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Abstract. Accurately modelling the contribution of Green-
land and Antarctica to sea level rise requires solving partial
differential equations at a high spatial resolution. In this pa-
per, we discuss the scaling of the Ice-sheet and Sea-level Sys-
tem Model (ISSM) applied to the Greenland Ice Sheet with
horizontal grid resolutions varying between 10 and 0.25 km.
The model setup used as benchmark problem comprises a
variety of modules with different levels of complexity and
computational demands. The core builds the so-called stress
balance module, which uses the higher-order approximation
(or Blatter–Pattyn) of the Stokes equations, including free
surface and ice-front evolution as well as thermodynamics in
form of an enthalpy balance, and a mesh of linear prismatic
finite elements, to compute the ice flow.

We develop a detailed user-oriented, yet low-overhead,
performance instrumentation tailored to the requirements of
Earth system models and run scaling tests up to 6144 Mes-
sage Passing Interface (MPI) processes. The results show that
the computation of the Greenland model scales overall well
up to 3072 MPI processes but is eventually slowed down by
matrix assembly, the output handling and lower-dimensional
problems that employ lower numbers of unknowns per MPI
process. We also discuss improvements of the scaling and
identify further improvements needed for climate research.
The instrumented version of ISSM thus not only identifies
potential performance bottlenecks that were not present at

lower core counts but also provides the capability to continu-
ally monitor the performance of ISSM code basis. This is of
long-term significance as the overall performance of ISSM
model depends on the subtle interplay between algorithms,
their implementation, underlying libraries, compilers, run-
time systems and hardware characteristics, all of which are
in a constant state of flux.

We believe that future large-scale high-performance com-
puting (HPC) systems will continue to employ the MPI-
based programming paradigm on the road to exascale. Our
scaling study pertains to a particular modelling setup avail-
able within ISSM and does not address accelerator tech-
niques such as the use of vector units or GPUs. However,
with 6144 MPI processes, we identified issues that need to be
addressed in order to improve the ability of the ISSM code
base to take advantage of upcoming systems that will require
scaling to even higher numbers of MPI processes.

1 Introduction

Projections of future sea level rise are a major societal de-
mand. The future mass loss of ice sheets and glaciers is
one of the primary sources of sea level rise (Church et al.,
2013). Today, projections are still subject to large uncertain-
ties, which stem in particular from the climate forcing and
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ice-sheet model characteristics (such as the initial state or
ability to represent processes adequately Goelzer et al., 2020;
Edwards et al., 2021; Crawford et al., 2021). While the mo-
mentum balance can be solved using a higher-order approxi-
mation (HO, also called Blatter–Pattyn, Blatter, 1995; Pattyn,
2003) representing the physical system reasonably well, the
benefits of HO pay out only if the resolution is sufficiently
high (Rückamp et al., 2020a), especially in the vicinity of
the grounding line where the ice sheet goes afloat (Cornford
et al., 2020). The grid resolution requirement comes with ad-
ditional computational costs, a limiting factor that needs to
be overcome. In addition, standalone ice sheet projections
are challenged by large spread in climate forcing fields (e.g.
Goelzer et al., 2020). As a consequence, atmosphere and
ocean models will be run in the future at higher spatial reso-
lutions, so when ice sheet codes are coupled with other com-
ponents of Earth system models (ESMs), they need to reach
a level of computational performance – especially in terms
of parallel scalability – comparable to that of ocean and at-
mosphere models.

Since complex bed topographies, rugged coastlines of ice
sheets and small scale features form an irregular geometry
(e.g. narrow confined fjords in Greenland or small pinning
points in Antarctic ice shelves), unstructured meshes are best
suited. This motivated the development of codes based on fi-
nite element and finite volume discretizations with triangular
or Voronoi meshes (Larour et al., 2012; Gagliardini et al.,
2013; Hoffman et al., 2018; Berends et al., 2021) – such
as the Ice-sheet and Sea-level System Model (ISSM, Larour
et al., 2012). The flexible multi-physics ISSM model pro-
vides full Stokes, HO, shallow shelf and shallow ice approx-
imations for the momentum balance, making it particularly
versatile and flexible.

To study the performance of ISSM, we select a real-life
system as a test case: the Greenland Ice Sheet (GrIS) simu-
lated at different horizontal resolutions – covering the range
from what is today’s standard for long-term simulations
(Plach et al., 2019), such as paleo-spinups, up to the present-
day highest resolutions in projections such as the ones used
in the international benchmark experiment ISMIP6 (Goelzer
et al., 2020; Rückamp et al., 2020a). This way, we contribute
a “user-oriented” performance analysis tailored to the re-
quirements of ESMs. Such an in-depth performance analy-
sis has not yet been performed for ISSM and comes timely
with the first exascale-ready ESMs (Golaz et al., 2019) ush-
ering a new era of climate modelling. While Message Pass-
ing Interface (MPI) scalability is not sufficient for reaching
exascale performance, it seems to be necessary as corrob-
orated, for example, by the MPI-based programming style
of the 24 applications chosen for the exascale computing
project (see http://www.exascaleproject.org/about, last ac-
cess: 8 April 2022).

Several metrics have been proposed to quantify “scalabil-
ity”, that is, the performance response of a code when addi-
tional hardware resources are made available (see, e.g. Perlin

et al., 2016). “Strong scaling” shows the performance of a
fixed-size problem when additional cores are employed to
solve it. The baseline measurement is, in theory (as in Am-
dahl’s law), the runtime with one core, but this is infeasi-
ble for many realistic model setups due to memory and run-
time limitations. “Weak scaling” (or Gustavson’s law), on the
other hand, reflects the fact that usually the problem size in-
creases with the size of the compute system. In our study, we
mainly investigate how ISSM performs on a particular, fixed-
size model setup using from 96 to 6144 cores, i.e. over almost
2 orders of magnitude in core count, but we also show perfor-
mance for various resolutions of the same domain. These re-
sults give us insight into both strong and weak scaling issues
and allow us, in particular, to determine the model through-
put in simulated years per (wall-clock) day (SYPD), which
is an important measure for an ESM’s performance.

Numerical models such as the ISSM are generally based
on a discretization of the underlying system of partial differ-
ential equations (PDEs) leading to a fully discrete system of
nonlinear or linear algebraic equations to be solved. In the
context of finite elements, the computational domain is par-
titioned using a computational mesh consisting of elements
(e.g. triangles or quadrilaterals in 2-D, tetrahedra or prisms in
3-D), and the discrete unknowns are specified per node, per
element or per face of the mesh, depending on the specific
finite element scheme and the used approximation order. The
discrete unknowns are called degrees of freedom (DOF), and
their total number then specifies the size of the discrete linear
or nonlinear system to be solved. With increasing mesh reso-
lution as well as higher order of shape functions, the number
of DOF is increasing for a particular PDE boundary value
problem (e.g. Wriggers, 2008). In parallel computing, the
problem is distributed over a number of cores leaving each
core with a particular number of DOF/core. Studies on per-
formance in other disciplines have shown (Bnà et al., 2020)
that a certain minimum number of DOF/core is required to
ensure good performance. For the software package PETSc
(Balay et al., 2021a), on which ISSM is built, the recommen-
dation is a minimum of 10 000 DOF/core.

