects perpendicular to the road with the
length 150 m. The figure show the relative elevation in meters of the snow-free
DEM (from 22 August 2018) and the snow-covered DEM (from 10 April 2019)
from the (a) southern, (b) central and (c) northern part of the study region.
The locations of the transects (a–c) are shown in Fig. 3.1

.
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The distribution of the snow depths for all transects in north-south direction
(n = 400) is visualized in Fig. 3.3. The snow accumulation enhancement
reaches up to 36 m from the road center at the northern side with the strongest
accumulation between 9 and 26 m from the road center (Fig. 3.3a). The
maximum snow depths are located 26 m from the road center with median
snow depths of 1 m on the northern side. In south direction (Fig. 3.3b), the
snow accumulation enhancement reaches up to 26 m and 12 m from the road
center on the southern side the median snow depths are 0.8 m (Fig. 3.3b). The
northern side of the road has more variance in snow depths than the southern
side. Furthermore, the snow depths further away from the road are generally
greater on the northern side (0.5 m) than on the southern side (0.35 m).
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Figure 3.3: Snow accumulation derived from transects (n = 400) on the (a)
northern side and (b) southern side of the road. The blue lines are the median
depths from the transects.
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Compared to north-south direction, more transects in the study area are lo-
cated in east-west direction (n = 400 versus n = 2769). The snow depths
distribution for east-west direction are depicted in Fig. 3.4. For the eastern
side the snow accumulation reaches up to 26 m from the road center (Fig. 3.4a).
Meanwhile, the snow accumulation enhancement reaches up to 36 m from the
road center at the western side (Fig. 3.4a). The maximum snow depths are
located 10 m from the road center on the eastern side with median snow depths
of 0.9 m (Fig. 3.4a). For the western side the median snow depths maximum
is at 15 m from the road center with snow depths of 1 m (Fig. 3.4b). As shown
by the whiskers in the boxplots, the variation of snow depths increases with
increased snow accumulation enhancement for both sides. The variation of
snow depths is generally larger on the northern side than the southern side.

1 11 21 31 41 51
Distance from road center (m)

0.0

0.5

1.0

1.5

2.0

2.5

Sn
ow

 d
ep

th
 (m

)

east(a)

1 11 21 31 41 51
Distance from road center (m)

0.0

0.5

1.0

1.5

2.0

2.5

Sn
ow

 d
ep

th
 (m

)

west(b)

Figure 3.4: Snow accumulation derived from transects (n = 2769) on the (a)
eastern side and (b) western side of the road. The blue lines are the median
depths from the transects.
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3.2 Vegetation Moisture Content and Surface
Water

I examined the vegetation moisture content changes along the road with means
of the median NDMI in the pixel stack in the growing season using Sentinel-2
images for the years 2016–2020. The distribution of all absolute NDMI values
for each year and distances up to 60 m is shown in Fig. 3.5a. Note that the
distances for this analysis are measured from the road edge (see Fig. 2.10a).
Overall, substantial changes in NDMI occurred within the first 15 m from the
road for all years with lower NDMI values towards the road, indicating less
vegetation moisture there. However, the boxplot pattern shows an effect up
to a distance of 25 m, and further away, the pattern of median values remains
stable. At the closest distance from the road (5 m), the year 2016 shows the
lowest median NDMI. There is a gradual NDMI increase the following years
until 2019 and, subsequently, a decrease in 2020, reaching a median value
similar to 2017. At 10 m distance from the road edge, there is a transition
towards more similar median values for all years. Subsequently, at distances
greater than 25 m, there is a reversed pattern between the median values of
the years compared to at 5 m. At distances far away, 2016 and 2017 show
the highest NDMI and 2018–2020 the lowest. 2016 shows the most significant
differences in the first 25 m with the median value increasing from 0.018 to
0.164. Over time, the effect of distance to road has decreased. The smallest
distance to road effect was in 2019, with the median value only increasing by
0.065 from 0.075 to 0.140 in the first 25 m. In general, the NDMI was higher
in 2016–2017, compared to the other years.
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Figure 3.5: Temporal and spatial changes in NDMI with distance from the
road edge extracted from Sentinel-2 imagery. The year 2016 marks the period
of highway construction, and the year 2017 represents the official opening of
the highway. The years 2018-2020 represent the periods after construction. (a)
shows the distribution of all absolute NDMI values with distance during the
period July–August. (b) shows the relative NDMI median values normalized
on a distance of 500 m where I assume minor road effects.
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To focus on only the road effect of NDMI, I normalized the median results
using the NDMI medium values from 500 m away. At this distance, I expected
no or only minor effect of the road. The result of the normalized median
values is shown in Fig. 3.5b. Substantial differences in NDMI compared to
the undisturbed region occur within distances of 25 m from the road edge.
However, a notable decrease in NDMI for the years 2018 and 2020 becomes
visible at the distance 140 m in the road direction. Within the distances 25 m
to 140 m, 2018 and 2020 exhibit a decrease of 0.02 and 0.017 in road direction,
respectively, whereas for 2016, 2017 and 2019, the decrease ranges between
0.009 to 0.01.

