
1. Introduction
Boreal forests hold more than one-third of global terrestrial carbon and cover about 55% of the total global 
permafrost area (Helbig et al., 2016). The forest cover efficiently insulates the underlying, ecosystem-protected 
permafrost (Chang et al., 2015) and therefore plays an important role in the development of boreal regions and the 
stability of permafrost in a warming climate. Despite little human interference and due to extreme climate condi-
tions such as winter temperatures below −50° C and low precipitation, the biome is highly sensitive to climatic 
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into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, 
or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified 
logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the 
impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost 
conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate 
different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground 
surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss 
induces soil drying of up to 44%, leading to lower active layer thicknesses and abrupt or steady decline of 
a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, 
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that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years 
after the disturbance. Dryer years can drastically change the direction of the larch forest development within the 
studied period.

Plain Language Summary Boreal forests of eastern Siberia, cover more than half of the global 
permafrost area and insulate the underlying frozen ground. The development of the forest cover is important 
for the state and evolution of permafrost. Forest disturbances such as fires or droughts and climate change 
can cause changes in this ecosystem. Potentially such shifts can destabilize the carbon stored within the 
vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into the dry or swampy 
bush- or grasslands, shift toward different forest types, or recover. An increase in the number and intensity 
of fires, as well as intensified logging, could lead to partial or complete permafrost degradation. We study 
the interactions between forest disturbances, permafrost, and forests. We use a forest-permafrost model and 
simulate disturbances at a study site in eastern Siberia. We implement mortality, defoliation, and ground surface 
changes of different disturbances. We then analyze the forest recovery's impact on the permafrost underneath. 
We find that forest loss can cause soil drying and abrupt or steady decline of forests, depending on the intensity 
of the disturbance. Only after a surface fire, which has low mortality rates and is the most common disturbance, 
forests can successfully recover.
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changes and thus prone to vegetation shifts (Mamet et al., 2019; Pearson et al., 2013). While most boreal forests 
are dominated by evergreen needleleaf taxa, large forested regions in eastern Siberia, which make up around 20% 
of the global boreal forest cover, are larch (deciduous needleleaf) dominated. The larch forests foster a unique 
interplay between the forest cover, the underlying permafrost, and the active layer depth (Kajimoto, 2010; Peng 
et al., 2020; Tanaka et al., 2008; Zhang et al., 2011), disturbances (Rogers et al., 2015), and climate, and thereby 
inhibit the invasion of late-successional evergreen taxa (V. Kharuk et al., 2007). Recently, permafrost destabi-
lization and vegetation shifts have become visible at many locations throughout the vast ecosystem-protected 
permafrost region (Ulrich et al., 2017). Often, the observed permafrost dynamics are related to anthropogenic 
deforestation, fires, and climate change-related forest dynamics, which bring this tightly coupled ecosystem out 
of balance but the exact processes and thresholds are poorly studied.

Forest composition and density exert a strong control on permafrost stability (Chasmer et  al.,  2011; Fisher 
et al., 2016; Stuenzi, Boike, Cable, et al., 2021; Yi et al., 2007) and a direct feedback mechanism, namely the 
thermal and hydrological conditions of the ground determine the temporal ecosystem evolution and the state of 
the vegetation cover (Bonan et al., 1992; Carpino et al., 2018; Loranty et al., 2018). Anthropogenically-caused 
disturbances and changing climate conditions are leading to shifts in this ecosystem (Baltzer et al., 2014). This 
could potentially destabilize the carbon stored within the vegetation and permafrost (Romanovsky et al., 2017). 
Disturbed permafrost-forest ecosystems can develop into the dry or swampy bush- or grasslands (X. Y. Jin 
et al., 2020), the shift toward broadleaf- or evergreen needleleaf-dominated forests (Rogers et al., 2015; Taka-
hashi, 2006), or recover to the pre-disturbance state. An increase in the number and intensity of fires, and the 
lengthening of the fire season (Holloway et al., 2020; Narita et al., 2020), as well as intensified logging activities, 
could lead to partial or complete permafrost degradation and vegetation shifts away from deciduous-dominated 
forest stands (V. I. Kharuk et al., 2019). Especially permafrost at the southern margin might not remain resil-
ient under a warming climate because of its dependence on ecosystem protection (Yershov, 2004). While larch 
growth increments and a positive gross primary production suggest higher carbon sequestration in the future (V. 
I. Kharuk et al., 2019), an increase in fires and carbon emissions might convert the vast larch forest into a carbon 
source, especially in years of extreme fires (V. I. Kharuk et al., 2021).