The employed model setup in our study comprises a vari-
ety of modules with different levels of complexity. Sophisti-
cated performance analyses that identify the impact of such
a multi-physics problem for overall code performance do ex-
ist for ocean models (Reuter et al., 2015; Huang et al., 2016;
Prims et al., 2018; Koldunov et al., 2019) and, in somewhat
less detail, for the atmosphere (Neumann et al., 2019); how-
ever, they are not yet standard for ice sheet codes. Most stud-
ies analyse the performance of the stationary Stokes prob-
lem. For MALI1 (MPAS-Albany Land Ice, HO, finite ele-
ments, Hoffman et al., 2018), this was presented by (Tezaur
et al., 2015a, b) and revealed a good overall scalability. Sim-
ilarly, Gagliardini et al. (2013) achieved a good weak and
strong scaling efficiency for Elmer/Ice (full Stokes finite
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elements). A study mostly focused on the scalability and
computational performance issues was conducted in Isaac
et al. (2015) in a greatly simplified setting (e.g. a prescribed
temperature field), whereas Brædstrup et al. (2014) ported
a time-dependent shallow ice model to GPUs and discussed
the key challenges of achieving good computational perfor-
mance on this type of hardware architecture. In a transient
setup, Dickens (2015) analysed the scalability and perfor-
mance of PISM’s (Parallel Ice Sheet Model, hybrid SIA and
SSA, finite differences, Bueler and Brown, 2009) compute
and output phases (i.e. I/O). They found the I/O component
to be a considerable bottleneck, while the compute phase
scaled well. As we will see, however, for sophisticated multi-
physics and multi-resolution codes such as ISSM, a finer-
grained analysis is necessary to shed light on the drivers of
scalability issues (see also Chang et al., 2018).

A first scaling analysis of ISSM has been conducted in
Larour et al. (2012), presenting the efficiency of the stress
balance module up to 180 compute cores for a case of the
GrIS using the direct solver MUMPS. In our study, we extend
the performance analysis of ISSM to cover the entire code
base using a high-resolution model setup as well as several
lower-resolution ones executed on 96 to 6144 cores. Here
we rely on an iterative solver – based on recommendations
in Habbal et al. (2017), we selected GMRES preconditioned
with block Jacobi method.

In addition, to pinpoint the effect of different models
on the overall performance, we develop an instrumenta-
tion scheme that provides detailed performance information
closely related to an Earth system scientist’s view of the code.
The challenge here is to develop a setup that does not in-
troduce much overhead, as otherwise the results of instru-
mented runs would not be representative for the original code
base. As a result, then, such an analysis can become part of
the standard production environment providing insight into
the code’s performance as algorithms or the code’s environ-
ment (e.g. the underlying hardware, middleware or libraries)
change. To that end, a setup is developed that limits the in-
strumentation overhead through careful filtering but leaves
the code base untouched.

The paper is structured as follows: we start by introducing
the underlying physical model (the details of the mathemat-
ical models are given in Appendix A) and the employed test
setup applied to GrIS (Sect. 2). We then present the software
design of ISSM, its parallelization scheme and how it sup-
ports efficient simulations (Sect. 3). The main part of this
study is the measurement of the runtime. We present our
low-overhead sustainable performance measurement instru-
mentation in Sect. 4, and the results are presented in Sect. 5.
Section 6 contains a discussion of the results, including the
options for further code optimization, followed by a discus-
sion from the prospective of coupled ice sheets integrated
into ESMs, i.e. exchanging variables with atmosphere and
ocean models rather than just obtaining data from them. A
short Conclusions section wraps up this presentation.

2 Description of the model and the experiment
environment

2.1 Description of the model

For this study, we focus on a selected subset of the capabil-
ities of ISSM; e.g. we employ only the HO approximation
of the stress balance. This approximation is currently used
in ice sheet projections and, in terms of the ice sheet code
run as a part of a fully coupled ESM, it is the most com-
prehensive level of physics that we expect to be practical in
ESMs. We also do not incorporate other sophisticated mod-
ules, such as subglacial hydrology, or advanced approaches
for computation of surface mass balance (SMB). The math-
ematical model is given in detail in the Appendix A1. For a
more exhaustive model description, the reader is referred to
Rückamp et al. (2019).

The mathematical models for the different modules
(Sect. A1, Eqs. A2–A23) are discretized using the finite el-
ement method on an unstructured mesh that is fixed in time.
The computation within a time step is conducted in a se-
quence of different modules (see Fig. 1 for a schematics of
the main execution substeps), which means that the differ-
ent balance equations for momentum, mass and energy are
not solved in a coupled fashion. Furthermore, the stress bal-
ance module solves a nonlinear PDE system using a fixed-
point Picard iteration where each step involves the solution
of a linear equation system. The balance equations for en-
thalpy and momentum are solved consecutively, no iteration
between the two modules is done within a time step. The total
number of DOF, the quantity that determines the size of the
matrix for the linear equation systems, differs substantially
between different modules. The fields for velocity, enthalpy,
ice thickness and ice level set are computed at each ver-
tex of the mesh using piecewise-linear (P1) finite elements.
The enthalpy equation is stabilized with ASUPG (anisotropic
streamline upwind Petrov–Galerkin method, Rückamp et al.,
2020b).

2.2 Description of the benchmark problem

The results presented in this study are based on a setup of
the GrIS that has previously been used for future projections
(Rückamp et al., 2019) and is utilized here with slight modi-
fications. The bed topography is BedMachine v3 (Morlighem
et al., 2017). The ice thermodynamics are computed with an
enthalpy scheme (Sect. A1.4) initialized with the enthalpy
field from a paleo-climate spinup similar to Rückamp et al.
(2019). Surface topography and 3-D velocity are also taken
from this spinup. Grounding line evolution (Eq. A22) uses
the sub-element parameterization of the friction coefficient
(Seroussi et al., 2014). Climate forcing fields are read in at
each time step in the SMB module.

The main difference with Rückamp et al. (2019) is that the
moving front module is enabled during the scalability tests to
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capture its performance. The calving front motion is solved
by a level-set method (Eq. A23), which tracks the ice front
according to a kinematic calving front condition (Bondzio
et al., 2016, 2017). Here, we assume a moving front configu-
ration where the advance of the calving from (i.e. by glacier
velocity) is compensated by the sum of calving and frontal
melting. These settings basically specify a system close to an
equilibrium.

Each horizontal mesh is generated with a higher resolu-
tion denoted by REShigh in fast-flowing regions (initial ice
surface velocity> 300ma−1), while maintaining a relatively
low, RESlow, resolution in the interior. This statically adap-
tive mesh generation strategy allows for a variable resolution
and gives more computational resources to regions of dy-
namic complexity. Simulation measurements are performed
on five meshes (Fig. A1, Table 1) using 15 vertical sigma lay-
ers refined towards the base where vertical shearing becomes
more important. The meshes differ by employing five dif-
ferent horizontal grid resolutions with REShigh as specified
in Table 1. The highest resolution is approximately 250 m,
which is close to the resolution of the bed topography dataset
used in our study.

In order to measure the performance, we conduct 30 time
steps in each run, but we only measure time steps from 11 to
30. Since we allow in each time step the individual modules
to reach their convergence criteria, we intentionally exclude
the timings from a cold start based on a poor initial guess.

The convergence criteria (see the Appendix) for the lin-
ear iteration of the stress balance is the Euclidean norm
ε1 = 10−4, and the relative tolerance ε2 = 10−2 (no ε3 set).
The thermal solver is using ε2 = 10−3. Stress balance and
thermal modules are set to use at most 100 nonlinear itera-
tions, but this limit is never reached in all cases observed.

