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A B S T R A C T   

Remotely-sensed Ocean color data offer a unique opportunity for studying variations of bio-optical properties 
which is especially valuable in the Arctic Ocean (AO) where in situ data are sparse. In this study, we re-processed 
the raw data from the Sea-viewing Wide Field-of-View (SeaWiFS, 1998–2010) and the MODerate resolution 
Imaging Spectroradiometer (MODIS, 2003–2016) ocean-color sensors to ensure compatibility with the first ocean 
color sensor, namely, the Coastal Zone Color Scanner (CZCS, 1979–1986). Based on a bio-regional approach, this 
study assesses the quality of this new homogeneous pan-Arctic Chl a dataset, which provides the longest (but 
non-continuous) ocean color time-series ever produced for the AO (37 years long between 1979 and 2016). We 
show that despite the temporal gaps between 1986 and 1998 due to the absence of ocean color satellite, the time 
series is suitable to establish a baseline of phytoplankton biomass for the early 1980s, before sea-ice loss 
accelerated in the AO. More importantly, it provides the opportunity to quantify decadal changes over the AO 
revealing for instance the continuous Chl a increase in the inflow shelves such as the Barents Sea since the CZCS 
era.   

1. Introduction 

The Arctic Ocean (AO) (Fig. 1A) is facing drastic changes due to 
climate forcing. Among them, the decreases in summer sea-ice extent 
and volume by about 50% since 1979 (Kwok, 2018; Serreze and Meier, 
2019; Stroeve and Notz, 2018) have been identified as major conse-
quences of climate warming. The loss of sea-ice is accompanied by a long 
list of alterations affecting the whole Ocean-Ice-Atmosphere system of 
the AO. Understanding how phytoplankton respond to these environ-
mental changes is crucial given their role in the marine ecosystem 
(Kohlbach et al., 2016), in biogeochemical cycles (Hoppe et al., 2018) 
and in the biological carbon pump (Lalande et al., 2014; Le Moigne 
et al., 2015; Mäkelä et al., 2017). 

Ocean Color Remote Sensing (OCRS) is a powerful tool to monitor 
phytoplankton dynamics in the ice-free domain of the AO as it over-
comes the lack of in situ observations by providing synoptic time series 
of chlorophyll a concentration (Chl a, mg m− 3). OCRS has been unde-
niably at the forefront for monitoring phytoplankton dynamics in the 
global oceans (McClain, 2009) and has allowed tremendous progress in 

our understanding of marine ecology (Longhurst et al., 1995), in 
particular in the AO (Babin et al., 2015). Several studies have already 
assessed satellite-derived ocean color trends in the AO in terms of Net 
Primary Production (NPP, Chl a based) using either the SeaWiFS (Sea- 
viewing Wide Field-of-View Sensor, 1997–2010) sensor (Bélanger et al., 
2013) the MODIS (MODerate resolution Imaging Spectroradiometer, 
2002-ongoing) sensor (Renaut et al., 2018) or a combination of both 
(Arrigo and van Dijken, 2015; Lewis et al., 2020). These studies 
concluded that the increase in open-water surface area, duration of the 
ice-free season and standing stock of phytoplankton were responsible for 
most of the 57% observed increase in NPP since 1998 (Lewis et al., 2020) 
along with changes in its phenology (Kahru et al., 2011) and spatial 
distribution (Oziel et al., 2017; Renaut et al., 2018), in particular in 
inflow shelves. However, no baseline exists for the standing stocks of 
biomass and the dynamics of phytoplankton for the early 1980s at the 
dawn of sea-ice melt acceleration. While Beaulieu et al. (2013) and 
Henson et al. (2016) recommend a minimum of 30-year time series to 
derive reliable climate induced biogeochemical changes in the AO, this 
cannot be currently achieved using “modern-era” satellites only as they 
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span over ~20 years (i.e., SeaWiFS and MODIS). 
The goal of the current study is to provide a baseline for phyto-

plankton biomass for the early 1980s and to quantify decadal changes in 
Chl a to present time in the AO. This study carries on the pioneer work of 
Gregg and Conkright (2002) and Antoine et al. (2005) who merged CZCS 
with SeaWiFS at the global scale. We provide the longest time series of 
climate-compatible AO-adapted satellite-based Chl a, an index of 
phytoplankton biomass identified as an ‘Essential Climate Variable’ 
(ECV) for the surface Ocean by the Global Climate Observing System 
(GCOS). This unique dataset was obtained by combining the data from 
the first satellite ocean color sensor, the Coastal Zone Color Scanner 
(CZCS, 1979–1986), with recent data from the SeaWiFS and MODIS 
sensors (1998–2016). We addressed the issues related to the linkage 
between CZCS, SeaWiFS and MODIS data, that largely result from 
technical/instrumental limitations of the CZCS sensor. These limitations 
include: (1) only four visible spectral bands (443, 520, 550, and 670 
nm), (2) a 11-year data gap between the termination of CZCS and the 
start of the SeaWiFS operations, and (3) a poor spatio-temporal coverage 
of CZCS due to intermittent operations (i.e., 2 h per day to limit power 
consumption). In this study, we re-processed the datasets obtained by 
the recent SeaWiFS and MODIS sensors using methods similar to the 
ones used for CZCS data in order to achieve coherence, homogeneity and 
to create a 37-year time series (1979–2016) suitable for climate change 
studies. We specifically applied the CZCS atmospheric correction pro-
cedure and Chl a algorithm to the SeaWiFS and MODIS raw data. The 
results from this challenging re-processing effort are extensively quality- 
controlled, and interpreted using an innovative bio-regional approach 
(Fig. 1B) (Spalding et al., 2012). Finally, using the homogenized dataset, 
we assessed the decadal changes in Chl a that occurred in the AO be-
tween 1979 and 2016. 

2. Data 

The CZCS Level-3 binned data at ~4.6-km spatial resolution were 
downloaded from the NASA distributed Active Archive Center (DAAC) 
for satellite Ocean Biology (OB) by the Ocean Biology Processing Group 
(OBPG, https://oceandata.sci.gsfc.nasa.gov/), while the SeaWiFS and 
the MODIS archives were downloaded in Level-1A format and processed 

to Chl a (see section 3.2). All datasets were re-projected on a sinusoidal 
~27.8-km resolution grid. In addition to ocean color data, daily com-
posites of sea-ice concentration data were obtained from the National 
Snow and Ice Data Center for a grid resolution of 25 km2 (dataset ID 
NSIDC-0051, Cavalieri et al., 1996). The dataset provides a consistent 
time series of sea-ice concentration between 1979 and 2016 obtained 
from brightness temperatures measured by several passive microwave 
instruments (SMMR, SSM/I, SSMIS). Cloud fraction between 1979 and 
2016 was downloaded from the ERA-Interim model reanalysis made 
available by the European Centre for Medium-Range Weather Forecasts 
(ECMWF) from a nominal 79-km (T255) grid spacing (Dee et al., 2011). 

3. Methods 

3.1. Bio-regionalization of the Arctic Ocean 

The first version of the book ‘Ecological Geography of the Sea’ 
(Longhurst, 1981) evidenced the response of planktonic ecosystems to 
regional oceanography. In the second book edition (Longhurst, 2007), 
the author identified the AO as a specific ecological province (i.e. the 
‘Boreal Polar Province’ BPLR) that belongs to the ‘polar’ biome together 
with the Southern Ocean. A more detailed bio-regionalization was un-
dertaken by Spalding et al. (2012) who distinguished 12 realms, 62 
provinces and 232 bio-regions in the ‘Marine Ecoregions of the World’. 
The AO was characterized as a specific province made of 27 bio-regions 
(Fig. 1B). The bio-regions were distinguished based on their geographic, 
physical and ecosystem properties derived from in situ measurements. 
The 27 bio-regions are considered as areas of homogeneous species 
composition, and clearly distinct from adjacent systems. They are also 
characterized by specific oceanographic and topographic features (e.g. 
ocean dynamics, sea-ice regimes, bathymetry). The present pan-Arctic 
study relied on the bio-regional approach of Spalding et al. (2012) in 
order to account for the bio-optical heterogeneity of the AO allowing a 
regional characterization of errors and correction of biases between 
satellites. 