Previous modeling set-ups have coupled dynamic vegetation to permafrost models to study forest development 
and different components such as fire disturbances, topology, or the impact of greenhouse gas scenarios. Sato 
et al. (2010) (SEIB-DGVM) have simulated post-fire successional patterns at the Spasskaya pad without specifi-
cally incorporating permafrost dynamics and the impact of forest change on permafrost. Recently, Sato et al. (2020) 
have used an updated model version to study topographic control on soil-water relocation and over-wet-kill of 
larch trees. Furthermore, Zhang et  al.  (2011) studied the interactions between permafrost and forest biomass 
under current and future climate scenarios and have described larch-permafrost systems as  a tightly-coupled 
ecosystem. SibClim has additionally been used to simulate vegetation shifts across eastern Siberia (Tchebakova 
et al., 2009) and Zhang et al. (2009) used FAREAST to model the responses of eastern Eurasian forests to climatic 
change to understand the compositional and structural sensitivity at several locations. Furthermore, an updated 
version of FAREAST called UVAFME (Foster et al., 2019) has been used to simulate Russian forest dynamics 
under different greenhouse gas emission scenarios (Shuman et al., 2014) and along with a fire disturbance module 
to track mortality at tree-species and -size level, and biomass and species dynamics (Shuman et al., 2017). This 
study found that larch remained dominant after a specific fire disturbance and under an altered climate scenario, 
and concluded that complex competition at the species level is important in evaluating forest response to fire and 
climate. In a study on the distribution of vegetation productivity trends, wildfires, and near-surface soil carbon, 
Loranty et al. (2016) have found positive vegetation productivity trends in continuous permafrost and less positive 
and negative trends in discontinuous. These results indicate that productivity trends (greening or browning) might 
be directly linked to permafrost distribution. Takahashi (2006) used artificial fire at Spasskaya pad to study fire 
dynamics and succession and described the common forest dynamic patterns leading to regeneration or degrada-
tion of larch forests. Petrov et al. (2022) studied ground temperature and active layer thickness observations at the 
same site and found that the permafrost progressively restabilized following forest fires. Moreover, Yoshikawa 
et al. (2002) found that heat transfer through conduction was not significant during a fire and that active layer 
thickening depends heavily on the thickness of the remaining organic soil layer. In Canadian boreal forest areas, 
Rey et  al.  (2020) have found that the pre-disturbance soil conditions are key factors controlling the thawing 
and talik formation processes, and wildfire initiated talik-development is already substantial. Finally, Alexander 
et al.  (2012) evaluated pre- and post-fire carbon accumulation patterns in Siberian larch stand throughout the 

Supervision: Stefan Kruse, Julia 
Boike, Ulrike Herzschuh, Luidmila A. 
Pestryakova, Moritz Langer
Validation: Simone Maria Stuenzi
Visualization: Simone Maria Stuenzi
Writing – original draft: Simone Maria 
Stuenzi
Writing – review & editing: Simone 
Maria Stuenzi, Julia Boike, Alexander 
Oehme, Sebastian Westermann, Moritz 
Langer



Journal of Geophysical Research: Biogeosciences

STUENZI ET AL.

10.1029/2021JG006630

3 of 24

different successional stages. They found that increasing fire frequencies without altered stand densities could 
likely lead to declined landscape-level carbon storage. If, on the other hand, larch densities increase after fires 
the larger above-ground carbon pools could compensate for the shorter successional cycle. In summary, former 
studies on stand-replacing or surface fires and other disturbances in eastern Siberia have focused on their implica-
tions on the carbon budget (Alexander et al., 2012; Schulze et al., 2012; Soja et al., 2004), their potential impact 
through surface albedo change and related surface radiative forcing (Chen et al., 2018; Chen & Loboda, 2018; 
Stuenzi & Schaepman Strub,  2020), or the following successional patterns and species compositions (Taka-
hashi, 2006; Shuman et al., 2014, 2017). While all of these studies have greatly improved our understanding of 
the underlying mechanisms in the tightly coupled permafrost larch ecosystems of eastern Siberia, they often lack 
the incorporation of a physically-based representation of the heat and water exchange between the canopy and 
the ground. Further work is therefore needed to identify the post-disturbance response of permafrost (Holloway 
et al., 2020), and the related interplay between the living forest and the permafrost (Li et al., 2021).