2.3 Experimental environment

All experiments are conducted on dedicated compute nodes
of the Lichtenberg high-performance computing (HPC) sys-
tem with two 48-core Intel Xeon Platinum 9242 per compute
node and 384 GB of main memory each, connected with an
InfiniBand HDR100 network providing point-to-point con-
nections between nodes. For all runs, we employ 48 MPI
processes on each node pinned to NUMA nodes. The fact
that we only use half of the available hardware cores is due
to the fact that at G250 resolution, each MPI process requires
7.4 GB of memory, when the mesh is distributed on only 48
processes. Even the shrinking memory consumption with an
increasing number of processes (e.g. 5.9 GB per process on
96 processes) does not overcome this limitation, while we
only use a few nodes. The demand of memory per process
shrinks with a rising number of processes, but it is a limi-
tation of our setup. Each experiment runs three repetitions,
and results fall within a standard deviation of 10 %. The ba-
sis for our instrumentation is the latest ISSM public release
4.18, which is compiled with GCC 10.2 (optimization level

“-O2”), Open MPI 4.0.5 (Graham et al., 2006) and PETSc
3.14 (Balay et al., 2021b). For profiling and tracing we use
Score-P 7.0 (Knüpfer et al., 2012) and for data analysis Cube
GUI 4.6 (Geimer et al., 2007) and Vampir 9.18 (Nagel et al.,
1996).

We compiled both ISSM and PETSc with “-O2” as well as
with “-O3 -march=cascadelake -mtune=cascadelake”. On a
480-core configuration, the entire calculation (without load-
ing the model) took 1955 s compiled with “-O2” and 1930 s
when compiled with higher-level optimization. With 1536
cores, we observed execution times of 763 and 748 s, respec-
tively. So the compiler optimization level has an impact of
less than 2 % in both cases. As the impact of the more ag-
gressive compiler optimizations is low, we stick to “-O2”, as
it avoids some potential numerical issues that can arise with
more aggressive compiler options. Optimization level “-O2”
is also employed for Open MPI and PETSc in the module tree
provided for the Lichtenberg HPC system by the computing
centre of TU Darmstadt.

Nevertheless, in general, vector units which are generated
during compilation with native compiler flags are important
for overall performance of codes. The fact that ISSM does
not benefit from vector instructions is a sign that the per-
formance of ISSM is memory bandwidth limited. Therefore
node-level performance optimizations are a future need that
pure MPI scaling cannot overcome.

3 Software design of ISSM

ISSM is implemented in multiple modules, which run in a
predefined sequence illustrated in Fig. 1 for the transient so-
lution in our GrIS setup. While these modules all utilize the
same 2-D mesh, the same vertical layer structure and the
same data distribution, they strongly differ in the number
of DOF ranging from a large linear equation system for the
velocity field in three dimensions to the comparatively low-
cost computations needed for two dimensional fields in the
mass transport module (the equations solved are given in Ap-
pendix A). The solution procedure in each module belongs
to one of three different types. The SMB module and the
grounding line module calculate an algebraic solution, the
mass transport module and the moving front module solve
linear PDEs, and the thermal module and the stress balance
module solve nonlinear PDEs. The file output for the results
of the simulation is carried out in the last step of the se-
quence.

Although these modules solve different mathematical
problems, the modular software designs enables a similar
structure for the implementation of the linear and nonlinear
equations. This generalized form of the solution sequence of
ISSM is shown in Fig. 2.

The first step of each sequence step that involves the so-
lution of a PDE is identical and consists of constructing the
equation system. Within this step, memory is allocated, the
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Table 1. Overview of problem setups used in our study. Note that (a) the vertices and elements of the 3-D mesh describe the full mesh (i.e. ice-
covered and non-ice-covered elements), (b) the minimum DOF is the DOF from the 2-D mass transport module and (c) the maximum DOF
is the DOF from the 3-D stress balance horizontal module.

Name Resolution Time step size 3-D vertices 3-D elements Minimum DOF Maximum DOF

G4000 4–10 km 0.05 years 566 280 1 055 572 31 468 944 040
G1000 1–10 km 0.0025 years 2 081 760 3 884 468 122 417 3 672 510
G500 0.5–10 km 0.0001 years 5 509 080 10 282 132 335 117 10 053 480
G250 0.25–10 km 0.0001 years 17 111 325 31 939 656 1 064 669 31 940 010

Figure 1. The sequence of modules in a transient time step in ISSM.
Small grey circles indicate the dimension of the equations of the
module (3-D, 2-D). Larger grey circles with PDEs are denoting if
and how many partial differential equations are solved. Diamonds
with “par” indicate that only an algebraic equation is evaluated. On
the right side, we list the DOF for particular mesh resolutions and
modules.

entries of the system matrix are filled in on each mesh ele-
ment, and the global matrix is assembled. The main differ-
ence between the modules lies in how the equation matrix is
filled. Here, the code iterates over all elements of the mesh
and computes an element matrix, whose entries depend on
the PDE being discretized. The element entries are then as-
sembled into a global matrix. Next, the equation system is

Figure 2. Sketch of a solution sequence of ISSM.

solved. If a module contains a nonlinear iteration – this is the
case for the horizontal stress balance and the thermal module
– in each step of the nonlinear solver material properties or
basal constraints are updated, and the global linear equation
system is solved in the same fashion as for linear PDEs. The
nonlinear iteration is repeated until the convergence criterion
is reached. Subsequently, the results are post-processed, and
the geometry of the mesh is updated as needed. Finally, the
requested file output is selected.

While running multiple modules in parallel is not possi-
ble due to data dependencies, ISSM parallelizes the solution
sequence of individual modules. For this it uses an even dis-
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tribution of the elements, which is constant over time and
independent of the modules, and each module handles the
parallelization in the same way. During the construction of
the equation system, memory is allocated locally, the element
matrices are computed, and the equation system is filled,
without any MPI communication. Thereafter, entries which
are assigned to other MPI processes are communicated in the
assembly of the equation system, leading to many MPI calls.
The parallel linear solver then solves the equation system and
the solution is distributed to all MPI processes in the post-
processing. In the case of a nonlinear system, a convergence
criterion has to be computed, and the nonlinear iteration has
to be updated, potentially involving additional MPI calls. In
the final selection of the requested output, data are stored in
vectors or reduced to scalars. Both operations again lead to
MPI communication.

4 Sustainable performance measurement

Large code bases such as ISSM are developed and used over
decades. The environment in which they are executed, on the
other hand, i.e. the hardware, the operating systems, under-
lying libraries and compilers, is in a constant state of flux. As
a consequence, code development needs not only to address
the representation of physics but also to account for these
changing operating environments, in particular, the increase
in the number of compute cores. Modernizing a code or port-
ing it from one operating environment to the other is likely
to affect overall performance. In particular, modules that do
not play a significant role with respect to compute time with a
low core count may end up taking a significantly larger chunk
of compute time on a larger parallel system and thereby sig-
nificantly affect the overall performance and scalability. In
addition, a code like ISSM is never in a final state. The de-
velopment of new modules, the implementation of new al-
gorithms in existing modules, code optimizations to exploit
GPU accelerators or vector units, or an update of used li-
braries can have a substantial (positive or negative) perfor-
mance impact. As a consequence, a continuous performance
monitoring of ISSM is an essential feature allowing to as-
sess the performance on the shifting computational ground
the code lives on. For this reason, the code version of ISSM
that we started out with had a basic timing setup to monitor
the performance of the eight modules accounted for in Fig. 3,
as well as of the setup stage and the linear solver.

As will be shown in the next section, we need to dig deeper
to develop a sufficient understanding of the performance be-
haviour of ISSM. To gather this information, we developed
a sustainable performance measurement environment which
provides performance information that correlates with the al-
gorithmic view of domain scientists. Sustainability here in-
cludes three main factors: (1) the instrumented code needs to
be easy to build and use, (2) the instrumentation results need
to refer to identifiable modules in the code, and (3) measure-

ments must not lead to a significant computational overhead,
as this would distort results.