Fig. 1. Arctic Ocean bathymetry and bio-geography. Bathymetry with masked shallow areas (depth < 25 m) in red (A), and the 27 arctic bio-regions (B) from 
WWF (updated from Spalding et al., 2012). The dataset covers the whole region above 45◦N, but the studied area is defined by the arctic colored bio-regions. The 
black background refers to regions considered outside the AO which are not included in this study. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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3.2. ‘New’ re-processed dataset (NEW) 

The processing used for the CZCS dataset has remained unchanged 
since the R2014.0 re-processing (R2014.0) carried out by the OBPG. 
This re-processing is similar to the processing applied to modern sensors 
like SeaWiFS and MODIS, except for specificities in the atmospheric 
correction procedure and assumptions used to determine the aerosol 
contribution to the atmospheric signal. CZCS was launched in 1978 as a 
“proof-of-concept” instrument (Mitchell, 1994) and was not equipped, 
unlike MODIS and SeaWiFS, with a pair of near infrared (NIR) bands 
(where water-leaving radiance contribution to the total signal reaching 
the satellite is very small to null) to determine the aerosol type and 
radiance contribution to the total top-of-atmosphere signal. Instead, 
CZCS relies only on a single wavelength at 670 nm (750 nm was not 
designed for ocean observations) to address atmospheric correction. 
“CZCS-like” atmospheric correction uses an iteration scheme to account 
for possible contribution from the ocean to the total signal at the top of 
the atmosphere at 670 nm. The iteration scheme originally proposed by 
Bricaud and Morel (1987), was further developed by the OBPG (modi-
fied from Stumpf et al., 2003) to include an assumption about the 
aerosol model that is used to extrapolate the aerosol contribution to the 
atmospheric signal at shorter visible wavelengths. Note that the same 
calibration strategy is now applied to all sensors since the R2006.0 re- 
processing (Franz et al., 2007; Werdell et al., 2007). 

The ‘CZCS-like’ atmospheric correction was applied to SeaWiFS and 
MODIS Level-1B datasets (see step 1 to 2 in the flowchart in Fig. 2). This 
correction consisted of processing the entire SeaWiFS and MODIS 
datasets from all Level-1A source files, to Level-2 files using the same 
atmospheric correction that was applied to CZCS. This approach further 
assumes a fixed aerosol model (r70f10, 10% fine mode fraction at 70% 
relative humidity as in Ahmad et al., 2010). Only pixels located above 
45◦N were selected. Finally, the resulting Level-2 files were then 
temporally and spatially binned at the pixel level using averages to 
obtain merged daily L3 files at a spatial resolution of 4.6 × 4.6-km (step 
2 to 3 in Fig. 2). 

This re-processing of SeaWiFS and MODIS data provided remote 
sensing reflectance (Rrs), from which Rrs(443) and Rrs(555) were used 
to estimate Chl a concentration. We used the band-ratio empirical al-
gorithm for oceanic Case 1 waters from Morel and Maritorena (2001) 
(Morel-3; step 3 to 4 in Fig. 2 and S1) following the recommendations of 
Antoine et al. (2005) who merged CZCS and SeaWiFS datasets for studies 
at temperate latitudes. This Chl a dataset made of data from the three 
sensors (i.e., CZCS, SeaWiFS and MODIS), with “CZCS-like” atmospheric 
correction and the empirical Morel-3 Chl a algorithm is referred to as the 
NEW dataset in the manuscript. The re-processing of the SeaWiFS and 
MODIS raw data required the equivalent of ~10 years of cumulated 
computing time on one processor (Intel Platinum 8260 Cascade Lake @ 
2.4Ghz). NEW was compared with a reference dataset (REF) which 
represents what was considered one of the most performant dataset for 
the AO. REF Chl a dataset includes SeaWiFS and MODIS and is based on 
the Garver-Siegel-Maritorena semi-empirical algorithm (GSM01, Mar-
itorena et al., 2002; Maritorena and Siegel, 2005). This algorithm was 
selected because (1) it was found to perform better than standard 
empirical algorithms, such as the standard band ratio OC3/4 ocean color 
algorithm, especially in Arctic waters that are subject to high concen-
trations of Colored Detrital Matter (CDM) content due to freshwater 
inputs and resuspension of bottom sediment; (2) semi-analytical models 
such as GSM01 account for variations in CDM and particle backscatter 
yielding more accurate surface Chl a concentration compared to 
empirical models (Ben Mustapha et al., 2012); (3) the GSM01 was also 
found to be associated with the best performing Chl a estimations 
(Brewin et al., 2015) and Chl a based primary production models (see 
models 12–17 in Lee et al., 2015). 

3.3. Outliers, data coverage and composite maps calculation 

Because the Morel-3 algorithm was developed for non-coastal waters 
and does not differentiate phytoplankton absorption from detritus or 
CDOM absorption (unlike the GSM01 algorithm), we masked nearshore 
areas with depth shallower than 25 m (see red area in Fig. 1A) and Chl a 

Fig. 2. Schematic view of the data re-processing steps. All steps from 1 to 8 are described in the method section. This re-processing produces the ‘NEW’ dataset, in 
opposition with the ‘REF’ dataset which is our reference ‘standard’ dataset. 
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higher than 15 mg m− 3 (steps 4 to 5 in Fig. 2) in order to minimize pixels 
located in regions influenced by terrestrial inputs. Indeed, shallow areas 
are often associated with turbid waters contaminated by yellow sub-
stances or sediments especially during summer (Matsuoka et al., 2012; 
Mitchell, 1992; Ben Mustapha et al., 2012), which artificially increases 
Chl a derived from band ratio. Turbid waters can also cause failure of the 
atmospheric correction performed in the red-NIR domain. Imple-
mentation of these criteria and their impacts on the Chl a were further 
studied in the next section. 

Daily maps were binned onto a sinusoidal 27.84-km resolution grid 
(steps 5 to 6, Fig. 2) and then aggregated into composite maps (steps 6 to 
7) at several temporal resolutions: daily, 8-day, monthly, seasonal 
(April–May-June for spring and July–August-September for summer) 
and annual (April to September) composites. Any given composite map 
was computed using the geometric average of all available daily maps 
covering the period of interest on a pixel-per-pixel basis. Note that the 
period from October to March was discarded from our analysis due to 
the absence of data during the polar night and that geometric mean was 
preferred over the arithmetic mean to minimize the effects of potential 
remaining outliers. The combination of spatial binning (Fig. 3 AB) and 
time-averaging (e.g. monthly, Fig. 3C) resulted in a significant increase 
(by a factor of 10) in the data coverage of the CZCS dataset, making it 

comparable to the spatial coverage of the SeaWiFS and MODIS datasets. 
The existence of temporal gaps in the CZCS time series results from 

issues in the power demand from the nine sensors onboard the Nimbus-7 
platform, which prevented their continuous operations. The CZCS 
sensor was operated on an intermittent schedule and collected data only 
two hours per day on average. One should be aware that missing data is 
an inherent issue when working with satellite ocean color passive sen-
sors (Racault et al., 2014). This problem is especially acute in the Arctic 
due to a combination of polar night, sea-ice, and cloud cover, and is 
amplified by the poor spatial coverage of CZCS (Fig. 3C). Racault et al. 
(2014) showed that when averaged over 8 years for climatological maps, 
the CZCS data coverage is adequate for climate-related marine studies. 
However, their study only assessed regions at lower latitudes (< 75◦N) 
where more data were available compared to polar latitudes. We 
decided to only assess decadal changes, synthesizing the CZCS 
(1979–1984), SeaWiFS (1998–2006) and MODIS (2007–2016) periods 
into three climatologies in order to minimize the impacts of missing data 
(step 7 to 8 in Fig. 2) and the discontinuity in the three time series. Note 
that the CZCS years 1985 to 1986 were discarded in the current study 
due to large uncertainties in the sensor calibration, which increased 
towards the end of its operational life (Antoine et al., 2005; Martinez 
et al., 2009; Racault et al., 2014). Similarly, SeaWiFS data after 2007 

Fig. 3. Spatio-temporal data coverage. CZCS data coverage for daily maps binned onto 4-km (A) and 28-km (B) pixels for the 1979–1984 period. Proportion of 
ocean color data computed over the AO (CZCS, SeaWiFS and MODIS) prior to sea-ice, clouds or unexplained absence of data (denoted NaN, due to CZCS shut down or 
other flags) for monthly composite maps at 28-km definition (C). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article). 
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were removed from the study due to large data gaps and persistent 
temporal calibration drifts despite a correction added in the R2014.0 
NASA re-processing (Eplee et al., 2007). One could also argue that 
MODIS data after 2013 could be discarded due to radiometric 

degradation (Meister and Franz, 2014). However, we found that it had 
little impacts on our results (see Fig. S4) and decided to keep the data 
from 2014 to 2016 to increase the data coverage. Note that we also 
decided not to include data from the Ocean Color and Temperature 

Fig. 4. Frequency distribution (left) and associated cumulative frequency function (right) derived using monthly climatology maps of Chl a concentration (mg m3) 
from all years in the whole Arctic Ocean. Distributions are calculated for CZCS (A, B), SeaWiFS (C, D) and MODIS (E, F) sensors and for the NEW (re-processed “CZCS- 
like”) datasets (G, H) and masked NEW datasets (I, J). Masked data are data without coastal areas (depths shallower than 25 m) and Chl a greater than 15 mg m− 3. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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Scanner (OCTS) which only operated between November 1996 and June 
1997 and represented only three valid monthly images for the AO with 
no overlapping with SeaWiFS. 