We apply a dynamic vegetation-permafrost model (Kruse, Stuenzi, Boike, et al., 2022), based on the one-di-
mensional permafrost land surface model, CryoGrid (Westermann et al., 2016), and the individual-based and 
spatially explicit larch forest model LAVESI (Kruse et al., 2016). The permafrost model was adapted for use in 
boreal forest ecosystems (Stuenzi, Boike, Cable, et al., 2021; Stuenzi, Boike, Gädeke, et al., 2021) by adding a 
state-of-the-art multilayer vegetation model (CLM-ml v0, originally developed for the Community Land Model 
(CLM) by Bonan et  al.  (2018). The resulting coupled model (CryoGrid-Vegetation) is a highly detailed land 
surface model capable of reproducing the heat and water transfer through a dynamically evolving forest canopy 
with its root zone essentially controlled by permafrost. The model has previously been used to study the ther-
mo-hydrological impact of different forest cover densities and compositions on the underlying permafrost. Here, 
the use of this model with the larch forest simulator described in detail in Kruse, Stuenzi, Boike, et al. (2022) 
forms a dynamic vegetation-permafrost model which can reproduce the complex interplay between larch forests 
and the dynamically changing soil conditions linked to permafrost. We reconstruct vegetation disturbance scenar-
ios (surface and canopy fires, and logging) and simulate such scenarios at a specific, well-described site in 
central Yakutia. We study the interplay between forest disturbances, larch recovery, and the thermo-hydrological 
ecosystem factors. We shift the focus from vegetation succession toward the assessment of the impact different 
disturbances have on the hydro-thermal regime of permafrost and its feedback to the deciduous larch forest on a 
mid-term temporal scale (29 years, until 2050). We investigate the complex interplay between forest disturbances, 
permafrost conditions, and changing ecological factors which control larch forest stand recovery and permafrost 
dynamics to understand how certain disturbances, in combination with projected changing climatic conditions, 
can push this tightly coupled system out of balance.

The main objectives of this study are

1.  to demonstrate the capabilities of a coupled, dynamic multilayer forest − permafrost model to simulate the 
interplay within the highly sensitive system formed by dynamic boreal larch forest and permafrost

2.  to investigate which disturbances and intensities occur in our study region and under which climatic circum-
stances they trigger the tightly coupled system to get out of balance, and

3.  to study when and how the thermal and hydrological conditions of the underlying permafrost and the larch 
forest cover itself can reach a new state

2. Materials and Methods
2.1. Study Region

We used a site previously used for model validation at the southern margin of continuous permafrost to evaluate 
the permafrost's resilience toward forest disturbance scenarios. Our study site Spasskaya pad (SPA) is located at 
N 62.14°, E 129.37°, about 20 km north of Yakutsk, on the western side of the central Lena river, at an elevation 
of 237 m a.s.l (Maximov et al., 2019). The region is underlain by continuous permafrost and the majority of 
the forested area is dominated by the deciduous species Dahurian larch (Larix gemelinii, 89–90%), while 6% is 
covered by Scots pine (Pinus sylvestris), which prefer sandier soils. The rest of the area is vegetated by willow 
birch, a successful early-successor after forest disturbances. Especially after disturbances, deciduous species 
such as Alnus or Betula can also grow in the forest stands. Ground is covered by dense understory vegetation 
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such as Vaccinium vitis-idaea growing 0.05 m tall. Sugimoto et al. (2002) report a stem density of 836 stems per 
ha and a basal area of 27.12 m 2ha −1 for larch. Leaf-out of deciduous larch taxa has been observed in mid-May, 
with a growing period until late August. The topography is quite flat with an incline of 1.6° toward the north-
east. Mean annual air temperature reaches −5.97° C, with an average of −12.7° C during the snow-covered and 
13.7° C during the snow-free periods. Liquid precipitation adds up to around 170 mm and solid precipitation to 
84 mm (Simmons et al., 2007). In very dry and harsh conditions, larch trees restrict growth and photosynthetic 
capacity, by using water efficiently through stomata closure regulation (Baldocchi et al., 2004). Additionally, they 
use snow and ground ice melt water from the seasonally thawing permafrost (Kelliher et al., 1998). Therefore 
their physiological conditions are closely linked to the soil moisture dynamics. At Spasskaya pad active layer 
thickness is typically 1.0–1.4 m under larch forest. The ecological optimum of Siberian larch is far from the cold 
climate and frozen soils but in the milder climatic conditions they are out-competed by stronger competitors 
such as evergreen spruce or pine, and thus pushed out to the less favorable sites, such as the north (Abaimov 
et al., 1998). Their main rooting mass (80%) is concentrated in the upper, 0.3 m deep soil layer (Stuenzi, Boike, 
Cable, et al., 2021; Stuenzi, Boike, Gädeke, et al., 2021). On the warmed up and well drained plots, the roots of 
Larix gemelinii can penetrate to the depth of 0.8–1 m. Under optimal ecological conditions the tallest trees of 
Larix gemelinii can reach the height of 35–40 m (Abaimov et al., 1998).