Profiling information for a code can be created in
two different ways: sampling and/or instrumentation. With
sampling-based tools, the execution is interrupted at regular
intervals and that state recorded (e.g. with HPC toolkit, cf.
Tallent et al., 2009), whereas with the instrumentation ap-
proach, calls to monitoring functions are inserted into the
source code (or an intermediate representation) manually or
automatically. Instrumentation has the advantage that it mea-
sures exactly the same regions in each run, thereby improv-
ing comparability of results. The main potential disadvantage
of instrumentation over sampling is the overhead resulting
from too many logging calls, which can be avoided by effi-
cient filtering.

In our work, we use the Score-P instrumentation tool
(Knüpfer et al., 2012), whose output in the cubex format
is also used by a variety of other analysis and visualization
tools. These cubex files can be used in subsequent tools like
Cube GUI (Geimer et al., 2007), Vampir (Nagel et al., 1996),
Scalasca (Geimer et al., 2010) or Extra-P (Calotoiu et al.,
2013) to gain performance information and provide visual-
izations or hints for improvement potential.

In this work, we go beyond the instrumentation of the top-
level modules and develop an instrumentation that enables
an in-depth analysis of ISSM behaviour which is closely
tied to the algorithmic view of domain scientists through
making judicious use of the features provided by Score-P.
Score-P generates profiles and traces based on compiler in-
strumentation supporting filtering and manually defined user
regions. Additionally, Score-P hooks into the PMPI interface
(the MPI profiling interface) of the MPI library and is there-
fore able to track each MPI call with little overhead. This
is important as calls to MPI functions are likely causes of
synchronization overhead that we might encounter. In addi-
tion, Score-P is able to generate similarly instrumented in-
terfaces for user-defined libraries, which we employ to wrap
calls to the PETSc library. Our timing profile thus includes
every PETSc call. This is beneficial since the PETSc calls
provide much more context information than MPI calls by
themselves. So the profile contains the information whether
an MPI call belongs to an assembly, the solver or some other
PETSc algorithm, respectively.

In order to develop a low-overhead instrumentation, we
start out with a full instrumentation (which is generated auto-
matically without effort on our part) and then analyse which
modules account for a significant chunk of the runtime. Re-
peating this several times and taking the modular structure
of ISSM (see Sect. 3) as a guideline then provides us a
structure for efficient instrumentation. The functionality of
Score-P whitelist instrumentation is limited to the instrumen-
tation of entire functions or methods. To gain more detailed
information on the creation of the equation system, which
is implemented in one function, we instrument six code re-
gions within this function manually by bracketing them with
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Score-P instrumentation calls. In the end, we provide Score-P
with a whitelist of 52 functions to instrument and instrument
six code regions manually. In the following, we refer, for sim-
plicity, to 58 instrumented regions (IR). In fact, the mainte-
nance of an instrumented version of ISSM would be easier
if the six regions were functions, as, in that case, no Score-P
instrumentation code would need to be inserted in ISSM.

These 58 functions cover the so-called “hot paths” of the
main parts of the code, i.e. the modules and call paths where
most of the computing time is spent. We mention that this
process of finding the hot paths of a code has since been
(partially) automated with the Performance Instrumentation
Refinement Automation framework (PIRA) tool (Arzt et al.,
2021). When we started this work, PIRA was not yet able to
deal with a code base such as ISSM.

Since we paid attention to include all functions and meth-
ods which are on the call path to a function we instrument, in
order to get the context of each measured region, our func-
tion whitelist includes the entry point of each physics module
(which have also been measured by ISSM internal timings),
the calls of the individual solution sequences and the top-
level calls of the logical steps of the algorithms, e.g. alloca-
tion of memory, computation of element matrices, assemble
of matrices and vectors and the linear solver.

Table 2 illustrates the impact of instrumentation for a
model run for 30 steps with the G250 resolution on 3072
MPI processes. In addition to the 58 ISSM functions whose
instrumentation was triggered through filtering or bracketing
of regions, we see that 56 different functions of PETSc and
33 different MPI function are called and measured. The num-
ber of calls to instrumented functions of ISSM is quite low
(57 million), the number of PETSc functions called (84 bil-
lion) is roughly 1500 times higher but is far exceeded by the
15 trillion MPI calls.

Even with this high number of calls to MPI functions,
the instrumentation overhead remains low: The profiling of
the 15 trillion MPI calls results in a runtime overhead of
about 2.5 %. When, in addition, the 84 billion PETSc func-
tions are instrumented, we do not detect any noteworthy ad-
ditional overhead, the same holds for the addition of the 57
million calls related to ISSM. On the other hand, a fully auto-
matic instrumentation of ISSM results in an overhead of over
13 000 % according to our measurements on a coarser grid.
Fully instrumented binaries are not executable in reasonable
time, and any performance evaluations made on their basis
may have little relevance with respect to the original code.

The bottom line is that our instrumentation scheme keeps
overhead low, even for large-scale runs, thus ensuring that the
measured code is representative of the original source. As a
result, it is quite feasible to periodically run an instrumented
version of the code as part of the regular work of domain sci-
entists, as a safeguard against surprises arising, for example,
from a changed MPI library.

Through the performance analysis of ISSM we recog-
nized, for example, that the matrix of the equation system

Figure 3. Runtime of a transient time step of ISSM without output
handling in resolution G250.

in the stress balance horizontal module is being reallocated
in each iteration of the nonlinear iteration scheme. Since the
structure of the matrix does not change during these iter-
ations, we modified the code to pre-allocate the matrices.
Reusing them saved substantial time in the allocation and
assembly of the equation system of the stress balance hor-
izontal module. For example, running with 3072 cores, the
time for matrix allocation was reduced by 91 %, the time for
matrix assembly was reduced by 85 %, and the overall run-
time of stress balance horizontal module decreased by 31 %.
The performance numbers shown in the following section are
based on this optimized version.

Pre-allocation is not an option for the thermal module due
to dynamic changes in boundary condition type at the base
(see Eqs. A16–A19) that may necessitate changes in the ma-
trix structure. Since the nonlinear iteration scheme of the
thermal module only needs one to three nonlinear iterations
in our setup, the reallocation does not matter as much as in
the stress balance horizontal module anyway.

5 Scalability of ISSM

In this section, we present the results of the measurements for
the entire transient time step (Fig. 3) as well as for individ-
ual modules (Figs. 4–7). Output handling was measured and
manually excluded in the post processing of the profiles and
thus is not reflected in the runtimes shown. We also excluded
the time for the initial loading of the model. We focus on the
results for the highest resolution (G250) first and compare
the throughput of different resolutions afterwards. The num-
ber of MPI processes (and the number of DOF) is plotted on
the x axis, and the y axis shows the runtime in seconds. Due
to the log scale of both axes, linear scaling is represented by
straight lines. All plots employ the same scale for the y axis
for easier comparison.
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Table 2. Details of our filter, the final profile and the overhead of the measurement environment 30 time steps of G250 with 3072 MPI
processes.

Instrumented regions (IRs) Number of IRs Number of calls of IRs Additional calls of IRs

MPI 33 14 642 billion
MPI and PETSc 89 14 726 billion 84 024 million
MPI, PETSc and ISSM (filtered) 147 14 726 billion 57 million

5.1 Transient step

Figure 3 displays the total runtime for 20 time steps and a
breakdown to the individual modules for the transient step.
From 2304 MPI processes on, the transient step deviates
from linear scaling and, most importantly, the computational
costs start to rise from 3072 MPI processes onward.