While the NDMI represents moisture within the vegetation canopy, I was also
interested in open water. The road construction can potentially lead to pond-
ing in poorly drained areas along the embankment. First, I calculated the
median NIR reflectance of each year. Then, I included all pixels for the year
between the road edge and 20 m distance, which were below the water threshold
at least once in the time series. Moreover, the pixels are divided into upstream
and downstream parts. Since I used the absolute reflectance values for the
NIR, no interannual comparison between decrease or increase can be achieved
but rather the annual differences between up- and downstream within single
years. The result is shown in Fig. 3.6. The year 2016 exhibited lower median
values of NIR reflectance on the upstream side, indicating wetter conditions
there. However, the following years show generally lower NIR reflectance on
the downstream side. The differences between the median are more significant
for 2018–2019, compared to the year during construction (2016) and the year
of inauguration (2017). The smallest difference between the upstream and
downstream median NIR reflectance is observed in 2017, with the upstream
median of 0.130 and the downstream median of 0.118, giving a difference of
0.012. In contrast, the most significant difference between the two sides was in
2018, showing an upstream median of 0.13 and a downstream median of 0.09,
giving a difference of 0.04 in median NIR reflectance. Further, as shown by the
IQR, the variation of NIR reflectance shows a larger variation for the down-
stream than the upstream side in 2016. In the following years, the variation
remains high for both sides. Inter-annual comparison is not possible due to
the methods chosen. However, it is worth noting that a general trend towards
wetter conditions is indicated on the downstream side compared to a slightly
positive trend towards drier conditions on the upstream side.
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Figure 3.6: Distribution of NIR reflectance upstream and downstream of the
ITH.

3.3 Snow Melt

The presence of snow with distance from ITH is illustrated in Fig. 3.7. Gen-
erally, all years show less snow cover closer to the road, including the years
before construction (2002 and 2013). However, the size of this effect differs
between the time before construction and other years. The years 2002 and
2013 show an even snow cover of the study area of 80% and 10%, respectively.
The shape of the graphs for these years are almost identical despite the dif-
ferences in snow cover. A gradual decrease towards the (at that time not yet
constructed) road of approximately 5% snow cover is observed at distances
starting at 100 m from the road for both years. Furthermore, the graph of
the year 2015, which represents the beginning of the road construction, has a
similar shape as the ones before construction.

The snowmelt pattern of 2017, 2018 and 2020 are similar, both in shape and
snow cover. For these years, the snow cover increase from 5% in road vicinity
to about 20% (±5%) at a distance of 140 m from the road edge. At distances
beyond 140 m, there is a gradual increase from 20% (±5%) to 30% (±5%) of
snow cover until a distance of 500 m from the road edge where the snow cover
stabilizes.
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A pronounced decline in snow cover with decreasing distance from road oc-
curred in 2019, with 15% of the area snow-covered in the vicinity of the high-
way, then drastically increasing for 150 m and stabilizing at 200 m with a snow
cover of about 80%. The year 2016 shows the most significant differences in
snow cover. The snow cover in the vicinity of the road reaches 6%, and then
it increases to 80% following a logarithmic curve up to a distance of 500 m.
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Figure 3.7: Presence of snow with distance from ITH derived from Landsat-8
and -7 images using NDSI.