2.2. Model and Setup Description

We apply a detailed permafrost-dynamic vegetation model based on CryoGrid-Vegetation described in (Stuenzi, 
Boike, Cable, et al., 2021; Stuenzi, Boike, Gädeke, et al., 2021), and LAVESI, an individual-based larch vegeta-
tion simulator, originally described in Kruse et al. (2016).

2.2.1. CryoGrid-Vegetation

The permafrost model is based on a one-dimensional, numerical land surface model that simulates the ther-
mo-hydrological regime of permafrost ground (Nitzbon et al., 2019). The thermo-hydrological regime is simu-
lated by numerically solving the one-dimensional heat equation with groundwater phase change. We used a 
modified nonisothermal Richards equation to solve flow in freezing soil based on the parameterization in Painter 
and Karra (2014). This relationship for phase partitioning of water in frozen soil shows improved performance 
for unsaturated ground conditions by smoothing the thermodynamically derived relationship to eliminate jump 
discontinuity at freezing. The exchange of sensible and latent heat, radiation, evaporation, and condensation at the 
ground surface are simulated with a surface energy balance scheme based on atmospheric stability functions. The 
model simulates the evolution of the snow cover using a detailed parameterization first implemented in Zweigel 
et al. (2021) and based on the CROCUS snow cover scheme (Vionnet et al., 2012).

This model has previously been extended by a multilayer canopy module for use in boreal permafrost regions devel-
oped by Bonan et al. (2014). The multilayer canopy model provides a comprehensive parameterization of fluxes from 
the ground, through the canopy up to the roughness sublayer. In an iterative manner, photosynthesis, leaf water poten-
tial, stomatal conductance, leaf temperature and leaf fluxes are calculated. This improves model performance in terms 
of capturing the stomatal conductance and canopy physiology, nighttime friction velocity and the diurnal radiative 
temperature cycle, and sensible heat flux (Bonan et al., 2014, 2018). The within-canopy wind profile is calculated 
using above- and within-canopy coupling with a roughness sublayer (RSL) parameterization (see Bonan et al. [2018] 
for further detail). The canopy model has been coupled to CryoGrid by replacing its standard surface energy balance 
scheme while soil state variables are passed back to the forest module (see Stuenzi, Boike, Cable, et al. [2021] and 
Stuenzi, Boike, Gädeke, et al. [2021] for additional model details). The vegetation module forms the upper boundary 
layer of the coupled model and replaces the surface energy balance equation used for common CryoGrid representa-
tions. CryoGrid operates at a 1D spatial resolution and a 5-min time-step. The model does not account for lateral water 
fluxes or topography. These fluxes are extremely small at this dry, flat, and homogeneous study site and therefore do 
not play an important role in the permafrost hydrology here. The multilayer canopy model requires a minimum LAI 
of 0.7 m 2m −2 and a minimum tree height of 1 m to set up a full canopy structure with multiple canopy layers. These 
layers are required for the successful simulation of the radiative transfer through the canopy and for the roughness 
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sublayer scheme. This scheme is based on the Harman et al. (2008) roughness sublayer theory which was developed 
for dense forests. Therefore, a forest cover below this threshold is considered forest cover free.