3.4. Chl a log-normal distribution 

As shown by Campbell (1995), Chl a follows a log-normal (base-10) 
distribution in the open ocean. We performed both 
Kolmogorov-Smirnov and Shapiro-Wilks tests to assess the normality of 
our Chl a dataset. The results showed a significant deviation from 
normality for both the linear and the log10-transformed datasets (p-value 
<0.001). This result might be explained by the high sensitivity of such 
tests that account for very small deviations from the normality when 
dealing with very large sample size (N ~ 8 × 105). The Chl a log-normal 
distribution was therefore visually compared to the CZCS Chl a distri-
bution (Fig. 4B). We also computed statistics of skewness and kurtosis 
for annual climatological Chl a distribution. For the log-transformed 
distribution of Chl a, skewness and kurtosis ranged typically between 
− 0.46 and 1.89 (CZCS skewness = − 0.07, CZCS kurtosis = 1.41, Sea-
WiFS skewness = − 0.46, SeaWiFS kurtosis = 1.89, MODIS skewness =
0.36, MODIS kurtosis = 1.72), which is considered acceptable to prove 
normal univariate distribution (values are expected to vary between − 2 
and 2 according to Gravetter and Wallnau 2014). These indicators are 
respectively up to one order of magnitude higher for the distribution of 
Chl a in the linear space (CZCS skewness = 1.89, CZCS kurtosis = 5.19, 
SeaWiFS skewness = 2.19, SeaWiFS kurtosis = 6.52, MODIS skewness =
2.20, MODIS kurtosis = 6.61) than for the log10-transformed. Given 
these results, the Chl a dataset was considered to follow a lognormal 
distribution for this study. 

3.5. Statistics for comparison of NEW vs. REF datasets 

To evaluate quantitatively the performance of the NEW Chl a re- 
processing compared with the REF dataset (considered in this study as 
the reference measurements), a suite of statistical indices were derived 
as recommended by the Ocean Color Climate Change Initiative (OC-CCI; 
see Brewin et al., 2015; Evers-King et al., 2017; Sathyendranath et al., 
2019). 

We computed the following set of statistical indices to assess the 
quality of the re-processed SeaWiFS and MODIS Chl a fields, which were 
previously log10-transformed. We derived the root-mean-square differ-
ence (RMS or Δ, Equ. 1) and bias (δ, Equ. 2) to report on dispersion and 
offset: 

Δ =

(
1
N
∑N

i=1

(
log10

[
Chl2,i

]
− log10

[
Chl1,i

] )2

)1/2

(1)  

δ =
1
N
∑N

i=1

(
log10

[
Chl2,i

]
− log10

[
Chl1,i

] )
(2) 

These indicators were associated with the unbiased root-mean- 
square (URMS) difference (Δu, often referred to as centered Δ, Equ. 3) 
expressed on a log-10 scale: 

Δu =

(
1
N

∑N

i=1

( (
log10

[
Chl2,i

]
− LC2

)
−
(
log10

[
Chl1,i

]
− LC1

))2 )1/2 (3) 

Where LCk indicates the average of the distributions (log(Chlk,i))i =1, 

N for the dataset k. 
A small Δ indicates a small difference in magnitude between two 

datasets. The Δ coefficient consists of two components: i) δ representing 
the difference between the means (i.e. offset of the mean) and ii) Δu 
representing the difference in variability (i.e. dispersion around the 
mean) between two datasets. Thus, bias δ and Δu provide measures of 
how well the mean (i.e. accuracy) and the variability (i.e. precision) are 
represented and vary in time and/or space. We also calculated the 

Spearman’s correlation coefficient rs, the slope S and the intercept I of 
the linear regression between the log10-transformed Chl a dataset using 
a standardized major axis (SMA) type II linear regression. Note that even 
if a normal distribution is assumed for the log10-transformed Chl a, we 
also derived a non-parametric statistical metric called Mean Absolute 
Percent Deviation (MAPD in %) applied to untransformed Chl a 
following Werdell et al. (2013) which provided an easily interpretable 
indicator. MAPD estimates the average difference following the 
equation: 

MAPD = 100×
1
N
∑N

i=1

⃒
⃒
⃒
⃒
Chl2,1 − Chl1,i

Chl1,i

⃒
⃒
⃒
⃒ (4) 

Calculations were made on the ensemble of N pairs of valid Chl a 
values (NEW vs. REF) from SeaWIFS and/or MODIS composite maps (see 
section 3.3) for each available year. All statistical indices were also 
summarized for each specific oceanic bio-region (spatially averaged) if 
the number of valid pairs were greater than 10% of the maximum 
number of possible valid pairs (i.e., total number of pixels in a given 
region). 

4. Results: Bridging the re-processed SeaWiFS and MODIS 
datasets with CZCS 

The main objective of applying the “CZCS-like” algorithms to the 
SeaWiFS and MODIS observations was to achieve compatibility among 
the datasets from the three sensors. In a first step, we exhaustively 
verified the quality of the produced dataset to ensure that it was not 
degraded beyond scientific meaning (e.g. differences >100%, section 
4.1). This was achieved by comparing the NEW and the REF (SeaWiFS 
and MODIS) datasets using the statistical indices described in the pre-
vious section. First, we carried out a general comparison at the pan- 
Arctic scale (section 4.1.1) and second, extended the analysis to bio- 
regional and seasonal scales (section 4.1.2). We also estimated the 
inter-mission bias between the NEW SeaWiFS and MODIS datasets based 
on their overlapping period (2003–2006, section 4.2) and corrected 
MODIS from possible bias. While the absence of overlap between CZCS 
and SeaWiFS hinders inter-mission bias correction, it cannot be over-
looked. Although the intent of this work was to be as independent as 
possible from an in situ data collection, we also assessed the inter- 
mission bias by comparing the NEW dataset (CZCS, SeaWiFS and 
MODIS) with in situ measurements of Chl a, providing an additional 
quality assessment. Finally, climatological mean and decadal changes 
are presented in section 4.3. The main outcomes of the section 4 will be 
discussed in the section 5. 

4.1. Assessing the quality of the NEW dataset vs. REF 

4.1.1. General results at pan-Arctic scale 
The comparison between the entire REF and the NEW datasets for 

SeaWiFS and MODIS (i.e. all months, all years, all regions) are shown in 
Fig. 4. Left panels show the distribution of the chlorophyll a concen-
tration in terms of the fraction of the AO area covered by concentration 
bins. Note that the CZCS cumulative distributions displayed in Fig. 4B 
shows a reasonable agreement with the standard log-normal distribu-
tions in gray. The NEW processing does not substantially differ from the 
REF Chl a values for SeaWiFS and MODIS, and the three missions (CZCS 
in Fig. 4A-B, SeaWiFS in Fig. 4C-D and MODIS in Fig. 4E-F) do have 
similar Chl a concentration averages (0.81, 0.89 and 0.69 mg m− 3) and 
distributions between 0.03 and 30 mg m− 3 (Fig. 4G-H) when nearshore 
data are not masked. However, small discrepancies occurred for some 
large Chl a values (i.e., > 2 mg m− 3) and are generally attributed to 
failures of the atmospheric correction or to the Morel-3 algorithm which 
is not adapted for coastal waters (see section 3.2). After masking pixels 
(excluding [Chl a] > 15 mg m− 3 and depth < 25 m) to remove possible 
outliers, the Chl a distributions remain similar between sensors 
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evidencing a fair agreement between missions (0.68, 0.77 and 0.57 mg 
m− 3 for CZCS, SeaWiFS and MODIS respectively, Fig. 4I-J) despite the 
persistence of slight discrepancies for large Chl a values (i.e., Chl a > ~5 
mg m− 3). 

The cumulative distributions showed that Chl a concentrations 
greater than 15 mg m− 3, which were masked in the final implementation 
of the NEW dataset, represented less than 1% of the entire AO surface 
area independently of the sensor used (Fig. 4H). They also revealed that 
about 80% of the AO surface area corresponded to mesotrophic waters 
with moderate Chl a (i.e. 0.2 < Chl a < 1 mg m− 3). The oligotrophic 
domain (i.e. Chl a < 0.2 mg m− 3) corresponded to less than 1% and the 
eutrophic domain (i.e. Chl a > 1 mg m− 3) corresponded to about 20% of 
the AO surface area. When superimposed, the cumulative distribution 
functions from the three different missions are also in very close 
agreement. Over the entire AO (27 bio-regions, all months, all years) the 
statistical indices evaluating the performance of NEW against REF 
showed high correlation coefficients for both SeaWiFS (S = 1.01, I =
0.045, rs = 0.93, p-value <0.001) and MODIS (S = 1.01, I = 0.026, rs =

0.96, p-value <0.001). Differences between NEW and REF, expressed in 
terms of URMS, bias and MADP (%) were also reasonably low for Sea-
WiFS (Δu = 7 10− 2, δ = − 3 10− 2, MAPD = 18%) and MODIS (Δu = 4.8 
10− 2, δ = +5.6 10− 2, MAPD = 19.8%). The comparison between NEW 
and REF led to Chl a bias of opposite signs for SeaWiFS and MODIS 
suggesting that NEW underestimates (overestimates) REF for SeaWiFS 
(MODIS). 