3.4 Vegetation Greenness

I examined the vegetation greenness along the road with means of the maxi-
mum NDVI for each pixel in the peak of the growing season derived for the
years 2016–2020 from Sentinel-2 images. To analyze the distance to road effect,
I grouped the pixel values in 5 m buffers from the road. The result is presented
in Fig. 3.8. All years show a significant decrease in NDVI towards the road
starting approximate 25 m from the road edge. At distances further away,
there are no significant changes. The most significant differences in NDVI the
first 25 m is observed in 2016. In this year, the median value increased by
0.159 from 0.617 at 5 m to 0.776 at 25 m. The distance to road effect became
smaller throughout the years. The year 2020 shows the smallest distance to
road effect, with the median value only increasing by 0.103 (from 0.635 to
0.738) in the first 25 m. Overall, the greatest NDVI variation as represented
by the IQR in Fig. 3.8 is found 5 m from the road, during construction and
the year of opening (2017). At 10 m distance, 2016 and 2017 show a larger
variation of NDVI compared to distances further away.
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Figure 3.8: Distribution of NDVI with distance from the road extracted from
Sentinel-2 imagery. The year 2016 represents the period during the highway
construction and the year 2017 when the highway was officially opened. The
years 2018-2020 represent the periods after construction. (a) shows the max-
imum NDVI values for each pixel during the period July–August. (b) shows
the median NDVI per distance normalized at a distance of 500 m

In addition, I normalized the median NDVI on the distance 500 m which I
assumed to be undisturbed by the road, to only concentrate on the road effect
(Fig. 3.8b). At distances far from the road, the median NDVI is similar to the
500 m zone for all years. However, at 200 m the NDVI graphs begin to show
an observable diverging pattern towards the road before the drastic decrease
at 25 m. The pattern is a consequence of some years exhibiting an increase in
NDVI and others showing a drop in NDVI, compared to the undisturbed zone.
The years 2016 and 2017 show a gradual increase in NDVI, becoming visible at
140 m until it reaches its maximum at approximate 50 m from the road edge.
The NDVI in 2019 and 2020 remains rather consistent throughout the distances
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far away and shows a negative difference compared to the undisturbed zone
at distances closer than 25 m. The year 2018 shows a gradual decrease in
NDVI towards the road compared to the undisturbed zone, observable from
distances 200 m towards the road. Compared to the undisturbed zone, 2018
shows a decrease of 0.033 at 25 m.

The spatial pattern of NDVI in the vicinity of a road segment shows no signif-
icant visual changes when comparing the maximum NDVI values for the peak
of the growing season for the years 2016 and 2020 (Fig. 3.9). However, the
extent of low NDVI values in the absolute vicinity of the road is larger in 2016
as the construction impact was more intense than in 2020.

(a)

NDVI< 0 1

(b)

Figure 3.9: Maximum NDVI values for the peak of the growing season for a
road segment in (a) 2016 and (b) 2020
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4.1 Snow Accumulation

In this work, I used a snow-free and a snow-covered ALS dataset to derive snow
depths along the ITH (Fig. 3.1). Whereas manual measurements of snow depth
are expensive, tedious [76] and limited to the transects or points measured, the
indirect measurement of the surface using remote-sensing technologies has the
benefits of (I) being non-destructive to the snowpack, (II) being safe for crew
members, and (III) enabling to capture the natural variability of snow dis-
tribution in areas that are vast and inaccessible. However, usually manually
obtained ground truth points are utilized to validate the snow depths obtained
using remote sensing methods [77]. Our snow-covered dataset had no avail-
able validation points. However, the road could act as ground truth since I
assumed that it was snow-free during the data collection. Visual inspection of
the transects of snow-covered and snow-free DEM revealed an almost perfect
alignment between the two datasets, requiring no further co-registration (Fig.
3.2).

As I hypothesized, snow depths were larger at both sides of the embankment,
compared to the surrounding terrain as shown in Fig. 3.3 and Fig. 3.4. This
result is in line with similar studies (e.g. [8, 9]). Neill et al. [9] manually
measured the snow depths along transects in tundra and forest at the Peel
Plateau along with the Dempster Highway (Northwest Territories) and found
an enhanced snow accumulation at the embankment in the tundra landscape.
They noted a significant enhancement between about 5 and 15 m from the
side of the road and then a decrease. However, they did not mention any
distances from which the snow depths gradually started to increase. The rather
small number of transects (six) and measurements only every 2 m at distances
further away than 15 m and no differentiation between the sides of the road
might make it hard to observe any gradual increase of snow depths. The
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spatially continuous snow-depths presented in this work made it possible to
create multiple (more than 3000) transects. In this way, I showed that a
gradual increase of snow accumulation could start as far as 36 m away from
the road center. The width of the embankment, on the other hand, may have
an impact on how far from the road center the snow accumulates. Therefore,
this study would benefit from further classification of the snow accumulation
depending on the embankment width.