2.2.2. LAVESI

LAVESI is an individual-based, spatially-explicit, and pattern-oriented model that simulates larch stand dynamics 
and was originally described in Kruse et al. (2016). The relevant processes (growth, seed production and disper-
sal, establishment and mortality) are incorporated and adjusted to observation data gained from field surveys and 
literature. LAVESI simulates the forest cover dynamics at a yearly temporal resolution and at two hierarchical 
levels, the simulation area, which is characterized by a specific biotic and abiotic environment, and by individ-
ual trees and seeds. The trees and seeds are exactly positioned by x,y coordinates. Here, we used the updated 
LAVESI version described in detail in Kruse, Stuenzi, and Gloy (2022). One simulation step equals 1 year and 
competition, growth, seed production, and dispersal, establishment, and mortality are invoked consecutively. 
For resource competition, basal diameters of the individual trees are used to calculate the competition strength 
between neighboring trees. Based on competition and the maximum possible tree growth each year, the growth 
of every individual tree is calculated. The seeds are dispersed from parent trees at a set rate and with decreasing 
probability for longer distances. Seed production of mature trees depends on weather, competition, and tree size, 
and the seeds on the ground germinate depending on weather conditions. Finally, seeds and trees are removed 
(”die”) at a specific mortality rate based on long-term mean weather values, a drought index, the surrounding 
tree density, tree age, and size. The model was implemented in C++ using standard template libraries and compi-
lations. Further LAVESI parameters are provided in the original descriptions in Kruse et al. (2016, 2018) and 
Kruse, Stuenzi, Boike, et al. (2022). Newly introduced parameters are provided in Table A2.

2.2.3. Model Description and Setup

To dynamically update the vegetation cover and therefore allow for the simulation of disturbance scenarios we 
applied the coupled Larix Vegetation Simulator (LAVESI) permafrost energy transfer model (CryoGrid-Vegeta-
tion) described in Kruse, Stuenzi, Boike, et al. (2022). This coupled model can simulate the energy- and water 
exchange processes in permafrost-larch environments including mortality after different disturbance scenarios 
and reestablishment of larch taxa. LAVESI, with a yearly time step, served as the host and called individual Cryo-
Grid-Vegetation instances. Here, we used a total LAVESI plot size of 1250 × 1250 m. This simulated forest patch 
in LAVESI is coupled to the one-dimensional CryoGrid-Vegetation model by separating the study plot area into 
three sub-areas for which individual CryoGrid-Vegetation instances were run. The spatial variability of the forest 
cover is, thus, explicitly represented by an ensemble of three parallel CryoGrid instances (sub-areas). Topog-
raphy or lateral water fluxes between these sub-areas are not represented. The stand specific state variables are 
leaf area index (LAI), stem area index (SAI), plant area index (PAI), litter layer height, organic soil layer, ground 
surface albedo and soil moisture content. These key variables representing the three sub-areas are provided to 
CryoGrid by LAVESI and based on them, individual CryoGrid-Vegetation simulations are started in parallel via 
a system call. In exchange, LAVESI receives the yearly total plant available groundwater in percent (PAW), and 
the maximum active layer thickness (ALT). The output generated by the three CryoGrid-Vegetation instances is 
extrapolated back to the original resolution of the environmental grid used in LAVESI (see Kruse, Stuenzi, Boike, 
et al. [2022] for additional model details). The optimum plant available water levels for growth for the simulated 
Larix gmelinii tree species is between 21.1% and 40% (Sato et al., 2010). When actual levels fall below 15% or 
exceed 60%, trees get a growth penalty of 10%.

2.3. Forest Disturbance Scenarios and Model Simulations

We used this coupled, dynamic vegetation-permafrost model to study permafrost conditions under natural, distur-
bance-driven, and climate change-induced forest cover dynamics.

2.3.1. Forest Disturbance Scenarios

In the following, different disturbances occurring in boreal forests are introduced. Based on impact size and 
frequency we focus on two main disturbance classes: forestry and fire (see Figure 1). We further specify three 
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different intensity classes based on literature values of mortality and defoliation, organic and litter layer damage, 
and a change in ground surface albedo (Averensky et al., 2010; Kirichenko et al., 2009; Narita et al., 2020; Shvi-
denko & Nilsson, 2000).