4.1.2. Spatio-temporal impacts of the re-processed Chl a fields for SeaWiFS 
and MODIS 

A suite of statistical indices was examined to assess the impacts of the 
re-processing on the Chl a estimation in time (seasonally and annually) 
and space (bio-regionally) for SeaWiFS and MODIS. Such a detailed 
description was needed to identify the strength and limitations of the 
NEW dataset that extends to the CZCS era. Confirmation of the robust-
ness and reliability of the NEW dataset is a necessary step prior to the 
calculation of long-term differences and the subsequent biological in-
terpretations. For the sake of clarity, we limited the description of the 
statistical indices to the most striking results for some bio-regions. The 
reader can refer to the detailed statistical indices for any given bio- 
region in the supplementary material (statistical indices are presented 
in Tables S1 to S6, mean climatological values are presented in Table 1). 

i) Impacts of the seasonal dynamics on the re-processing quality. 
The spatial distributions of rs, Δu, δ and MAPD for SeaWiFS and 

MODIS revealed seasonal patterns at pan-Arctic scale as illustrated in 
Fig. 5 (SeaWiFS, 1998–2010) and 6 (MODIS, 2003–2016). On average, 
the MAPD remained stable for MODIS (SeaWiFS) over the Arctic with 
23% (24%) in spring and 24% (19%) in summer. For both sensors, 
MAPD remained almost evenly distributed in spring. In summer, how-
ever, larger MAPD values occurred in the ‘northernmost’ areas and 
along the Russian shelves (Fig. 5K and 6K). For example, the Atlantic 
basin of the AO (usually also called the Eurasian basin, see Fig. 1) 
exhibited large MAPD values in spring (60% for SeaWiFS) perhaps due 
to the small number of available data (very poor data coverage = 2.7%). 
During the more recent MODIS period, the decrease in sea-ice cover and 
subsequent increase in data coverage (11.9%) resulted in a better pre-
cision and accuracy. 

Those differences between the NEW and REF datasets for both Sea-
WiFS (Fig. 5) and MODIS (Fig. 6) were attributed to both the presence of 
variability (Δu) and bias (δ) in the Chl a signal which followed similar 
seasonal spatial dynamics than the MAPD. The largest differences were 
found where Chl a varied the most, i.e. in the sub-Arctic regions in spring 
and in the northernmost regions in summer. As an example, in the 
eastern Bering Sea, precision was lower in spring (Δu = 0.13 for Sea-
WiFS; Δu = 0.09, for MODIS) than in summer (JAS; Δu = 0.12, for 
SeaWiFS; Δu = 0.07, for MODIS, Fig. 5A-B, 6A-B). The differences be-
tween the NEW and REF datasets were also explained by the presence of 
systematic bias in Chl a (δ, see Fig. 5D-E, 6D-E). For example, for 

SeaWiFS in spring (Fig. 5D), most of the western (Atlantic) sector was 
characterized by positive δ whereas it was negative almost everywhere 
else. When averaged over the whole AO, positive and negative δ almost 
compensated each other to about − 4.5 10− 2. The evolution of δ followed 
a similar seasonal variation than the one for Δu, i.e., a poleward decrease 
in accuracy (increase in δ) from spring to summer. This translated into a 
decrease in δ at lower latitudes and an increase with large positive δ at 
the northernmost latitudes in summer, in particular along the sea-ice 
edge in the Pacific sector and the Russian shelves. For MODIS 
(Fig. 6E), the whole AO was characterized by a more spatially- 
homogeneous positive bias (δ = 4.6 10− 2 in spring; δ = 6 10− 2 in sum-
mer) except for some very local anomalies such as the areas around 
James Bay south of the Hudson Complex, the Ob and Yenisey river deltas 
in the Kara Sea, and along the sea-ice edge. In contrast, SeaWiFS was 
characterized by seasonal negative bias (δ = − 4.5 10− 2 in spring; δ =
− 3.2 10− 2 in summer). 

ii) Impacts of the spatial variability at bio-regional scale on the re- 
processing quality. 

In addition to the expected large-scale seasonal variations, spatial 
features were also associated with intrinsic bio-regional specificities 
(Fig. 1B). Each bio-region has a unique bio-optical signature that results 
from topographic, local trophic interactions and biogeochemical fluxes 
such that the quality of the NEW dataset differs among regions. To avoid 
seasonal effects in the spatial analysis, bio-regional statistical indices 

Table 1 
Bio-regional annual averaged Chl a concentrations in linear scale [mg m− 3] for 
the three periods CZCS (C, 1979–1984), SeaWiFS (S, 1998–2006), MODIS (A, 
2007–2016) and respective decadal relative changes SeaWiFS-CZCS (Δ S-C) and 
MODIS-SeaWiFS (Δ A-S) [%]. Note that only bio-regions with more than 50% 
data coverage for CZCS are shown. The reader can find data coverages for all 
three sensors in Table S14.  

Bio-regions C S A Δ S-C 

[%] 
Δ A-S 

[%] 
Δ TOTAL 

[%] 

Arctic Ocean – 
Atlantic Basin – 1.081 1.812 – 68 68 

Arctic Ocean – 
Pacific Basin 

1.105 0.53 0.841 − 52 59 7 

Baffin Bay – 
Canadian Shelf 

0.907 0.708 0.871 − 22 23 1 

Beaufort Sea – 
continental coast and 
shelf 

1.769 2.259 1.808 28 − 20 8 

Beaufort-Amundsen- 
Viscount-Melville 

1.197 0.585 0.653 − 51 12 − 39 

Chukchi Sea 0.9 1.008 1.053 12 4 16 
Baffin Bay 0.686 0.521 0.671 − 24 29 5 
East Greenland Shelf 1.061 0.771 0.915 − 27 19 − 8 
East Siberian Sea 0.939 1.48 1.922 58 30 88 
Eastern Bering Sea 1.152 1.361 1.153 18 − 15 3 
Fram Strait 0.768 0.738 0.915 − 4 24 20 
High Arctic 

Archipelago 
0.964 0.856 1.451 − 11 70 59 

Hudson Complex 1.064 0.903 0.953 − 15 6 − 9 
Iceland Shelf 0.978 1.071 1.122 9 5 14 
Kara Sea 0.61 1.434 1.663 135 16 151 
Labrador Sea Basin 0.696 0.732 0.77 5 5 10 
Lancaster Sound 0.853 0.914 1.106 7 21 28 
Laptev Sea – 1.711 2.76 – 61 61 
North Greenland 1.049 0.763 0.824 − 27 8 − 19 
North and East 

Barents Sea 
0.451 0.671 0.912 49 36 85 

Northern Grand Banks - 
Southern Labrador 0.666 0.696 0.73 5 5 10 

Northern Labrador 0.86 0.691 0.763 − 20 10 − 10 
Northern Norway and 

Finnmark 
0.751 1.056 1.129 41 7 48 

Norwegian Sea 0.604 0.758 0.882 26 16 42 
West Greenland Shelf 0.898 0.716 0.774 − 20 8 − 12 
Western Bering Sea 0.508 0.829 0.861 63 4 67 
White Sea 0.884 1.725 1.937 95 12 107 
Total Artic Ocean 0.623 0.714 0.78 15 9 24  

L. Oziel et al.                                                                                                                                                                                                                                    



Remote Sensing of Environment 275 (2022) 113020

8

were provided based on the ensemble of N pairs of valid Chl a from 
annual composites (AMJJAS) from all available years. The exhaustive 
multi-annual statistical results of this analysis are summarized using bar 
plots in Fig. 7, which also provides a qualitative ranking evaluating the 
relative performance in each bio-region for each log-transformed sta-
tistical index (see Tables S10 to S12 to see the actual quantitative 
ranking). Note that Δu, δ and rs can also be visualized spatially in maps in 
the right panels of Figs. 5 and 6 (for SeaWiFS and MODIS respectively). 

4.1.2.1. Linear regressions (S, I, rs). The Spearman’s correlation coeffi-
cient for the White Sea was much smaller than the average (red line in 
Fig. 7A) for both SeaWiFS (rs = 0.47, Table S5) and MODIS (rs = 0.61, 
Fig. 7C, Table S6) compared to all other bio-regions, which exhibited 
correlation coefficients greater than 0.75 (p-values <0.001). The White 
Sea was discarded from further analyses and discussions. It is important 

to note that a few bio-regions were characterized by slopes that deviate 
by more than +/− 0.15 from the ideal 1:1 line slope such as the Atlantic 
basin of the AO (S = 0.79) and the southern Labrador (S = 1.17) for 
SeaWiFS (Fig. 7B). For MODIS, the southern Labrador Sea showed the 
largest deviation from the ideal slope (S = 1.59, Fig. 7G). The Hudson 
Complex and high Arctic Archipelago also showed noticeable deviations 
(S = 1.17 and 0.82). Results from these three bio-regions should 
therefore be interpreted with caution. 