There can be a significant difference in snow accumulation depending on the
cardinal direction of the transects, from which I derived the snow-depths (com-
pare Fig. 3.3a-b and Fig. 3.4a-b). Wind and topography could explain the
differences of snow accumulation in transect direction because their interac-
tion has a considerable impact on the snow distribution [78]. The embankment
may initiate the snow accumulation enhancement, acting as an obstruction in
the terrain favoring snow accumulation on the sides of the embankment. A
road located perpendicular to the predominant wind direction [8] can favor
snow accumulation on the lee side of the embankment. Likewise, less snow
accumulates when the road is located parallel to the predominant wind [78].

The average wind directions and speed for Trail Valley Creek research station,
which is located close to the study region, are shown in Fig. 4.1. The figure
illustrates the period October-December of 2018 and January-April in 2019.
This period represents the winter months before AWI acquired the data. The
predominant wind direction is south. Based on the findings of [8, 78] and the
prevailing southern winds, we should see a significant large snow accumulation
for the transects located in north direction compared to in south direction.
This is confirmed when comparing the figures in Fig. 3.3. The transects in
north direction (leeward side) (Fig. 3.3a) show, as expected, a more enhanced
snow accumulation than the southern side (Fig. 3.3b). In the east-west direc-
tion, the frequency and average wind speed are similar (Fig. 4.1). The similar
frequency and wind speed are also reflected in the snow accumulation for the
transects in east-west direction, which look similar in snow depths (compare
Fig. 3.4a–b). However, for the transects in west direction, the snow accu-
mulation reaches distances further away from the road center (Fig. 3.4b). A
possible explanation might be that many of the transects in west direction are
located on a downward slope towards the road (e.g. Fig. 3.2c). On a distance
of 75 m from the road, there is a more than 2 m decrease in elevation before
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the sudden change in slope due to the embankment appears, which may cause
turbulence and snow deposition. Another contributing factor to the snow ac-
cumulation is snow plowing which may explain why the accumulation appears
on both sides.
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Figure 4.1: Wind rose for Trail Valley Creek for the months October-Decem-
ber of 2018 and January-April in 2019 shown in average wind speed in m/s
and direction. The predominant winds come from the south for the studied
time period.

It should be noted that the results only represent a small section of the road.
At sites with lower embankment the snow accumulation may be less pro-
nounced because the lower embankment allows the wind to move in a laminar
flow blowing the snow away [79]. Furthermore, the snow accumulation along
the embankment is likely less enhanced where there are more trees as they
act as a shelter preventing the snow from drifting away as concluded in [9].
Notwithstanding the data coverage limitations, these results give us a better
understanding of the spatial distribution of snow next to a permafrost road
embankment.

While snow accumulation next to water ponding was identified as one of the
key factors contributing to permafrost degradation and increased thaw depths
along with infrastructures [13, 14], recent studies have underlined the need to
capture high spatial resolution components when modeling infrastructure ele-
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ments [14]. Knowing that the spatial pattern of snow remains stable from year
to year [80], the map of snow distribution and snow depths could be incorpo-
rated into permafrost degradation models and contribute to their validation
and improvement.

4.2 Vegetation Moisture Content and Surface
Water

I used two remote sensing indices (NDMI and NIR) to examine the hypoth-
esized increase in vegetation moisture and wetting of the surface next to the
road. In contrast to what I expected, a decrease in NDMI was observed at
distances close to the road (Fig. 3.5), indicating a decrease and no increase in
vegetation moisture there. However, this finding is in line with other studies
using the NDMI to examine the road or infrastructure effect on the vegeta-
tion moisture in permafrost. Yu et al. [15] used Landsat-derived indices and
observed that the mean NDMI at distances close to the infrastructure was
0.2 (±0.02) lower than in undisturbed zones. Further, they observed that the
greatest changes occurred within a 100 m zone. Also, [81] showed a substan-
tial drop in NDMI following a permafrost highway construction within the first
100 m from the road.