A relevant factor in the development of boreal forests is the importance of logging. In Yakutia, the forestry 
industry started recovering around 2000 after a sharp reduction between 1990 and 2000. In 2015, 1,000,000 m 3 
of wood have been sold (Narita et  al.,  2020). Low-developed transport infrastructure and remoteness of the 
foreign and domestic markets hinder large-scale timber production in the Sakha republic, which is therefore not 
of importance to the republic's economy and only accounts for roughly 1% of the exports. Accordingly, 97% of 
the harvested wood goes to the domestic market (Oleg Tomshin, personal communication, 31 October 2017). 
Based on this, it is assumed that logging does not account for a substantial part of the region's forest loss, but 
accessible forest stands in the vicinity of settlements and roads are prone to small- and large scale deforestation. 
We divide logging into three classes of intensity from a thinning where a quarter of trees are removed to a clear 
cut with 100% tree removal.

The most prominent disturbance in terms of area size and occurrences are forest fires (Giglio et al., 2003). In 
Yakutia, the annual average fire area between 2015 and 2018 was estimated to 10,405 km 2 (Narita et al., 2020). 
Forest fires are the largest cause of forest loss or forest destruction in eastern Siberia. Fires are caused by dry 
thunderstorms, and human factors such as agricultural burning. The causes of ignition are hard to backtrack but 
it is assumed that around 70% of fires are anthropogenic (Takahashi, 2006). Larch is generally well adapted to 
wildfires and protected by its thick bark (Wirth, 2005). Additionally, larch drop low-hanging branches which limit 
the chances of a fire spreading into the canopy (Wirth, 2005). Finally, the low canopy closure additionally lowers 
the chance of high severity canopy fires (V. I. Kharuk et al., 2011; Schulze et al., 2012). There are different types 
of fires, which are classified into two categories, surface and canopy fires. Most common are surface fires which 
are quick and result in low energy output. They do not necessarily harm living trees, and are commonly rather 
nondestructive with mortality rates from 12% to 50% (V. I. Kharuk et al., 2010; Shvidenko & Nilsson, 2000). 
Nevertheless they have a large effect on the forest development especially by reducing the organic and litter 
layers and impacting the surface and the ground surface albedo (Ponomarev et al., 2016). In a study using artifi-
cial fires at SPA, the canopy photosynthesis was not affected the year after a surface fire, but the mortality was 
increased in the following years (Takahashi, 2006). Tree die-back is increased for up to 5 years and mortality for 
up to 10 years (Shvidenko & Nilsson, 2000). Less common but more destructive are canopy fires, consuming 
most trees, including their crowns, and leading to mortality rates between 60% and 100%. The variation in the 
mortality caused by forest fires is very high (Shvidenko & Nilsson, 2000). Therefore, we defined 6 different 
categories, making a distinction between surface and canopy fires and intensities. A low intensity surface fire 

Figure 1. Left: Photograph and schematic illustration of the current forest cover at the study site, SPA. Right: Schematic 
illustration of the different development trajectories and their impact on the ecosystem including natural growth without any 
external disruptions, and the main disturbances, logging, and fires (surface and canopy).
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causes the forest to go through natural thinning, where the smallest and weakest, or pre-damaged trees die. After 
a medium intensity fire the seeds of some trees survive and can trigger the regeneration of the coniferous forest. 
After a high-intensity crown fire, the trees are killed and dry out, resulting in the accumulation of partly burned 
material on the ground, and widespread degradation of the forest (Shvidenko & Nilsson, 2000; Takahashi, 2006). 
Injuries to the crown foliage can be differentiated into crown consumption (heat death and consumption of foli-
age, buds, branches and flowers), crown kill (heat death of foliage, buds, branches, and flowers), or crown scorch 
(heat death of foliage only, surviving bud; Varner et al. [2021]). Following heat death, the needles will eventually 
fall off while the buds can survive. Depending on the injuries to the foliage as well as on the conditions of the 
roots and bark the tree can still survive a canopy fire with or without impairment of physiological activity or tree 
growth (e.g., Lodge et al. (2018)). Therefore, the canopy fire scenarios lead to the defoliation of all trees. The 
long-term effects of fire on the soil thermal regime are poorly understood. The organic layer in deciduous forests 
decays more quickly than in evergreen forests and it is speculated that the organic layer is fully reestablished after 
10–25 years (Bonan & Shugart, 1989; Foster et al., 2019). Wildfires elevate the overall surface albedo of these 
forested areas through different mechanisms such as the exposure of the previously shielded forest floor and an 
elevated snow season albedo due to a (partly) missing forest canopy. Additionally, the dominance of early-suc-
cession species such as birch or aspen, and the regrowth of light early-successional ground vegetation also lead to 
a higher ground surface albedo (Randerson et al., 2006; Stuenzi & Schaepman Strub, 2020). Y. Jin et al. (2012) 
found that the higher spring albedo and large albedo increases in areas that had burned more severely were 
sustained for at least 7 years after fire.