4.1.2.2. Unbiased Root Mean Square difference (URMS, Δu). Several 
Arctic bio-regions were characterized by differences in variability (Δu) 
that were higher than the average for the entire AO (Δu SeaWiFS = 7.4 
10− 2 in Fig. 7D, Table S5; Δu MODIS = 4.8 10− 2 in Fig. 7I, Table S6). For 
example, the SeaWiFS NEW re-processing led to higher-than-average Δu 
in bio-regions from all sectors, including the Fram Strait (Δu = 9.8 10− 2), 

Fig. 5. SeaWiFS spatial statistical indices. Spatial distribution of the multi-annual seasonal averages of (A, B, C) unbiased RMS Δu, (D, E, F) bias δ, (G, H, I) bio- 
regional Spearman’s correlation coefficient rs and (J, K, L) Mean Absolute Percentage Difference (MAPD, %) obtained for the SeaWiFS sensor (1998–2006) comparing 
the NEW with the REF dataset. The black background corresponds to regions with no data because of sea-ice, masked areas (depth < 25 m) or outside the studied 
area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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the Beaufort continental shelf (Δu = 9.6 10− 2) and the Kara Sea (Δu =

14.2 10− 2). This general pattern remained similar for MODIS with the 
Russian shelves particularly affected by large Δu values. 

4.1.2.3. Biases (δ). Biases (δ) also inform on discrepancies between 
NEW and REF. For SeaWiFS, several bio-regions (among which the 
Atlantic basin of the AO, the East and North Greenland shelves, the 
Hudson Complex and the southern Labrador Sea) had absolute biases 
that largely exceeded the pan-Arctic average (δ = − 3 10− 2, Fig. 7E). 
Similarly, for MODIS, few bio-regions (the Hudson complex, the Iceland 
shelf, the northern Norway and Finmark and the Norwegian Sea) were 
identified with bias substantially larger than the entire AO bias (δ =
+5.6 10− 2, Fig. 7J). The average bias between NEW and REF for Sea-
WiFS spring climatology at pan-Arctic scale was close to 0 on average. 
This resulted from both low bio-regional biases and the compensation 

between positive and negative biases in the Eurasian and Amerasian 
Arctic sectors, respectively. 

4.2. Climatological inter-mission bias and comparison with in situ data 

The bio-regional correction was an important step to remove the 
inter-mission bias between SeaWiFS and MODIS for the NEW dataset 
and to provide consistent time-series that account for spatial heteroge-
neities. The temporal overlap between SeaWiFS and MODIS missions 
allowed the comparison of Chl a during the months of April to 
September between 2003 and 2006. Prior to the correction of the bias, 
the AO average difference between the two datasets was already low, 
but not negligible, with an estimated MAPD value of 16.3%. The Chl a 
comparison between the two missions in terms of bias (δMODIS-SeaWiFS) 
highlighted the higher Chl a levels derived using SeaWiFS than those 

Fig. 6. MODIS spatial statistical indices. Spatial distribution of the multi-annual seasonal averages of (A, B, C) unbiased RMS Δu, (D, E, F) bias δ, (G, H, I) bio- 
regional Spearman’s correlation coefficient rs and (J, K, L) Mean Absolute Percentage Difference (MAPD, %) obtained for the MODIS sensor (2003–2016) comparing 
the NEW with the REF dataset. The black background corresponds to regions with no data because of sea-ice, masked areas (depth < 25 m) or outside the studied 
area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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obtained using MODIS almost everywhere in the AO (negative bias in 
Fig. 7O and 8, see also Tables S7–9). Averaged over the AO, the bias was 
more important in spring (δMODIS-SeaWiFS = − 9.3 10− 2, Fig. 8D) than in 
summer (δMODIS-SeaWiFS = − 5.6 10− 2, Fig. 8E) with an annual average of 
− 7.2 10− 2 (Fig. 8F). In spring, the spatial distribution of δMODIS-SeaWiFS 
was almost homogeneous throughout the AO. In summer, the largest 
δMODIS-SeaWiFS values were located on the Russian Arctic shelves whereas 
the δMODIS-SeaWiFS decreased everywhere else. All the MODIS climatol-
ogies (from daily to annual) were systematically corrected for the bias 
with the SeaWiFS dataset calculated on a pixel-by-pixel basis using the 
exact same time aggregation (e.g. spring climatologies were corrected 
with spring bias). The choice of correcting MODIS instead of SeaWiFS is 
further discussed in section 5. From now on, the NEW dataset refers to 
the dataset that includes the bias-corrected MODIS dataset. 

The 2003–2006 climatologies of SeaWiFS and MODIS have also bio- 
regional differences in precision as expressed by Δu which cannot be 

corrected from one mission to another. However, the annual average Δu 
over all bio-regions remained reasonably low (Δu = 3.4 10− 2, red ver-
tical line in Fig. 7N). Seven bio-regions in total had distinctly higher Δu 
than average (Fig. 7N, Table S9). Among others, this list includes the 
Beaufort continental shelf (Δu = 6.7 10− 2) and the Laptev Sea (Δu = 8 
10− 2). 

Validation of satellite-derived properties is challenging due to the 
different spatial scales between satellite and in situ measurements and of 
the lack of matchups in the AO to provide results with statistical 
meaning. The difficulty is amplified when assessing the performance of 
CZCS observations as they were collected about 40 years ago, when in 
situ Chl a pigments were generally measured using fluorescence-based 
or spectrophotometric methods without standardized procedures. 
Nevertheless, Chl a from the NEW dataset were compared with an in situ 
database made of all in situ Chl a found north of 45◦N in the World 
Ocean (https://www.ncei.noaa.gov/access/world-ocean-database-sele 

Fig. 7. Statistical indices. Illustration of the quality of annual composites of the re-processed dataset (NEW) compared to the reference product (REF) for SeaWiFS 
(1998–2006; top panels, A to E) and MODIS (2003–2016; middle panels, F to J), for all months. The re-processed SeaWiFS and MODIS datasets are also compared 
during their overlapping period (2003–2006; bottom panels, K to O). The blue palette is a qualitative indicator of the relative performance (i.e. ranking) of each 
statistical index in each of the 27 bio-regions: Spearman’s coefficient correlation (rs; A-F-K), Slope-1 (B-G-L), Intercept (I; C-H-M), unbiased RMS (Δu; D-I-N) and bias 
(δ; E-J-O). The red vertical solid line indicates the median over the 27 bio-regions while the red vertical dashed lines indicate the 25th and the 75th percentiles. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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ct/dbsearch.html) and ICES (https://ocean.ices.dk/) databases. We 
excluded the European North and Baltic Seas which produced almost 
exclusively outliers likely due to their specific optical signature resulting 
from terrigenous inputs. In addition, results from the matchup analysis 
are affected by the quality of the fluorescence-estimated Chl a, which 
could not be warranted, and the reduced spatial resolution of the pixels 
used in the matchups (~28-km resolution), which was selected to in-
crease the number of matchups for CZCS (from less than 10 with the 4- 
km resolution to 147 with the 28-km resolution). The match-up exercise 
shown in Fig. 9, was carried out using 147, 3202 and 3775 available in 
situ and satellite Chl a pairs for CZCS, SeaWiFS and MODIS sensors, 
respectively. CZCS showed a significant Pearson’s correlation r of 0.54 
(type II regression, p-value <10− 4) with a slope of 0.72, similar to the 
slopes found for SeaWiFS (S = 0.76) but smaller than the one found for 

MODIS (S = 0.90). Both SeaWiFS and MODIS datasets showed similar 
correlation coefficients of about 0.2. The intercept for CZCS (− 0.15) was 
greater than the one found for SeaWiFS and MODIS, which were close to 
zero (0.047 and 0.074 respectively). 

4.3. Climatologies and decadal changes 

Seasonal (spring and summer) Chl a climatologies derived from the 
NEW dataset (CZCS, 1979–1984; SeaWiFS, 1998–2006; and MODIS, 
2007–2016, corrected from bias) illustrate the spatial distribution of Chl 
a distribution and the shrinking sea-ice extent (seasonal climatology of 
minimum sea-ice concentrations >10%) recorded during the successive 
satellite missions (Fig. 10 and Table. 1). Indeed, the use of climatologies 
ensures 100% data coverage and missing pixels are only due to the 

Fig. 8. Spatial statistical indices comparing SeaWiFS and MODIS. Spatial distribution of the multi-annual seasonal averages of (A, B, C) unbiased RMS Δu, (D, E, 
F) bias δ (MODIS – SeaWiFS), (G, H, I) bio-regionnal Spearman’s correlation coefficient rs and (J, K, L) Mean Absolute Percentage Difference (MAPD, %) obtained 
comparing SeaWiFS and MODIS (2003–2006). SeaWiFS tends to over-estimate Chl a compared with MODIS especially in spring. The black background corresponds 
to regions with no data because of sea-ice, masked areas (depth < 25 m) or outside the studied area. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article). 
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presence of sea-ice (besides masked areas such as non-Arctic regions and 
depths shallower than 25 m). The Russian shelves were almost entirely 
ice covered during the CZCS era. The Chl a climatologies show similar 
spatial distributions for the three sensors with (i) the highest Chl a 
values observed in the inflow shelves (Barents and Bering Seas) in spring 
while the high AO is still covered with sea-ice, (ii) the highest Chl a 
values observed in summer in the Seasonal Ice Zone such as in the 
interior shelves (sensu Carmack and Wassmann 2006; e.g. Russian 
shelves), and (iii) the lowest Chl a found in the central Arctic and in the 
outflow shelves (e.g. Baffin Bay, Greenland Seas). However, the mag-
nitudes suggest a chronological increase in Chl a from the CZCS to the 
SeaWiFS period, and from the SeaWiFS to the MODIS period. 