The decline in NDMI could be attributable to vegetation near the route being
killed by excessive levels of road dust [26] or a reduction of total biomass and
species richness as shown in [23]. However, studies have also demonstrated
that infrastructure on permafrost promotes the growth of shrubs [23, 26, 28]
and graminoid populations [23]. Therefore, it is likely that the deposition of
dust influences the spectral response of NDMI. The spectral bands used for
the calculation of the NDMI are the NIR and SWIR with wavelengths ranges
of 1.54 µm to 1.68 µm and 0.77 µm to 0.91 µm, respectively. Ackerman and
Finlay [28] showed that dust deposition on leaves increased the reflectance
throughout the 0.4 µm to 0.7 µm photosynthetically active wavelength range.
NIR, however, did not show any significant changes, and hence the investigated
NDVI was reduced with dust deposition. However, their study was limited to
wavelengths smaller than 1.130 µm and did not include SWIR. Future studies
could use other spectral indices such as NDMI to investigate the response to
dust deposition. Moreover, the contribution of the mixed pixels to the resulting
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NDMI should not be neglected (further discussed in section 4.4).

For the wetting of the surface, I utilized the NIR band of the Sentinel-2 using a
buffer of 20 m around the road. An important source of error for this small scale
analysis is the workflow being carried out on fixed distances from buffers along
a vectorized road derived from one Sentinel-2 image in 2016. Co-registration of
the images was performed in a pre-processing step, however slight offsets could
not be removed completely in order to achieve a perfect spatial alignment of
each pixel. Therefore, a dynamic distance calculation for each pixel to the
road for each image could improve the results.

The decision to use a single-band water index rather than the standard open
water delineation multi-band index NDWI as suggested by [61] was the poor
performance of the NDWI in detecting smaller water ponds along the road.
I attributed the poor performance of NDWI to shallow water bodies with
bottom reflectance and turbidity [62]. The application of NIR reflectance in
mapping open water bodies has achieved equivalent or even better results
than other common water indices [82] because of the substantial absorption
of incoming NIR irradiation by water. The limitation in using a single band
index is generally the threshold. Whereas a multi-band index has the benefit
of an optimal threshold that can be utilized on satellite imagery from different
sensors and regions, a new optimal threshold for each image might be required
to obtain the highest accuracy for a single band index as NIR [82]. However,
NIR showed the highest contrast between water and non-water bodies and an
optimum threshold of 0.128 exhibited the highest accuracy over other water
indices [64]. As a result, I employed the same threshold in this work with
the caveat that the region’s optimal threshold might differ from theirs. Visual
inspections of the images utilizing the threshold, on the other hand, revealed
good performance. I calculated the median NIR value for each pixel and year.
In the annual time series, I preserved every pixel that had values equal to or
less than the threshold at least once throughout the time series (Fig. 2.12).

Due to differences in illumination, acquisition geometry, as well as sensor spec-
troradiometry [62], I compared the distribution of the NIR reflectance values
between the upstream and downstream side in each year instead of the abso-
lute values. The findings revealed that disparities in NIR median reflectance
tend to increase with time. Unlike suggested water ponding on the upstream
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side [15–17], I found indications of wetter conditions on the downstream side
all years except 2016. A possible explanation for the discrepancy to previous
studies might be the period I studied (July and August). Winter streamflow
is increasing in Northwest Territories [83] and if the stream reaches the cul-
vert, possible clogging due to aufeis [17] can contribute to upstream ponding
in spring and early summer. Later in summer, the pond may exhibit rapid
drainage through the culvert as the aufeis melts. The fast flow may cause
local erosion downstream, favoring a possible pond formation there. In order
to detect water ponding on the upstream side caused by winter streamflow
and evaluate if there is a transition between upstream and downstream pond-
ing in the summer, the study could benefit from incorporating acquisitions
from the spring and early summer. Only in 2016, the upstream side exhibited
lower values than the downstream side. The wetter conditions in 2016 imply
that standing water had already increased before road opening in 2017. This
finding is in agreement with the study of Raynolds et al. [26] who showed
the development of water ponds shortly after gravel road construction at the
Prudhoe Bay Oilfield in northern Alaska. Additionally, culverts may not have
been installed in all areas along the road where they were required, resulting
in water ponding in such an early stage. Future research could benefit from
incorporating photos taken before construction to track the evolution from
the beginning. This could be achieved by using a combination of Landsat-8
and Sentinel-2. In Arctic-Boreal permafrost regions, a spectral comparison
of Landsat-8 and Sentinel-2 comparable bands revealed that the two sensors
correlate well and portray similar trends with just slight deviations [84]. The
panchromatic band in Landsat or other high-resolution imagery could be used
to pan-sharpen the images [63, 85] in order to obtain a common resolution.