2.3.2. Scenario-Based Model Parameters

We ran model simulations for the above disturbance scenarios under two different climate scenarios at a typi-
cal, larch-dominated forest patch at our study site SPA. Additionally, we ran reference simulations without any 
disturbances (see Figure 2). Based on the most common disturbances and their impact on the vegetation in terms 
of increased mortality or defoliation, we simulated a variety of forest stand scenarios to understand threshold 

Figure 2. Schematic of the four simulations with the respective values for mortality, defoliation, change in litter layer height, 
the existence of an organic layer and ground surface albedo change. Left: Undisturbed, natural vegetation growth. Middle/
right: Implementation of the three disturbance scenarios, logging, surface fire, crown fire.
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values in the forest-permafrost dynamics. The different scenarios represented by three intensities each are run as 
three parallel point simulations. The simulations do not consider border effects but rather simulate three extreme 
cases of low, medium, or high intensities. The choices in parameters for mortality, defoliation, organic and litter 
layer damage, and the change in ground surface albedo were based on measured ground data in as many cases 
as possible and were collected from a variety of studies (Averensky et al., 2010; Kirichenko et al., 2009; Narita 
et al., 2020; Shvidenko & Nilsson, 2000). We implemented the disturbance scenarios in 2020. Tables A1, A3, 
and A5 summarize the ground and vegetation parameter setups. Table A4 summarizes all constants used.

The disturbance scenarios were implemented in LAVESI at the export stage where data is compiled for CryoGrid. 
For all scenarios we split the total simulated area into three equally-sized subareas to represent the three scenario 
intensities (see Figure 2). For each, LAVESI aggregates the necessary output to call CryoGrid. Leaf area index 
(LAI), stem area index (SAI), the 75-percentile tree height, and litter layer height are exported. Additionally, the 
static variables (albedo and organic content) are set based on literature values as detailed in the following and 
visualized in Figure 2. In the natural growth scenario there is no increased mortality or defoliation, and no litter 
layer damage. Ground surface albedo is set to the standard value of 0.15, the organic layer is undamaged. In the 
logging scenario, trees are removed randomly with a probability of 25% (subarea 2.1), 50% (2.2), and 100% 
(2.3). There is no additional defoliation and no litter layer damage, the ground surface albedo is at the standard 
value of 0.15, and the organic layer is undamaged. In the surface fire scenario, trees are removed randomly with 
a probability of 12% (3.1), 20% (3.2), and 50% (3.3; Shvidenko & Nilsson, 2000). Ground surface albedo is 
set to the increased value of 0.4 for a total of 7 years (Y. Jin et al., 2012; Randerson et al., 2006). The organic 
layer is reduced to 10% (3.2), and completely removed (3.3), growing back linearly within 10 years (Bonan & 
Shugart, 1989). For the crown fire scenario, trees are removed randomly with a probability of 60% (4.1), 75% 
(4.2), and 100% (4.3; Shvidenko & Nilsson, 2000). Trees are additionally completely defoliated following Varner 
et al. (2021). Ground surface albedo is set to 0.4, coming back to the standard value of 0.15 after 7 years (Y. Jin 
et al., 2012). The organic layer thickness is reduced to 10% (4.1) and completely removed in the other subareas 
(4.2 and 4.3), growing back linearly within 10 years (Bonan & Shugart, 1989).

The different time-steps (yearly for LAVESI, 5-min for CryoGrid) of the two models require differing spin-up 
periods. LAVESI spin-up is 2015 years to achieve larch forest stands that are in equilibrium with climate. For the 
year 2010 forest state variables are first provided to CryoGrid-Vegetation. Following previous studies (Stuenzi, 
Boike, Cable, et al., 2021), CryoGrid-Vegetation only requires a spin-up of 5 years (2010–2014) to bring the 
thermo-hydrological state of the active layer into dynamic equilibrium. For the year 2015 ALT and PAW values 
are delivered to LAVESI. The first year of coupling is therefore 2015 when both models have reached their equi-
librium states.