Those decadal changes were better illustrated by computing the 
pixel-by-pixel (Fig. 11) and bio-regional (Table. 1) differences in Chl a 
levels between missions. A strong increase occurred in most Arctic re-
gions in Spring from the 1979–1984 climatology to the 1998–2006 one 
(Fig. 11A), especially in the western Bering Sea, the Norwegian Sea and 
the Barents Sea with local values greater than +0.6 log10(Chl a) [mg 
m− 3]. A decrease in Chl a can be observed in the vicinity of the American 
continent such as in the eastern Bering Sea, and some western parts of 

the Labrador basin and Fram Strait. This trend was generally continued 
from the 1998–2006 to the 2007–2016 periods (Fig. 11B) where almost 
all of the AO showed positive changes in Chl a, except in the eastern 
Bering Sea which still experienced negative changes. In summer, the 
increase in Chl a from the CZCS to the SeaWiFS era were limited to the 
sub-Arctic Seas (Icelandic Sea, Labrador basin, Bering Seas, northern 
Norway) and inflow shelves (Barents Sea, Chukchi Sea, Fig. 11C). 
Smaller changes occurred everywhere else, mostly around Greenland 
and America. These same regions (i.e. Greenland and Canada area) 
experienced changes in the evolution of the Chl a from the SeaWiFS to 
the MODIS periods Fig. 11D) while the increase in the inflow shelves 
(Chukchi and Barents Seas) continued. The difference between MODIS 
and SeaWiFS in summer revealed a strong positive increase in the 
Russian Seas, where almost no data were available during the CZCS era. 
When averaged both annually (Fig. 11E, F) and bio-regionally, (Table 1), 
results confirmed the change of sign (from negative to positive values) in 
the evolution of Chl a in most Canadian Arctic areas (e.g. Baffin Bay: 
− 24% to +29%) and the East Greenland Shelf (− 27% to +19% on the 
eastern shelf). The opposite scenario occurs in the eastern Bering Sea 
where the increase from the 80s to the early 2000s (+18%) was followed 
by a decrease in the 2010s (− 15%). By contrast, the Barents Sea was 
consistently characterized by Chl a increase over several decades of 
observations (+49% and + 36%). At pan-Arctic scale (the whole studied 
area), results showed a total increase of +24% in Chl a, with +15% from 
CZCS to SeaWiFS and + 9% from SeaWiFS to MODIS. 

5. Discussion 

The main outcome of the quality assessment of the NEW dataset, 
when compared to REF, is that the ‘CZCS-like’ re-processing of SeaWiFS 
and MODIS had limited impact on Chl a distribution over the AO. The 
differences (MAPD) averaged over the AO were about 20% and provides 
a good level of confidence. In comparison, satellite-derived Chl a in the 
Global Ocean usually show differences of ±35% relative to the reference 
value (Bailey and Werdell, 2006; Hooker and Esaias, 1993; McClain 
et al., 2006). The MAPD derived for the overlapping period between 
SeaWiFS and MODIS were about 16% (before correction) which corre-
sponds to the lower bound of the usual range in Chl a difference found 
between SeaWiFS and MODIS in other studies (20–35%, e.g. Melin, 
2010). 

The statistical indices computed to compare NEW and REF for all the 
27 bio-regions (Fig. 7) showed, in general, high Spearman’s correlation 
coefficients (rs > 0.8), low unbiased RMS differences (<0.1) and biases 
(< 0.01). Those results confirmed a good agreement between the REF 
and the NEW datasets similar or even better performances than inter- 
sensors comparison in the global Ocean (e.g. Djavidnia et al., 2010). 
In that sense, the NEW SeaWiFS and MODIS datasets do not seem 
particularly altered by the use of CZCS atmospheric correction and the 
application of the Morel-3 algorithm to derive Chl a. In future studies, it 
would also be interesting to compare the NEW dataset with the recently 
improved GSM-based algorithm (AO.GSM, Lewis and Arrigo, 2020). The 
NEW dataset presents the unique advantage of expanding the temporal 
coverage of ocean color in the Arctic Ocean to the late 70’s and early 
80’s. The quality of the decadal change assessment relies on several 
factors such as the quality of the inter-mission bias correction, and more 
importantly, data availability. In the following section, we address the 
quality of the NEW Chl a dataset, and we discuss the implications for the 
observed Chl a changes. 

5.1. Re-processing of SeaWiFS and MODIS: which bio-region gives the 
most reliable Chl a estimates? 

The bio-regional approach to quantify uncertainties in satellite- 
derived Chl a demonstrated that all oceanic Arctic regions exhibit sin-
gular remotely sensed optical properties that affect satellite-based Chl a 
estimations differently in time and space. The purpose of the bio- 

Fig. 9. Comparison of remotely sensed (y-axis) versus in situ observations 
(x-axis) of Chl a concentration. Results are shown in log10(Chl a) [mg m− 3] 
scales on both x and y-axis. To ensure readability, data points were super-
imposed on the density-plots indicating the number of match-ups within each 
regular bin (with a 0.1 resolution). The x and y distributions are also illustrated 
by histograms on the top and right hands, showing the number of match-ups per 
bins. The black line indicates the 1:1 line while the red solid line represents the 
linear regressions. Statistics of the type II regression are shown on the right- 
hand side: number of match-ups (N), root mean square difference (RMS), 
Pearson’s correlation coefficient (r), slope (S) and intercept (I). Note that 
match-ups were calculated from daily maps with a 28-km resolution. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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regional approach was to summarize large-scale Chl a changes into bio- 
region in which we assumed consistent and similar bio-optical proper-
ties. Note however that heterogeneous bio-optical regimes can occur at 
the intra-regional scales. For example, James Bay located in the south-
western part of the Hudson Complex has been identified as an area with 
large variations in optical properties and is not always representative of 
the Hudson Complex (Granskog et al., 2007). It is important to keep in 

mind that most bio-regions are closely related with specific topographic 
features, but some bio-regions encompass both coastal and open waters 
for which one can expect different optical regimes. The coastal envi-
ronments are subject to terrigenous inputs, particle resuspension, while 
open water bio-optical properties are driven mainly by phytoplankton. 
In this study, we used a Chl a algorithm adapted to the AO oceanic 
conditions. Hence, its application in coastal areas can lead to large 

Fig. 10. Seasonal climatological maps of log10-transformed Chl a [mg m¡3]. Spring (left) and summer (right) Chl a maps for (A, B) CZCS (1979–1984), (C, D) 
SeaWIFS (1998–2006) and (E, F) MODIS (2007–2016, corrected from bias) with associated minimum sea-ice extent in white color (mean sea-ice concentration > 10% 
over the climatological period). The black background corresponds to regions with no data because of sea-ice, masked areas (depth < 25 m) or outside the studied 
area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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Fig. 11. Maps showing changes in Chl a in log10(Chl a) [mg m− 3] scale during (A, B) spring, (C,D) summer and (E, F) annual periods. Relative changes in linear 
scale are also shown in percentage [%]. On the left hand, maps show pixel-by-pixel differences between the SeaWiFS [S] and the CZCS [C] periods ([2006–1998] – 
[1979–1984]). On the right hand, maps show the differences between the MODIS [A] and the SeaWiFS climatologies ([2007–2016] – [1998–2006]). The difference 
between the two periods illustrates the increase (red) or decrease (blue) in Chl a. The black background corresponds to regions with no data because of sea-ice, 
masked areas (depth < 25 m) or outside the studied area. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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uncertainties. Results from several bio-regions have to be interpreted 
with caution at both the seasonal and annual scale (see next section). 
Bio-regions with little amount of data and/or with terrestrial inputs 
showed lower correlation coefficient between the NEW and REF datasets 
(rs < 0.75, Fig. 7). These bio-regions did not meet an acceptable level of 
confidence to be included in the analysis. Therefore, we chose not to 
interpret results from flagged regions such as the White Sea, the central 
Arctic in spring or the Laptev Sea in summer. 

The bio-regional division used in this study (Spalding et al., 2012) is 
currently one of the most detailed for the AO. However, in a context of 
rapid climatic changes in the AO and poleward shifts linked to the so- 
called ‘borealization’ of the Arctic ecosystems (e.g. Fossheim et al., 
2015), it seems reasonable to assume that the bio-regions actually 
evolved over the study period. It is thus important to contextualize the 
results from one bio-region together with its adjacent ones before 
drawing any conclusion. 