4.3 Snow Melt

I examined the snowmelt patterns along the road using NDSI derived from
Landsat data. Even though snow accumulates near the road as shown in the
section 3.1, these areas are melting earlier than regions further away in spring
(Fig. 3.7). The results are in line with the hypothesis that snow melts earlier
in the vicinity of the road. However, most of the additional snow accumulation
is within 30 m (Fig. 3.3 and 3.4), which is also the spatial resolution of the
Landsat bands used for calculating the NDSI. Therefore, even if the snow in
the absolute vicinity of the road persists longer because of the large snow
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depths, it may not be visible in the images because of the spatial resolution of
the utilized sensor.

Other studies have identified road dust as the main cause for the early melt-
off in spring [21, 22]. Dust loading on snow leads to decreased albedo and,
thus, increased solar energy, inducing snowmelt. Everett et al. [22] showed
that most dust falls within a distance of 300 m with a logarithmic decrease.
This finding is in accordance with the spatial pattern of snowmelt found in
this work, especially for 2016 and 2019, representing a high snow cover further
away from the road (90% and 80%, respectively).

The extent of the early snowmelt is larger in this work compared to other
studies. The main snowmelt extent in this work was within a zone of 150 m
whereas Walker et al. [21] noted that the early snowmelt occurred primarily
within a 100 m zone. The most obvious explanation for the differences in
snowmelt is the misclassification of the NDSI when the snow is contaminated
with dust and thus falsely classified as snow-free. However, the reliability of the
NDSI given different spectral charactericts of the snow was examined in [86].
They found that the NDSI values for all types of snow, such as fresh, clean,
patchy and wet, and contaminated were substantially different than snow-free
areas. Other explanations for the differences in snowmelt extent might be
different wind speed, dust particle size and snow clearance practices.

The early melt-off has many possible consequences for the permafrost. Auer-
bach et al. [23] found the deepest thaw depth next to the Dalton Highway
(Alaska) and a consistent decrease with distance from the road. They at-
tributed the increased thaw depth close to the road to the earlier exposure to
solar radiation. The melt-off can start up to 14 days before the general melt-
off [21], which can affect the underlying vegetation. The vegetation phenology
and start of the season are significantly correlated with the last day of snow
cover as found in [87]. Some plants might be more favored by early snowmelt
than others, as noted in [23]. They highlighted the close relationship between
early snowmelt and vascular plant growth, deciduous shrub and sedge flower-
ing. Tall shrubs may act as a windbreak, increasing dust deposition and snow
accumulation, leading to more soil nutrients, higher soil temperatures and in-
creased active layer thickness [24]. My results indicate that dust deposition
is the main driver of the early snowmelt and more attention should be paid
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to further research on the extent of dust deposition along the road and the
performance of NDSI on snow contaminated with dust. As the early snowmelt
impacts the underlying permafrost in various ways and might be initiated by
dust deposition, the incorporation of field measurements is needed for validat-
ing the remotely sensed estimations of snowmelt. Moreover, the NDSI may
be implemented in machine learning algorithms to detect dust deposition on
the surrounding vegetation together with the NDVI, which already has been
shown to be influenced by dust [28].

4.4 Vegetation Greenness

Gravel roads constructed on permafrost contribute to substantial changes in
the vegetation alongside the route [24, 26, 28]. For example, changes in vege-
tation can be induced by increased soil nutrient availability, following a dust
deposition, and an elevated soil moisture [24]. Based on this knowledge, I
hypothesized that the amounts of green vegetation would be promoted in the
vicinity of the road and increase the NDVI. Another possible reason for altered
vegetation is the disturbance along the swath next to the embankment during
construction, which can also promote shrub recruitment [88]. The method to
analyze these changes relied on the NDVI calculated from Sentinel-2 images
starting from the year 2016 when the road was still under construction. As
can be seen on the photos from September 21, 2021 (Fig. 4.2), the vegetation
is altered to a distance of a couple of meters from the road. Surprisingly, the
results presented in Fig. 3.8a-b show a decrease in NDVI towards the road,
starting at a distance of 25 m from the road edge. Indeed, the same spatial
pattern was seen in [15] where Landsat images and buffer zones from an oil
and gas disturbance were used in a region with discontinuous permafrost in
northwestern Siberia. The NDVI in that study showed very low values within
a 100 m distance from the disturbance, and past that range, there was no sub-
stantial difference. In this work, I normalized the median NDVI values on
distances 500 m away from the road edge (Fig. 3.8b). I considered regions be-
yond that distance as undisturbed. With means of the normalization, I could
show an effect beginning as much as 200 m from the road edge before the dras-
tic decrease around 25 m. Because of the notable spatial pattern occurring,
with some years showing a decrease in the median NDVI, whereas others were
showing an increase, the pattern should be considered as an independent ef-
fect irrespective to the common drastic decrease at 25 m. The effect can not
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be explained by the earlier snowmelt onset as shown in section 3.3, since the
snow melts earlier the closer to the road for all years. Thus an earlier onset of
greening in the vicinity of the road should be valid for all years and not only
2016 and 2017.