However, the stress balance module scales linearly up to
3072 MPI processes and reasonably above that. Although the
stress balance module does not scale linearly, its runtime is
still monotonously declining over the number of employed
MPI processes. In contrast, the earlier increase (i.e. at a lower
number of MPI processes) in the runtime of the thermal,
mass transport and moving front modules is more prominent.
Since they scale worse than the transient solution, they be-
come more relevant with increasing numbers of processors.
The worst scalability is found for the moving front module,
which contributes even more than the stress balance mod-
ule from 4608 MPI processes on. The main reason for these
discrepancies in the scaling behaviour is the fact that the in-
dividual modules solve equations with differing numbers of
total DOF and different computing costs per element. In the
following, we discuss the scaling behaviour and the algorith-
mic parts which cause it. Modules that do not solve any PDEs
(SMB and grounding line modules) scale linearly and are not
further investigated.

5.2 Stress balance module

Since the stress balance module is the most time consuming
module of ISSM, it is the most important module with re-
spect to performance optimization and thus discussed first.
Exploiting the natural anisotropy of the problem, the hori-
zontal and vertical components are solved in an uncoupled
fashion, and the structure of the solution procedure varies
between these two main components. Therefore, we present
them here separately. The runtime of both modules is dis-
played in Fig. 4.

We observe that the stress balance horizontal module is
by far more expensive to solve than the vertical, which is ex-
pected due to more DOF in the former. The scaling behaviour
of both modules differs significantly with the stress balance
vertical module scaling worse. For the horizontal stress bal-
ance module, runtime is still monotonously declining at 6144
MPI processes but starts to deviate from the linear scaling.
The stress balance vertical module exhibits a minimum run-

Figure 4. Runtime of the stress balance computation of ISSM
Greenland model G250.

time at 2304 MPI processes and slows down by about a factor
of 4 with 6144 MPI processes. In the horizontal case, linear
scaling breaks down when the DOF per MPI process fall be-
low 10 000, while the vertical case never reaches 10 000 DOF
per MPI process.
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Figure 5. Runtime of the thermal module for G250.

The execution time of the stress balance horizontal mod-
ule and the stress balance vertical module on low core counts
is dominated by the costs for the computation of the entries
of the matrix, which scales linearly with the number of cores
for setups considered in this work. Most notably, the costs
for the matrix assembly are in both cases rising from 1152
cores on despite the large difference in the size of the prob-
lem. The linear solver does not represent a problem either in
the stress balance horizontal module or in stress balance ver-
tical module: it does not need a significant amount of time
and its scaling is sufficient. While the stress balance vertical
module is solved in a linear equation system, the nonlinear
equation system of the stress balance horizontal module has
to be solved iteratively and needs approximately 12 iterations
per time step for this particular application.

5.3 Thermal module

The runtime for the thermal module is presented in Fig. 5.
The linear scaling of the module breaks down with about
12 000 DOF per MPI process and, after reaching a mini-
mum at 2304 MPI processes, the execution time rises again.
The execution time is dominated by three components: the
computation of matrix system entries, the matrix assembly
and the update of basal constraints. The assembly of the ma-
trix system scales only up to 768 MPI process, which corre-
sponds to about 18 600 DOF per MPI process.

The thermal module contains a nonlinear iteration scheme
in which the basal boundary conditions are updated. This up-
date is expensive, and the execution time does not change
much as the number of cores increases. Furthermore, Fig. 5
shows that the costs of the linear solver can be neglected.
The computation of the convergence criteria and the post-
processing of the results (summarized as “other”) do not need

significant runtime and scale linearly within the range of our
experiments.

5.4 Moving front module

The moving front module consists of three individual mod-
ules: (1) a level-set module that is executed first, followed by
(2) a module evaluating the slope of the level-set function and
lastly (3) the extrapolation module. As shown in Fig. 3, the
moving front module becomes as costly as the very expen-
sive stress balance module, while slowing down even more
than the thermal module above 3072 MPI processes.

The runtime of each step is displayed in Fig. 6. All three
constituent models scale up to 768–1152 MPI processes and
are mainly limited by the assembly of the equation system.
Whereas in the extrapolation module the matrix assembly
does not even scale for ∼ 12 000 DOF per MPI processes,
in the level-set and level-set slope modules, the costs for the
matrix assembly rise once DOF per MPI processes is below
10 000.

The amount of time required for allocation of memory for
the level-set and level-set slope modules is similar to that of
stress balance and thermal modules. In contrast, the alloca-
tion of memory is more time consuming for the extrapolation
module. This is likely due to repeatedly solving a diffusion
equation that accumulates larger costs.

The linear solver does only take a significant amount of
time in the extrapolation module and scales linearly. The ex-
ecution time of the linear solver of the level-set and level-set
slope modules is negligible. Other routines are summarized
in the dashed grey line, but because of an almost linear scal-
ing, they do not play an important role.

5.5 Mass transport module

This module is characterized by a particularly low number of
DOF which is 30 times smaller than in the horizontal stress
balance and 13 times less than in the thermal module. The
overall module scales up to 1536 MPI processes (Fig. 7) de-
spite the number of DOF per MPI process being already as
low as 693. Figure 7 reveals that matrix assembly is the main
scaling problem of the mass transport module once the num-
ber of DOF per MPI process drops below about 5500. The
linear solver has negligible overall costs; however, its linear
scaling ends at the same number of cores (and with the same
DOF/core) as the assembly of the matrix system is becoming
more costly than the allocation of memory. Other routines –
such as averaging over depth and the update of constraints,
to name the most expensive ones – scale linearly and are not
further investigated at this point.

5.6 Throughput of the transient solution

Of high interest in terms of planning simulations is the quan-
tity SYPD, as it reflects the total time needed to conduct a
certain simulation. As the typical applications of ice sheet
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Figure 6. Runtime of the moving front module for G250.

Figure 7. Runtime of the mass transport module for G250.

Figure 8. SYPD for various grid resolutions estimated from a run-
time of 20 time steps.

models vary strongly in simulated time periods and resolu-
tion, we conducted here simulations with coarse resolutions
(G4000), a resolution that is still higher than that used in the
current paleo-simulations, as well as with the highest resolu-
tion we could afford (G250). We estimated SYPD from our
simulations of 20 time steps and scaled them up to 1 year by
also taking into account differing time step sizes for each res-
olution. As displayed in Fig. 8, SYPD is approaching a max-
imum at 1152–2304 MPI processes with a decline at higher
numbers of cores. The coarser the resolution, the larger the
SYPD. Increasing spatial resolution requires a smaller time
step strongly impacting the throughput at high resolutions.
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Figure 9. Runtime for various grid resolutions.

5.7 Scalability comparison for different resolutions

As our ability to assess the scalability of the code might be
limited by the size of the problem we solve, we are conduct-
ing in this last part a comparison for simulations of Green-
land in different resolutions. Figure 9 displays the total run-
time for five different resolutions. The corresponding DOF
per MPI process for the different modules is presented in
Fig. 1, and an overview of the minimum and maximum num-
ber of DOF for each resolution is given in Table 1. There
is a factor of about 34 between the maximum and the mini-
mum DOF between G250 and G4000. The overall behaviour
is similar for all resolutions: the code scales linearly until a
threshold and execution time is rising from that minimum on.
The minimum in execution time is reached at 2304 MPI pro-
cesses for the high resolutions (G250 and G500). For lower
resolution (and lower DOF), the minimum shifts towards
lower number of MPI processes. For G4000, the minimum
is reached at half of the number of MPI processes than for
G250 and G500.

6 Discussion

The performance analysis for the components of individual
modules reveals that the major scaling issue is the assembly
of the equation system matrix as shown in Figs. 4–7. Fig-
ure 10 displays the costs of matrix assembly in all modules
vs. the DOF per MPI process. It reveals that the execution
time for matrix assembly is reaching a plateau (vertical stress
balance and extrapolation modules) or potentially approach-
ing a plateau from a certain DOF per MPI process onwards.
The minimum is similar for the 3-D cores at about 10 000
DOF per MPI process, whereas the minimum of 2-D modules
is below that value. The range of costs for matrix assembly

Figure 10. Execution time for matrix assembly for various modules.
Symbols are representing the modules, while the colour is denoting
the number of MPI processes.