5.2. The inter-mission bias and in situ comparison 

i) CZCS. Given the absence of overlap with other ocean color sensor, 
one way of assessing the possible bias of CZCS Chl a was to perform a 
comparison with in situ data. This was particularly challenging given the 
lack of reliable in situ data collected in the early 1980s. Nowadays, the 
space agencies recommend the use of HPLC-based Chl a estimations for 
validation of satellite-based measurements, while our study relied on 
fluorescence-based estimations. The combination of the lack of quality 
assessment of in situ data, the limited number of match-ups for CZCS (N 
= 147, Fig. 9A) and the coarse resolution of satellite data (~28 km maps 
used to ensure a sufficient number of match-ups to reach statistical 
significance) are complicating the assessment of CZCS Chl a. However, 
the results of the comparison between ocean color estimations and in 
situ observations were within the range found in the literature for cur-
rent sensors (Fig. 9). The (type II) regression of satellite-derived against 
in situ Chl a showed a significant correlation (r2 = 0.54, p-value < 0.01) 
with a slope of 0.72, an intercept of − 0.15 and an unbiased RMS of about 
0.5. For comparison, Lewis and Arrigo (2020) tested on SeaWiFS and 
MODIS their new ‘state-of-the-art’ Arctic-adapted semi-analytical algo-
rithm and found results similar r2 ~ 0.58 and RMS ~ 0.46. 

Furthermore, in order to compensate for the low number of match- 
ups for CZCS (N = 147), a bootstrap evaluation was performed by 
repeating 1000 times the regression (model II) with a random sub- 
sampling (75%) of the initial matchups dataset. The bootstrap evalua-
tion provided the 95% confidence intervals of the parameters derived 
from the comparison between CZCS and in situ data presented on 
Fig. 9A. Distributions for the bootstrap-estimated intercepts, slopes, 
unbiased RMS and Pearson’s correlation coefficients are presented in 
Fig. S5. Lower and upper 95% intervals for the slope and intercept were 
respectively of 0.63–0.83 and − 0.22 – − 0.08 with averages of 0.72 and 
− 0.15 respectively (identified using vertical dashed lines in Fig. S5). 
The average unbiased RMS and correlation coefficient were 0.33 and 
0.54 respectively. The statistics found with the bootstrap evaluation are 
very similar than the regression derived with all match-ups in Fig. 9A 
with relatively narrow confidence intervals which confirms the robust-
ness of the regression despite the low number of match-ups. 

Overall, CZCS showed, like previous examinations (Evans and Gor-
don, 1994), reasonably good performances at predicting Chl a, at least 
similar to modern sensors and algorithms. Those results suggest that no 
further bias correction would improve the performance of Chl a re-
trievals. In fact, an additional bias correction may add uncertainties to 
the Chl a estimations due to the poor spatio-temporal coverage and the 
intrinsic uncertainties of the in situ data (i.e., fluorometric method 
without a standardized protocol). 

Since no inter-mission bias correction was applied to CZCS, one may 
question the possible effect of SeaWiFS-CZCS uncorrected bias on the 
quantification of Chl a changes between the two sensors. One way to 
address this issue is to compare the differences observed between CZCS 

and SeaWiFS and the inter-mission bias between SeaWiFS and MODIS, 
both in terms of distribution and magnitude (Fig. S6). Results showed 
that SeaWiFS generally produced higher values of Chl a than the ones 
produced by MODIS during their overlapping period. Another study 
showed that MERIS and MODIS/Terra derived Chl a exhibited both 
positive and negative biases at the global scale (Djavidnia et al., 2010). 
In both cases (from this study and from the literature), inter-mission 
biases seem to be quasi-homogenous at basin scale. By contrast, the 
differences observed between CZCS and SeaWiFS were more heteroge-
neously distributed across the basins than the SeaWiFS-MODIS inter- 
mission bias (Fig. S6). This suggests that the observed differences in Chl 
a are less influenced by a systematic inter-mission bias than by a true 
change in phytoplankton biomass. In the presence of a systematic inter- 
mission bias between CZCS and SeaWiFS, the differences would be more 
evenly distributed spatially across the bio-regions, which was not evi-
denced (Fig. S6). In terms of magnitude, however, the MODIS-SeaWiFS 
inter-mission bias can be of similar or even greater magnitude than the 
changes in Chl a between the CZCS and SeaWiFS periods. This leads us to 
use caution in interpreting the results, as a possible uncorrected bias 
between SeaWiFS and CZCS may affect the magnitude or the sign of the 
Chl a changes (Fig. S7). 

ii) SeaWiFS and MODIS. The bias correction consisted of removing 
the climatological bias between the NEW SeaWiFS and MODIS datasets 
during their overlapping period (2003–2006). As a consequence, the 
percentage Chl a difference between the two datasets was divided by a 
factor of two (MAPD decreased from ~16% to ~8% between 2003 and 
2006, Fig. 8). In general, MODIS-derived Chl a estimations were slightly 
lower than those estimated from SeaWiFS. The inter-mission bias 
correction was also affected by the seasonal cycle of Chl a and was 
generally greater in the sub-Arctic regions due to generally larger Chl a 
values than in the high AO, especially in spring. The seasonal and bio- 
regional approaches provided a mean to locally correct the bias by ac-
counting for the bio-optical heterogeneity of the AO. The Chl a RMS 
differences between REF and NEW (Δu) from SeaWiFS were generally 
greater than those from MODIS. This result suggests that MODIS Chl a 
estimations are more precise than SeaWiFS estimations. Unfortunately, 
the remaining RMS difference (Δu) between NEW SeaWiFS and MODIS 
cannot be corrected by a simple bias correction as it corresponds to a 
non-systematic dispersion of the data. Validation with in situ data was 
performed after correction of MODIS inter-mission bias. The choice of 
correcting MODIS instead of SeaWiFS was motivated by the fact that the 
re-processed SeaWiFS NEW dataset had smaller biases than the MODIS 
NEW one (compared with REF, see Fig. 7, 8D-E-F) and in line with 
previous multi-mission studies (Gregg and Rousseaux, 2014; Mélin 
et al., 2016). This choice was also supported by the comparison against 
in situ data as the correction of MODIS bias improved the matchups 
statistics by increasing the slope of the linear regression from 0.78 to 0.9 
while the intercept remained unchanged. On the contrary, correcting 
SeaWiFS would have degraded the results by lowering the slope from 
0.76 to about 0.64 (results not shown). 

5.3. Data coverage and the presence of sea-ice: a non-negligible limitation 
of ocean color remote sensing observations 

Data coverage is generally the most important limiting factor for 
reliable calculation of Chl a climatologies and quantification of changes. 
The construction of 28-km resolution monthly composite maps artifi-
cially decreased the influence of clouds. When aggregated into seasonal 
or annual climatologies, the absence of data was systematically attrib-
uted to the presence of sea-ice. Because sea ice extent decreased 
significantly during the last four decades, ocean color remote sensing 
data spatial coverage increased with time (Fig. 3). As a result, the 
1998–2016 (SeaWiFS-MODIS) period was characterized by more ice- 
free (and therefore documented) bio-regions than during the 
1979–1984 (CZCS) period. During spring, only the Atlantic and Pacific 
sub-Arctic sectors (year-round or seasonally ice-free) contained enough 
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data for analysis in the early 80s. In comparison, open waters, and 
therefore information on Chl a occurred at least in three additional bio- 
regions located in the Labrador Sea and Baffin Bay. In summer, the in-
crease in data coverage in recent years is even more obvious as new 
observations are appearing for all the Russian shelves, the Canadian 
sectors and the central AO (Pacific and Arctic basins). 

5.4. Decadal changes in Chl a 

The addition of the CZCS time series to the modern ocean color 
remote sensing era provides a valuable phytoplankton biomass baseline 
in the AO, and helps quantifying and understanding the changes that 
occurred before the triggering of the linear sea-ice loss during the late 
1980s in the AO (Peng and Meier, 2018). This glimpse into the recent 
past highlights interesting features in the Chl a decadal changes for the 
AO that are documented for the first time (Fig. 10):  

(1) The first major outcome is that the exhaustive quality assessment 
of the dataset provided sufficient warranties to ensure reliable 
multi-annual variability analysis in most of the AO where data 
coverage was appropriate.  

(2) Chl a increased of about +24% over the AO since 1979. Our study 
therefore highlights that the increase previously documented 
from 1998 to current time actually started four decades ago and 
occurred throughout both in spring and summer.  

(3) In the AO, the bio-regions located in the inflow shelves accounted 
for most of the increase in Chl a since 1979. The top five bio- 
regions with continuous Chl a increase are: 1) the Barents Sea 
[+85%], the western Bering Sea [+67%], the northern Norway 
and Finnmark [+48%], the Norwegian Sea [+42%] and the 
Chukchi Sea [+16%].  