Figure 4.2: Photos of a segment of the ITH and the adjacent vegetation
(from 21 September 2021). Photo credits: Boike, J.

Due to the finer spatial resolution for the NIR and red band of Sentinel-2
(10 m), compared to Landsat with 30 m, I chose to utilize the Sentinel-2. How-
ever, if the vegetation change is limited to only a few meters from the road, even
the spatial resolution of 10 m may not be sufficient to record these changes.
The mixed pixels next to the road can be compiled partly from vegetation with
larger positive NDVI values and the road, typically having NDVI values lower
than 0.1. In this case, the NDVI values are not representative. Another pos-
sible reason for the negative effect of the road on vegetation greenness may be
the time it takes for altered vegetation to exceed the size of a Sentinel-2 pixel.
At the Dempster Highway (Northwest Territories), which has been in opera-
tion since the late seventies, a shrub profiliation has been shown within the
first 100 m from the road [24]. Because ITH has been operational since 2017,
it may be too early to notice any changes using medium-resolution satellite
photography. Furthermore, the lower NDVI-values closer to the road might
be influenced by the dust deposition from the road. Deposited dust might
kill the vegetation [26] or block the spectral characteristics of the underlying
leaf surface, reducing the NDVI by as much as 0.24 as shown in [28]. At the
Dalton highway, located in Alaska, NDVI-values were reduced up to a distance
of 125 m and after dust removal, the NDVI-values were stable at all distances.
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Discussion

Moreover, heavy machinery operating laterally at the embankment can kill
vegetation giving a lower NDVI-value during the construction. However, these
microsites may be favored for shrub recruitment in the future [88], and there-
fore, show higher NDVI values with time. An indication for the development
of microsites is revealed when comparing the Fig. 3.9a-b. There is a significant
difference in NDVI between the years in road proximity. The spatial extent
of low NDVI values is much more prominent in 2016 than 2020. In 2020, the
vegetation along the road appeared to have recovered throughout the years.
Fig. 4.2 also indicates that a secondary succession might have promoted the
growth of pioneering species such as grasses [23].
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5
Conclusion

In this work, I aimed to examine potential drivers of permafrost degradation
along the ITH using remote sensing techniques. Based on the current knowl-
edge, I identified potential permafrost degradation drivers that additionally
can be investigated via remote sensing. I followed the hypotheses (I) snow
accumulates next to the embankment toe (II) vegetation moisture content and
surface water increase in poorly drained areas along the embankment toe (III)
snow melts earlier in the vicinity of the highway and (IV) vegetation greenness
increase along the road.

I can conclude that an effect of the road is observed in all physical parameters.
However, the effect in the result is sometimes inconsistent with the hypotheses.
For instance, the results show a significant decrease in NDVI and NDMI at
close distances from the road, indicating a decrease instead of the hypothesized
increase in vegetation greenness and moisture. Furthermore, the comparison
of NIR reflectance as an indicator of wetting shows an increase of wetter con-
ditions on the downstream side rather than the upstream. Meanwhile, the
results reveal agreement in the hypothesized snow accumulation along the em-
bankment and earlier snowmelt, reaching up to distances 500 m from the road
edge.

As much as remote sensing delivers many possibilities to study vast regions
with high spatial coverage and a high temporal resolution, caution is recom-
mended when interpreting the results of a gravel road’s effect on permafrost.
This is especially relevant when examining multi-spectral indices, which may
be biased because of other factors, such as dust. Dust is not explicitly ac-
counted for in this work but seems to impact all parameters. Therefore, future
studies could focus on retrieving information about the dust load in the adja-
cent road regions with the help of satellite sensor signals.
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ITH provides an opportunity to document how infrastructure affects per-
mafrost from the beginning. Remote sensing can serve as baseline data. How-
ever, it needs to be accounted for the limitations e.g. mixed pixels and spec-
tral block because of dust. Further, when utilizing medium resolution satellite
data, the road’s relatively young age becomes a limiting factor, as the changes
of the physical parameters are unlikely to have exceeded the spatial scale of
the data in such a short time. Therefore, applying the utilized methods and
data types on a permafrost road that has been in use for a more extended
period with confirmed changes in the selected parameters would be beneficial.
This would help to validate the impact of the road and add more knowledge to
the potential to identify permafrost degradation drivers with remote sensing
techniques. Due to the utilization of cloud computing services, open-source
software packages, and freely available datasets (except the ALS dataset), the
methods are highly reproducible and can easily be transferred to another study
region.

