

Phytoplankton functional types from multi-sensor satellite observations – towards a long-term monitoring (2002-2020)

Hongyan Xi^{1*}, Ilka Peeken¹, Marine Bretagnon², Vanda Brotas³, Mara Gomes³, Leonardo Alvarado¹, Vanessa Lampe⁴, Svetlana Losa^{1,5}, Antoine Mangin², Katja Metfies¹, Eva-Maria Nöthig¹, Astrid Bracher^{1,6}

^{*} Hongyan.Xi@awi.de

¹ Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany

² ACRI-ST, Sophia Antipolis Cedex, France

³ MARE, Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal

⁴ GEOMAR Helmholtz-Centre for Ocean Research, Kiel, Germany

⁵ Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia

⁶ Institute of Environmental Physics, University of Bremen, Bremen, Germany

Introduction --- PFT approach and data --- Evaluation --- Fram Strait Time Series --- Summary

- Phytoplankton regulate the key biogeochemical processes nutrient uptake, carbon and energy export...
- PFT various taxonomic groups that function differently in the marine ecosystem
- Critical to perform long term observation of PFT changes in community structure influence the entire ocean environment
- Aids in modeling w.r.t. global carbon cycle and ecological/ biogeochemical processes

Outline

- Satellite PFT products derived using EOF-PFT approach
- Evaluation of satellite products of PFTs in different regions
 - Arctic Fram Strait (high latitude)
 - Trans-Atlantic region (temperate to tropical region)
- Long-term monitoring in the Fram Strait
 - Time series of PFTs from 2002 to 2020 (separating water masses)
 - Fram Strait phytoplankton phenology, inter-annual variation, changes in composition

Phytoplankton functional type products from satellites

- A global approach for PFT chlorophyll retrieval using ocean color reflectance data and SST

 (Xi et al. 2020, 2021)
 - A set of empirical orthogonal function based algorithms
 - Capability of retrieving Chla of 6 groups- diatoms, haptophytes and others

• Data products available in CMEMS at https://marine.copernicus.eu/

Timeline of satellite PFT products and in situ data

SeaWiFS/MODIS/MERIS merged product July 2002 - April 2012

> PS74 (2009) PS76 (2010) PS78 (2011)

MODIS/VIIRS merged product Jan 2012 – present

PS121(2019)

2020

- 9 expeditions to the Arctic Fram Strait since 2009 (AWI data PS74-PS121)
- 2 expeditions in the trans-Atlantic Ocean
 PS120 (FCUL) and AMT28 (PML)
- Diagnostic pigment analysis of pigment data (HPLC) for in situ PFT Chla estimation

```
PS80 (2012)
PS85 (2014)
PS93 (2015)
PS99 (2016)
PS107(2017)
PS120 (2019)
AMT28 (2019)
```


Evaluation of satellite products

Criterion for matchups:

- mean of 3x3 pixels
- with > 4 valid pixels
- CV>0.2

- ~60 matchups among >1000 in situ data points
- In general good match

Satellite composites during expedition (example 1)

Satellite composites during expedition (example 2)

- Satellite PFTs derived using EOF-PFT approach match well with the in situ data
- Satellite retrievals reveal plausible PFT distribution:
 - Arctic region: larger-sized phytoplankton dominating diatoms and haptophytes
 - Temperate and tropical region: picophytoplankton dominating Prokaryotes/cyanobacteria

PFT time series in the Fram Strait

- Fram Strait gateway to the Arctic
- Warmer nutrient-rich water (West Spitsbergen Current) entering the polar ocean meets the cold fresher Arctic water (East Greenland Current)
- Complex ecosystem subject to severe climate-induced environmental changes

Phytoplankton observation in West and East Fram Strait

- Whole region: 16W 12E, 75N 81N
- Period: April to August (2002-2020)
- A dynamic clustering of the water masses based on CMEMS daily SST

10

June

August

Phytoplankton Phenology

Bloom Maxima Date

- East FS (Atlantic water mass):
 - Diatoms start to bloom 8~30 days earlier than haptophytes;
 - Pattern of total phytoplankton bloom in general follows the diatom; haptophytes tend to rapidly reach maxima since 2014

- West FS (Arctic water mass):
 - Similar to the east FS, but haptophytes takes longer to reach maxima
 - Haptophytes phenology since 2015 similar to diatoms

Changes in phytoplankton composition

- Diatoms and haptophytes take up 70-80% of the total biomass, diatoms dominate in early months
- Haptophytes fraction an obvious decline since 2015
- Dinoflagellates as a minor contributing group increase in the proportion
- Microphytoplankton (diatoms + dinos) contribute more in recent years (2017-2020)?

Summary

- Satellite global PFT products derived from EOF-PFT approach present plausible distribution patterns in different regions
- Phytoplankton time series
 - Satellite PFTs show great potential in observing PFT composition in regional scales
 - Fram Strait phytoplankton
 - High interannual variability
 - Annual cycles of phytoplankton growth are different in the west and east
 - Blooms start slightly earlier in the west FS (more related to the marginal ice zone)
 - Haptophytes grow after diatoms and last until August
 - Obvious changes in the last few years

Outlook

- Produce consistent PFT products from different OC sensors
- Further investigate the changes found for satellite PFTs in linkage to other biogeochemical/physical parameters

Acknowledgements

- ACRI-AWI joint project OLCI-PFT
- EU PORTWIMS (Portugal Twinning for Innovation and Excellence in Marine Science and Earth Observation)
- **EU Copernicus Marince Service (CMEMS)**
- DFG (German Research Foundation) Transregional Collaborative Research Center ArctiC Amplication: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3 (Project CO3)
- Marc Taylor, Sonja Wiegmann and all current and previous PhytoOptics team members at AWI
- Robert Brewin (University of Exeter), Giorgio Dall'Olmo (PML) and Gavin Tilstone (PML) for AMT28 pigment data
- NASA, ESA and EUMETSAT for the SeaWiFS, MODIS, VIIRS, MERIS, and OLCI data, and specially the ACRI-ST GlobColour team for providing the OLCI and merged ocean color L3 products.

Thanks for your attention!