Figure 11. Percentage of computation time spent in matrix assem-
bly versus the remaining computations in mass transport module.

is varying for 2-D modules by a factor of 104–614, while it
is for 3-D modules only a factor of 5–60 with the minimum
of five being found for the vertical stress balance module.
The matrix assembly costs for the two modules with nonlin-
ear iterations (horizontal stress balance and thermal modules)
scale for larger numbers of MPI processes very similarly to
each other.

Matrix assembly consists almost entirely of MPI commu-
nication, and the cost of communication increases from a cer-
tain point on as the number of MPI processes grows. The
allocation of memory and the computation of entries of the
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equation system, on the other hand, are both core-local com-
putations and hence scale linearly with the number of cores.
In particular, this part of the computation will scale further,
because elements are distributed evenly on MPI processes,
no matter how many or few elements are computed on each
core. In all these modules, the runtime contribution of vec-
tor assembly is insignificant and the linear solver is either
insignificant or scales well.

Our measurements reveal that the scalability is breaking
down in all modules by poor performance of the matrix as-
sembly. The tipping point mainly depends on the costs of the
allocation of memory and the time for computing the element
entries of an individual PDE, the amount of elements per MPI
process and the data locality of the assembly, which impacts
the amount of inter-core communication required for the as-
sembly. So, for a fixed core count, increasing DOF increases
performance but, with an increasing number of MPI pro-
cesses, the communication overhead of the assembly starts
dominating at some point. Similar behaviour was also found
in other studies (e.g. Perlin et al., 2016). This is also clearly
reflected in Fig. 11, which shows the increasing runtime of
matrix assembly as the number of cores increases.

While not in the focus of the current study, we also noticed
that the output routine does not scale well either. The main
reason for this is an indexing scheme tailored towards post-
processing in the MATLAB/Python user interface which
does not exhibit good data locality and leads to a large num-
ber of MPI calls. Here, we suggest the more data-local in-
dexing scheme already used in the creation of the equation
system. The compatibility to the user interface could then be
achieved in a reordering post-processing of the results, which
can be done trivially in parallel by distributing different out-
put vectors and different time steps among available cores.

The performance analysis of an ice sheet code needs to
keep the challenging numerical underpinnings of the prob-
lem in mind: the code solves in a sequential fashion a number
of different modules, each of which solves an equation sys-
tem of a very different type and with a different number of
DOF. Therefore, this type of code is inherently prone to the
situation that a particular domain decomposition may be opti-
mal for the module with the largest number of DOF and scale
well with increasing core counts, while the performance of
the module with a smaller number of DOF may not experi-
ence any improvement – or even worsen – with increasing
core counts.

Also other components of ESMs are facing the issue that
modules with fewer DOF are limiting scalability. For the fi-
nite volume sea ice–ocean model FESOM2(Finite-volumE
Sea ice–Ocean Model, version 2.0), similar scalability is-
sues were found for 2-D computations (Koldunov et al.,
2019) such as the sea ice module and the linear solver. For
FESOM2, the problem boils down to a large number of short
but too frequent communications that were suggested to be
addressed by widening the halo layer.

Our analysis reveals that the migration of lateral margins is
becoming costly with increasing number of cores. This mod-
ule includes the extrapolation of some solution fields per-
formed via solving a diffusion equation over the ice-free re-
gions constrained by the values calculated in the ice-covered
region. This approach generates the smallest stiffness matri-
ces in the overall sequence because ISSM treats Dirichlet
boundary conditions with a lifting method so that only the
unconstrained degrees of freedom are included in the stiff-
ness matrix. Since all vertices located on ice are constrained,
the unconstrained degrees of freedom are only those that cor-
respond to the vertices that are outside of ice, and one ends up
with a very small number of DOF per MPI process. One ap-
proach to address this problem would be to use an alternative
approach for treating Dirichlet boundary conditions such as
including entries for all nodes in the stiffness matrix, setting
rows of constrained nodes to 0 except along the diagonal and
changing the right-hand side to the value of the constraint.

In addition, wherever a low number of DOF per MPI
process is limiting scalability with increasing core counts,
the number of DOF could be increased by switching to P2
(quadratic) elements. In this context, one must find a reason-
able balance between increasing the size of the problem for
the sake of making the node computation more expensive
while keeping communication constant, and increasing to-
tal computational costs disproportionally with respect to the
additional knowledge gain. At this point, it should also be
mentioned that the bedrock topography is only insufficiently
known, and resolutions finer than 150 m are to date limited
by the lack of input data for such simulations.

In order to increase the throughput, new modelling strate-
gies are worth investigating. The nonlinear iterations are con-
tributing to the overall costs of a time step significantly. De-
pending on the particular application, the number of nonlin-
ear iterations may be reduced. Thus far, nothing is known
about the effect of such a reduction, and care must be taken
not to miss abrupt changes in the system. A simulation study
comparing the resulting evolution of the temperature field
with and without iterative update of the basal constraints can
assess this effect. It is here also worth considering employing
error indicators to steer the number of nonlinear iterations.
Similar to error indicators used for adaptive mesh refinement
(dos Santos et al., 2019), physics-based approaches may be
particularly attractive.

Future simulation strategies may comprise more on-the-
fly analyses than is currently standard in ice sheet codes. So
far, only few scalars are computed, while an in-depth analy-
sis is conducted in the post-processing. Some analyses may
be conducted on the level of processors, while others need
to be run globally. In particular, sensitivity studies for tun-
ing model parameters would benefit from such an on-the-
fly analysis with simulations producing unrealistic results
quickly terminated.

From the perspective of ice sheet codes running coupled in
ESMs, we recommend to consider higher resolutions even if
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long timescales are anticipated, as this leads to better scal-
ing than coarse resolution. If the anticipated SYPDs can-
not be met, the ice sheet code is to be run at its peak per-
formance rather than the maximum number of cores avail-
able. To this end, investigations of optimal sharing of re-
sources between codes of ESMs should be conducted. Simi-
lar to ESMs (Bauer et al., 2021), ISSM still falls short in rea-
sonable SYPD for the tasks ahead. Taking the ocean model
FESOM2 as the target – this is the most suitable candidate
for coupling to ISSM due to its unstructured meshes and
excellent parallel scalability – our results in Fig. 8 for the
highest resolution mesh indicate that we would need about a
factor 20 improvement in model throughput for the future
versions of ISSM in order to match approximately 10–15
SYPDs demonstrated by FESOM2 in an operational config-
uration on a high-resolution mesh (Koldunov et al., 2019).

By means of the performance analysis we also identified
some avenues for future improvement of the code. The reuse
of the equation system matrix is also applicable to the mul-
tiple executions of the extrapolation step, and a change of
indexing in the requested outputs module can be used to im-
prove the memory locality. Furthermore, our instrumentation
is suitable for efficient tracing and load imbalance detec-
tion. The major load imbalances occur in the computation of
matrix entries and lead to load-imbalanced matrix assembly.
The matrix assembly is clearly a key computation that war-
rants further investigation. We also want to emphasize here,
that we investigated the performance of an HO application
only and that other issues may arise for other momentum bal-
ance choices.