Overall, primarily free available remote sensing data has been utilized for the
first time over the ITH in order to examine permafrost degradation drivers.
The research identifies the limitations of specific physical parameters and the
parameters that are best studied via remote sensing and lays the ground for
future road monitoring.
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siot, T. Trémas, E. Cadau, R. De Bonis, C. Isola, P. Martimort, and
V. Fernandez. “Copernicus Sentinel-2A Calibration and Products Vali-
dation Status”. Remote Sensing 9:6 (2017). doi: 10.3390/rs9060584 (see
page 19).

[69] D. Scheffler, A. Hollstein, H. Diedrich, K. Segl, and P. Hostert. “AROSICS:
An automated and robust open-source image co-registration software for
multi-sensor satellite data”. Remote Sensing 9:7 (2017). doi: 10.3390/
rs9070676 (see page 19).

[70] M. Benjamin. Sentinel-2 Cloud Masking with s2cloudless. URL: https:
//github.com/benmack/eo- box .git. Accessed: 2021-09-15. 2018 (see
page 20).

[71] F. E. Fassnacht, C. Schiller, T. Kattenborn, X. Zhao, and J. Qu. “A
Landsat-based vegetation trend product of the Tibetan Plateau for the
time-period 1990–2018”. Scientific Data 6:1 (2019), pp. 1–11. doi: 10.
1038/s41597-019-0075-9 (see page 22).

[72] Jeffrey G. Masek. The Landsat Program. URL: https :// landsat .gsfc .
nasa.gov/. Accessed: 2021-10-15 (see pages 22, 23).

[73] J. Li and D. P. Roy. “A Global Analysis of Sentinel-2A, Sentinel-2B
and Landsat-8 Data Revisit Intervals and Implications for Terrestrial
Monitoring”. Remote Sensing 9:9 (2017). doi: 10.3390/rs9090902 (see
page 22).

[74] J. Dozier. “Spectral signature of alpine snow cover from the landsat
thematic mapper”. Remote Sensing of Environment 28 (1989), pp. 9–22.
doi: https://doi.org/10.1016/0034-4257(89)90101-6 (see page 24).

59

https://www.usgs.gov/special-topics/remote-sensing-phenology/science/ndvi-foundation-remote-sensing-phenology
https://www.usgs.gov/special-topics/remote-sensing-phenology/science/ndvi-foundation-remote-sensing-phenology
https://doi.org/10.3390/rs9060584
https://doi.org/10.3390/rs9070676
https://doi.org/10.3390/rs9070676
https://github.com/benmack/eo-box.git
https://github.com/benmack/eo-box.git
https://doi.org/10.1038/s41597-019-0075-9
https://doi.org/10.1038/s41597-019-0075-9
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://doi.org/10.3390/rs9090902
https://doi.org/https://doi.org/10.1016/0034-4257(89)90101-6


[75] D. K. Hall, G. A. Riggs, and V. V. Salomonson. “Development of meth-
ods for mapping global snow cover using moderate resolution imaging
spectroradiometer data”. Remote Sensing of Environment 54:2 (1995),
pp. 127–140. doi: https://doi.org/10.1016/0034-4257(95)00137-P (see
page 24).

[76] J. S. Deems, T. H. Painter, and D. C. Finnegan. “Lidar measurement
of snow depth: A review”. Journal of Glaciology 59:215 (2013), pp. 467–
479. doi: 10.3189/2013JoG12J154 (see page 39).

[77] B. Walker, E. J. Wilcox, and P. Marsh. “Accuracy assessment of late
winter snow depth mapping for tundra environments using structure-
from-motion photogrammetry”. Arctic Science 7:3 (2021), pp. 588–604.
doi: 10.1139/as-2020-0006 (see page 39).

[78] G. E. Liston and M. Sturm. “A snow-transport model for complex ter-
rain”. Journal of Glaciology 44:148 (1998), pp. 498–516. doi: 10.3189/
S0022143000002021 (see page 40).
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