(4) The interior shelves (Kara, Laptev and Siberian Seas) were almost 
completely covered by sea-ice throughout the spring and summer 
during the CZCS era. Therefore, we could only rely on a few 
measurements to quantify Chl a changes between the CZCS and 
SeaWiFS periods but one could consider that the appearance of 
these newly opened waters represented an addition in Chl a for 
the AO. The Chl a changes in the interior shelves were the largest 
recorded with +151%, 88% and + 61% for the Kara, East Sibe-
rian and Laptev Seas respectively.  

(5) Another major outcome of our study concerns the area in the 
vicinity of the Canadian archipelago and Greenland. In this 
particular area, Chl a decreased from CZCS to SeaWiFS and then 
increased from SeaWiFS to MODIS. This was particularly true for 
the Baffin Bay, the Labrador Sea and the Greenland shelves. This 
scenario would suggest a decrease from 1979 to an inflexion 
point that occurred during the data gap (1986–1998). 

Comparing those results with previous work is challenging given the 
methodological differences used in other ocean color remote sensing 
studies and the small number of time series from both in situ observation 
and modeling studies. However, the Chl a increase of 24% observed here 
for the whole AO remains in the same order of magnitude than observed 
in other ocean color remote sensing studies. For example, Lewis et al. 
(2020) found a trend of +21.6% for the 1998–2018 period. Previous 
studies attributed the increase in phytoplankton productivity in the AO 
to an increase in light availability due to the loss of sea-ice resulting in 
larger open water areas and longer growth seasons (Arrigo et al. 2008; 
Arrigo and van Dijken, 2015; Bélanger et al., 2013). However, Bélanger 
et al. (2013) insisted that most of the net primary production increase 
during the SeaWiFS period (1998–2010) was primarily due to increase 
in Chl a. A recent study (Lewis et al., 2020) suggested an increasing role 
for nutrient fluxes in the acceleration of the Chl a increase in recent 
years. 

At the regional scale, previous ocean color remote sensing studies 
also evidenced that the largest Chl a increase occurred in the inflow 

shelves such as the Barents and Chukchi Seas during the SeaWiFS and 
MODIS periods (Lewis et al., 2020) while outflow shelves were char-
acterized by much weaker trends (i.e. in the vicinity of Canada and 
Greenland; Bélanger et al., 2013; Lewis et al., 2020). Our results are 
consistent with the concept that the inflow shelves are ‘hotspots’ where 
phytoplankton biomass increases the most. The extension of the time 
series to the 1980s could lead to review upward previous estimations of 
primary production increase over the AO. The decrease in Chl a in the 
outflow shelves between CZCS and SeaWiFS periods is a surprising new 
result that might be explained by local processes. For example, Blais 
et al. (2017) combined remote sensing and in situ measurements to show 
a significant decrease in the northern Baffin Bay phytoplankton biomass 
between 1998 and 2011 in fall. The authors demonstrated that those 
changes were linked to sea-ice and freshwater dynamics which inten-
sified stratification, confirming results obtained earlier by Tremblay 
et al. (2012). Unfortunately, only a few other studies have gathered in 
situ samples before the late 1990s. Hill et al. (2018) attempted to derive 
trends in the Pacific Arctic based on in situ primary production mea-
surement but concluded that the objective was unreachable given the 
lack of field observations. Another interesting attempt at deriving 
multi-annual Chl a trends from observation was conducted by Nöthig 
et al. (2020) but was limited to the Fram Strait only and started in 1991. 
The authors did not find any significant trend. Similarly, only a few 
modeling studies can provide long enough historical time series that 
starts before the 1990s (e.g. Kinney et al., 2020). Future modeling 
projections predicted a continued (1) decrease in phytoplankton pro-
ductivity in the outflow shelves until the end of the century mainly 
because of ice-melt induced increased stratification (Slagstad et al., 
2015); (2) increase in primary productivity in the inflow and interior 
shelves at least until 2050 when the system would eventually become 
limited in nutrient (Slagstad et al., 2015; Vancoppenolle et al., 2013), 
although the latter conception of the future Arctic Ocean is now chal-
lenged by studies showing a possible increase in the annual budget of 
nutrient (i.e. Ardyna et al. 2014, Lewis et al., 2020). 

6. Conclusion 

This study created the longest, compatible with global change 
studies, inter-sensor calibrated Chl a time series (37-years, 1979–1984 
and 1998–2016) in the Arctic Ocean by connecting data from the first 
ocean color CZCS sensor with SeaWiFS and MODIS sensors 
(1998–2016). This was achieved by: (1) re-processing the entire Sea-
WiFS and MODIS time series with a similar atmospheric correction 
scheme than CZCS and applying the same Chl a algorithm (i.e., two-band 
ratio) to the three sensors in order to ensure homogeneity and consis-
tency of the data for global change study; (2) correcting SeaWiFS-MODIS 
inter-mission biases; and (3) assessing the quality of the re-processed 
dataset by comparison with recent remotely sensed time series as well 
as in situ data. The quality assessment demonstrated that the re- 
processing did not alter the quality of the dataset which is particularly 
well adapted for large scales and decadal studies. However, regional 
statistical analysis showed a spatial heterogeneity in the quality of the 
satellite-derived Chl a. A bio-regional approach provided a mean to 
exclude areas with unreliable data due to large discrepancies with a 
reference dataset. An important limitation of the CZCS dataset lies in its 
poor data coverage, which was addressed by a careful spatio-temporal 
aggregation. Despite those identifiable discrepancies, the addition of 
CZCS data to current time series offers several unique benefits including: 
the definition of baseline conditions in phytoplankton biomass in the 
Arctic Ocean for the early 1980s before the acceleration of sea-ice melt, 
a better characterization of decadal changes due to the longer period of 
observation (almost doubled), and further insight into the regional 
response of phytoplankton biomass to a changing Arctic Ocean. Our 
study confirmed for example that the mean Chl a increase in the AO by 
about +24% between 1979 and 2016. The strongest increase in the 
mean Chl a occurred in the Russian shelves which were heavily ice 
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covered during the CZCS era. The Kara, Laptev and Siberian Seas 
experienced a total increase of +151%, 107% and 88% respectively. The 
rest of the increase was attributed to the inflow shelves: the Barents Sea 
and the western Bering Sea. The two regions continuously showed 
among the strongest increase since 1979 with +85% and 67% respec-
tively. Perhaps, and more interestingly, the Chl a levels were higher in 
the 1980s in the outflow shelves such as in the Baffin Bay area than in 
present time suggesting either a decreasing trend or a decadal 
oscillation. 
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gorithm. Note that this study heavily relied on massive computer cal-
culations and would not have been possible without the decisive 
implication and assistance of Compute Canada (www.computecanada. 
ca) and Calcul Quebec. Note that the dataset is currently being upda-
ted from 2016 to present time. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2022.113020. 

References 

Ahmad, Z., Franz, B.A., McClain, C.R., Kwiatkowska, E.J., Werdell, J., Shettle, E.P., 
Holben, B.N., 2010. New aerosol models for the retrieval of aerosol optical thickness 

and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over 
coastal regions and open oceans. Appl. Opt. 49, 5545–5560. https://doi.org/ 
10.1364/AO.49.005545. 

Antoine, D., Morel, A., Gordon, H.R., Banzon, V.F., Evans, R.H., 2005. Bridging ocean 
color observations of the 1980s and 2000s in search of long-term trends. J. Geophys. 
Res. Ocean. 110, 1–22. https://doi.org/10.1029/2004JC002620. 

Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L., Tremblay, J.E., 2014. 
Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. 
Res. Let. 41, 6207–6212. https://doi.org/10.1002/2014GL061047. 

Arrigo, K.R., van Dijken, G., Pabi, S., 2008. Impact of a shrinking Arctic ice cover on 
marine primary production. Geophys. Res. Let. 35, 1–6. https://doi.org/10.1029/ 
2008GL035028. 

Arrigo, K.R., van Dijken, G.L., 2015. Continued increases in Arctic Ocean primary 
production. Prog. Oceanogr. 136, 60–70. https://doi.org/10.1016/j. 
pocean.2015.05.002. 

Babin, M., Arrigo, K., Bélanger, S., Forget, M.-H., Frouin, R., Hill, V., Hirawake, T., 
Matsuoka, A., Mitchell, B.G., Reynolds, R.A., 2015. Ocean Colour Remote Sensing in 
Polar Seas, IOCCG, Repo. ed. IOCCG, International Ocean Colour Coordinating 
Group, Dartmouth, Canada.  

Bailey, S.W., Werdell, P.J., 2006. A multi-sensor approach for the on-orbit validation of 
ocean color satellite data products. Remote Sens. Environ. 102, 12–23. https://doi. 
org/10.1016/j.rse.2006.01.015. 

Beaulieu, C., Henson, S.A., Sarmiento, J.L., Dunne, J.P., Doney, S.C., Rykaczewski, R.R., 
Bopp, L., 2013. Factors challenging our ability to detect long-term trends in ocean 
chlorophyll. Biogeosciences 10, 2711–2724. https://doi.org/10.5194/bg-10-2711- 
2013. 
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