Although our performance instrumentation leads to a very
modest overhead, this can be further diminished. About 99 %
of the MPI calls belong to three functions, MPI_Iprobe,
MPI_Test and MPI_Testall, and about 90 % of the PETSc
calls recorded by Score-P refer to setvalue() routines used in
filling buffers for matrix assembly. If the MPI calls are not of
interest, they can be disabled in groups via the Score-P inter-
face, or individual functions can be excluded by implement-
ing and preloading a functionless PMPI interface. Currently,
the library wrapping interface of Score-P does not allow for
the easy exclusion of certain functions in a library (i.e. a
whitelist/blacklist functionality for library functions). How-
ever, the overhead of our instrumentation would clearly be
reduced further if instrumentation of these low-level PETSc
calls could be avoided.

7 Conclusions

To analyse the practical throughput of a typical application
of ISSM, we conducted transient HO simulations for the
Greenland Ice Sheet in five different horizontal resolutions.
We present runtime measurements for individual code mod-
ules based on an instrumentation of the ice sheet code with
Score-P. We conclude that ISSM scales up to 3072 MPI pro-

cesses in the highest resolution that we tested (G250). While
it was expected that the stress balance module would dom-
inate the runtime, we found that simulating the motion of
the lateral margins becomes the main cost factor from 4608
MPI processes on. We find major scaling challenges in HO
due to the assembly of the system matrix, in particular, when
the number of DOF per MPI process is falling below 10 000.
The maximum throughput for all horizontal resolutions in
HO was reached at 1152–2304 MPI processes and is partic-
ularly small for the highest resolution due to severe time step
restrictions.

This study also showed that meaningful in-depth perfor-
mance analysis of ISSM can be performed at little cost and
with minimal code changes, which could be eliminated com-
pletely in the future by a very limited refactoring of the code.
An instrumented, user-oriented, low-overhead profiling ver-
sion of ISSM can then be built from the unmodified main
source of ISSM. Thus, scientists using ISSM can monitor
performance of their code as their computational environ-
ment evolves without having to worry about carrying instru-
mentation code into their new code branch. Future advances
in instrumentation with respect to the filtering of library rou-
tines could further decrease instrumentation overhead to the
level where it is negligible, thereby allowing continuous per-
formance monitoring, which would provide valuable infor-
mation for the creation of execution models of ISSM and its
modules.

Appendix A

A1 Mathematical model

Let �i(t)⊆ R3 be a three-dimensional domain with t ∈

[0,T ]. All equations are given in Cartesian coordinates, of
which x and y are in the horizontal plane and z is parallel to
the direction of gravity and positive upwards. Let the follow-
ing function be given:

v : R3
7−→R3

(x,y,z) 7−→v (x,y,z)

:=
(
vx (x,y,z) ,vy (x,y,z) ,vz (x,y,z)

)
,

with v ∈ C2(R3,R3) being the velocity for the time t ∈

[0,T ]. We assume the ice to have constant density ρi ∈ R+
and hence being incompressible. Let the viscosity being
given as η : R3

→ R+, with η ∈ C1(R3,R) for t ∈ [0,T ].
The pressure is given as p : R3

→ R, with p ∈ C1(R3,R)
for t ∈ [0,T ]. The temperature is given as T : R3

→ R,
with T ∈ C1(R3,R) for t ∈ [0,T ], similarly the enthalpy is
E : R3

→ R, with E ∈ C1(R3,R) for t ∈ [0,T ]. Let the ice
thickness being given as H : R2

→ R, with H ∈ C1(R2,R)
for t ∈ [0,T ]. The normal vector n : 0× [0,T ]→ R3 be the
normal vector field on ∂�= 0s∪0b∪0cf pointing out of the
ice body by convention. The boundary at the ice–atmosphere
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transition is denoted by 0s, the ice–bed interface 0b and the
calving front as 0cf.

A1.1 Momentum balance

The momentum balance used in this study is the Blatter–
Pattyn higher-order approximation (Blatter, 1995; Pattyn,
2003). This approximation is reducing the Stokes equation
to two PDEs for the horizontal velocities vx,vy by neglecting
the bridging stresses and assuming the vertical component of
the momentum balance to be hydrostatic.

∂

∂x

(
4η
∂vx

∂x
+ 2η

∂vy

∂y

)
+
∂
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(
η
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∂
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where hs is the surface topography of the ice sheet, ρi the ice
density and g the gravitational acceleration. From the vertical
component of the momentum balance, we find the pressure
in HO to be

p = tDxx + tDyy − ρig(hs− z), (A3)

with the normal deviatoric stresses tDxx, t
D
yy in x and y direc-

tions, respectively. They are evaluated from the constitutive
relation tDij = 2ηDij with Dij the strain-rate tensor compo-
nents.

The boundary condition of the momentum balance is at all
boundaries 0s,0b,0cf a stress boundary condition but of a
different kind. The ice surface 0s is treated as traction-free.
At the ice base, 0b the kinematic boundary condition of the
momentum balance is given as the no penetration condition
v ·n= BMB with n reducing in HO to a normal vector in the
z direction only. The stress boundary condition in tangential
direction is given by the friction law that is implemented in
terms of basal stress; thus, τ b = f (vb) as

(t ·n) · t1 = τb,1 (A4)
(t ·n) · t2 = τb,2, (A5)

with the tangential vectors t1, t2 and the basal drag τ b =

(τb,1,τb,2). The basal velocity v‖b = (vb,1,vb,2) is then deter-
mined by a friction law. Basal drag and velocity are two-
dimensional vectors acting in the basal tangential plane. We
use a Weertman-type friction law with submelt sliding:

τ b =−C
−p̃

b v
‖

b|v
‖

b|
p̃−1N q̃/p̃ e

−Tb′/(p̃γ ) , (A6)

reformulated as a Neumann boundary condition (Rückamp
et al., 2019) with Cb the drag coefficient, T ′b the basal tem-
perature relative to pressure melting point, and γ , p̃, q̃ pa-
rameters given in Table A1.

Finally, at the (vertical) calving front 0cf, the boundary
condition is

(t ·n) ·n=

{
0 z ≥ zsl
−ρocgz z < zsl

, (A7)

with zsl the elevation of the sea level.

A1.2 Rheology

The viscous rheology of ice is treated with a regularized Glen
flow law (Eq. A8), a temperature-dependent rate factor for
cold ice and a water-content-dependent rate factor for tem-
perate ice.

η =
1
2
A(T ,p,W)−1/nE

−1/n
i d

(1−n)/n
e , (A8)

with the creep exponent n= 3, the flow rate factorA depend-
ing on temperature and water content W , the enhancement
factor Ei , and de the second invariant of the strain-rate ten-
sor Dij .

A1.3 Mass balance

The ice is treated as an incompressible material and hence
the mass balance reduces to divv = 0, which is used in HO
to derive the vertical velocity:

vz = vz|z=hb −

z∫
hb

(
∂vx

∂x
+
∂vy

∂y

)
dz′, (A9)

with vz|z=hb the vertical velocity at the ice base hb(x,y).
This quantity is given by the kinematic boundary condition
at the ice base that is assumed to be quasi-static:

vz|z=hb = vx
∂hb

∂x
+ vy

∂hb

∂y
−BMB, (A10)

with BMB the basal melt rate.

A1.4 Enthalpy balance

We solve the enthalpy balance equation to resolve cold-,
temperate- or polythermal-ice states (Eq. A11, Aschwanden
et al., 2013; Kleiner et al., 2015). The evolution equation for
enthalpy E reads as

ρi

(
∂E

∂t
+ v · ∇E

)
=−∇ · q +9, (A11)

with q the heat flux and 9 the source term. The advection
dominated problem is stabilized with the anisotropic stream-
line upwind Petrov–Galerkin (ASUPG) method (Rückamp
et al., 2020b). The heat flux is given by

q =−Keff∇E =−

{
Kc∇E E < Epmp
K0∇E E ≥ Epmp

, (A12)

Geosci. Model Dev., 15, 3753–3771, 2022 https://doi.org/10.5194/gmd-15-3753-2022



Y. Fischler et al.: A scalability study of the Ice-sheet and Sea-level System Model (ISSM, version 4.18) 3767

with Kc = ki/ci, ki the thermal conductivity and ci the spe-
cific heat capacity of ice. The discontinuous conductivity,
Keff, is treated with a geometric mean (Rückamp et al.,
2020b). The source term reads

9 =

{
4ηd2

e E < Epmp
4ηd2

e +∇ ·
(
ki∇Tpmp

)
E ≥ Epmp

, (A13)

with 4ηd2
e representing strain heating and (·)pmp denoting

quantities at the pressure melting point. For solid ice, Epmp
is defined as

Epmp = Es(p)= ci(Tpmp(p)− Tref), (A14)

where Tpmp(p)= T0−βp is the pressure melting point tem-
perature, β is the Clausius–Clapeyron constant, and T0 is the
melting point at standard pressure.

The temperature field T (x,y,z) is then diagnostically
computed from the enthalpy transfer rules:

E(T ,W,p)=

{
ci(T − Tref), if E < Epmp cold ice
Epmp+WL, if E ≥ Epmp temperate ice,

(A15)

with Tref a reference temperature and L the latent heat of
fusion.

At the ice surface 0s, the boundary condition is given by
the surface skin temperature with zero water content. Four
different cases need to be considered for the boundary con-
dition at the ice base 0b:

Cold base (dry). If the glacier is cold at the base and with-
out a basal water layer (i.e. E < Epmp and Hw = 0), then

−Kc∇E ·n= qgeo. (A16)

Temperate base. If the glacier is temperate at the base without
an overlying temperate ice layer with melting conditions at
the base (i.e. E ≥ Epmp, Hw > 0 and ∇T ′ ·n< β/Kc), then

E = Epmp. (A17)

Temperate ice at base. If the glacier is temperate at the base
with an overlying temperate ice layer (i.e.E ≥ Epmp,Hw > 0
and ∇T ′ · n≥ β/Kc), we let

−K0∇E ·n= 0. (A18)

Cold base (wet). If the glacier is cold but has a liquid wa-
ter layer at the base which is refreezing (i.e. E < Epmp and
Hw > 0), then

E = Epmp. (A19)

Here T ′(p)= T − Tpmp(p)+ T0 = T +βp is the tempera-
ture relative to the melting point, Hw is the basal water
layer thickness. In addition to the temperate base condition,
E ≥ Epmp, it is necessary to check if there is a temperate
layer of ice above, ∇T ′ ·n≥ β/Kc. The type of basal bound-
ary condition – Neumann or Dirichlet – is therefore time de-
pendent and therefore also requires a nonlinear iteration.

The jump condition on 0b gives the basal mass balance
BMB

BMB=
Fb− (q i− qgeo) ·n

Lρi
, (A20)

with the frictional heating Fb due to basal sliding, the upward
heat flux in the ice q i, and the heat flux qgeo entering the ice
at the base.

A1.5 Mass transport

Ice thickness evolution equation reads as

∂H

∂t
=−

∂

∂x

hs∫
hb

vxdz−
∂

∂y

hs∫
hb

vydz+SMB−BMB, (A21)

with H the ice thickness, SMB the surface accumulation
rate (surface mass balance). For grounded ice, the surface
topography is computed from hs = hb+H . For floating ice,
hb =−Hρi/ρsw and hs =H(1−ρi/ρsw) with ρsw being the
seawater density.

A1.6 Grounding line evolution

For HO the grounding line position is obtained from hydro-
static equilibrium: let the thickness of flotation be given by
Hf, then

Hf =−
ρoc

ρi
,hb (A22)

with ρoc the density of the ocean and grounded and floating
parts are defined as

grounded ∀ H >Hf
grounding line ∀ H =Hf
floating ∀ H <Hf.

A1.7 Evolution of the horizontal margins

The terminus evolution (for both, marine terminating
glaciers, as well as ice shelves) is given by the kinematic
calving front condition using a level-set method. The level-
set function, ϕ, is defined as ϕ(x, t) < 0 x ∈�i(t)

ϕ(x, t)= 0 x ∈ 0cf(t)

ϕ(x, t) > 0 x ∈�c(t),

where �c is the subdomain where there is no ice. The level
set therefore defines implicitly the terminus where ϕ(x, t)=
0. The level set is updated at each time step using the level-set
equation:

∂ϕ

∂t
+ vf · ∇hϕ = 0, (A23)
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where vf is the ice-front speed, taken as vf = vh−c n, where
c is the calving rate, vh = (vx,vy)

T and ∇h = (∂/∂x,∂/∂y)
T .

For filling the required physical variables at elements that
are activated due to expansion of the ice sheet area, an extrap-
olation is required. This is done by solving a 2-D diffusion
equation for each variable (·):

∇h · ∇h(·)= 0, (A24)

and assuming a diffusion coefficient of 1. Equation (A24)
is solved for 3-D fields individually for each vertical layer
(vx,vy,vz,E) and for H .

A1.8 Surface mass balance

While in general the derivation of SMB may require an
energy balance model to compute, from precipitation, air
temperature and radiation, the surface skin temperature and
SMB, we restrict use in this study a simple approach and
compute surface melting is parameterized by a positive de-
gree day (PDD) method (Reeh, 1991; Calov and Greve,
2005).

A1.9 Convergence criteria

ISSM employs three different convergence criteria (Larour
et al., 2012). A residual convergence criterion εres < ε1 is
based on an Euclidean norm between the current and the pre-
vious iteration steps ensures the convergence of the linear
system. The relative norm εrel < ε2 uses the infinity norm to
ensure convergence in relative terms. In addition, an absolute
norm εabs < ε3 controls the convergence in absolute terms.

A1.10 Parameters

Table A1. Physical parameters used for ISSM.

Quantity Value

Density of ice, ρi 910 kgm−3

Density of the ocean, ρoc 1028kg m−3

Gravitational acceleration, g 9.81m s−2

Length of year, 1a 31556 926 s
Power-law exponent, n 3
Flow enhancement factor, E 3
Melting temperature
at low pressure, T0 273.16 K
Reference temperature, Tref 223.15 K
Clausius–Clapeyron gradient, β 8.7× 10−4 Km−1

Universal gas constant, R 8.314Jmol−1K−1

Heat conductivity of ice, κ 2.1 Wm−1K−1

Temperate ice conductivity, K0 0.021kg m−1 s−1

Specific heat of ice, c 2009Jkg−1K−1

Latent heat of ice, L 3.35× 105 J kg−1

Drag coefficient, Cb 6.72 m a−1 Pa−1

Sliding exponents, (p̃, q̃) (3,2)
Submelt-sliding parameter, γ 1◦C

A2 Mesh and horizontal velocity field

Figure A1. Horizontal mesh and simulated surface velocities, vs ,
of the Jakobshavn Isbræ: (a) G4000, (b) G250 and (c) the same
as panel (b) but without mesh. The location is shown by the red
inset in panel (a). The background image is a RADARSAT mosaic
(Joughin, 2015; Joughin et al., 2016).

Code and data availability. ISSM version 4.18 (Larour
et al., 2012) is open source and freely available at
https://issm.jpl.nasa.gov/ (last access: 23 March 2022). A copy of
the source code including minor changes and scripts to build ISSM
on the HHLR is available on https://doi.org/10.48328/tudatalib-
613 (Fischler, 2021a). The Greenland setup is available
on https://doi.org/10.48328/tudatalib-614 (Fischler and
Rückamp, 2021) and the generated profiles are stored at
https://doi.org/10.48328/tudatalib-612 (Fischler, 2021b).
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