2.3.3. Meteorological Forcing Data

The meteorological forcing data used by CryoGrid (air temperature, air pressure, wind speed, relative humidity, 
solid and liquid precipitation, incoming long- and shortwave radiation, and cloud cover) are obtained from ERA-5 
(ECMWF Reanalysis) extracted for the site (N 62.14°, E 129.37°) at a 1-hourly time-step (Hersbach et al., 2018). 
Scenario data from the MPI-ESM1.2-HR model of the Max Planck Institute for Meteorology (Müller et al., 2018) 
was then applied as 6-year monthly mean anomalies, relative to the reference period 2015–2020, to the ERA5 
data to generate forcing data for the projected timespan 2021–2050 and the two climate change scenarios (SSP 
- Shared Socioeconomic Pathways: SSP1-2.6 and SSP5-8.5; Koven et al. [2015]). The MPI-ESM1.2-HR (with a 
spatial resolution of 0.94° EW × 0.94° NS or approx. 100 km) model grid was interpolated to fit the ERA-5 grid. 
Temperature threshold for snow versus rain is 0° C, and the minimum wind speed is set to 0.5 m/s. From the same 
data, the necessary forcing data for LAVESI was aggregated. LAVESI requires a monthly mean temperature of 
the coldest (January) and warmest (July) months, precipitation series, and 6-hourly wind speed and direction. 
Prior to the ERA-5 period (0–1978) we used the monthly Climate Research Unit data set CRU TS 2.23 available 
at a 0.5° resolution (Harris et al., 2020) to force LAVESI. We performed model simulations until 2050 under two 
projected climate change scenarios (SSP - Shared Socioeconomic Pathways) SSP1-2.6 (atmospheric CO2 around 
420 parts per million (ppm) and global temperatures 1.3–1.9° C above pre-industrial levels by 2100), and SSP5-
8.5 (atmospheric CO2 around 935 parts per million (ppm) and global temperatures 4–6.1° C above pre-industrial 
levels by 2100).
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3. Results
We first discuss the model verification for the study site and give an overview of the projected climatic changes. 
We then report on the forest stand developments under natural and disturbance-driven conditions. Lastly, we 
focus  on the post-disturbance hydrological and thermal regimes of the underlying permafrost.

3.1. Model Verification

The multilayer canopy-permafrost model CryoGrid-Vegetation has previously been validated against ground 
surface temperature, the above- and below-canopy surface energy balances, snow depth, conductive heat flux, 
precipitation, and temperature measurements for SPA acquired through the AsiaFlux network (AsiaFlux, 2017). 
The analysis revealed a satisfactory agreement between modeled and measured components of the surface 
energy balance below and above the canopy (more details in Stuenzi, Boike, Cable, et al. [2021]). Site-specific 
LAVESI model verification for SPA was performed by comparing modeled and field-based stand density, leaf 
area index, and tree height values. The initial parameters set in the current LAVESI model version simulated a 
larch forest similar to the present stands at SPA. Modeled summer LAI reached 3.56 m 2m −2 after model spin-up 
which compares very well with the measured LAI value of 3.66 m 2m −2 at SPA (Ohta et al., 2001; Sugimoto 
et al., 2002). According to a field study at Spasskaya pad (Ohta et al., 2001), the stand density of the dominant 
tree species Larix gmelinii is 840 trees per hectare and 836 trees per hectare Sugimoto et al. (2002). Modeled 
larch stand density here is 801 trees per hectare in 2014 and 817 trees per hectare in 2019. The average tree 
height at Spasskaya pad has been reported as 18 m for a mature larch stand (Ohta et al., 2001) and 7.6 m for a 
younger larch stand with a mean stand height of 17.3 m for the 10 tallest trees (Tanaka et al., 2008). The simu-
lated average tree height in LAVESI is 10.1 m in 2015 and 10.2 m in 2019 (see Figure C2). These average stand 
heights are skewed toward small saplings, which are immediately counted as trees in LAVESI but were most 
likely not included in the field surveys. Previous to the coupling, LAVESI overestimated ALT by up to 10% 
(0.01 m). Additionally, the plant's available water was overestimated by 12%. Across all simulations conducted 
here, average LAI before coupling in 2015 is 3.56, m 2m −2 (SD: 0.4) and after coupling in 2019 it is 3.6, m 2m −2 
(SD: 0.4). Average tree height in 2015 is 10.14 m (SD: 0.06) and in 2019, after coupling it is 10.19 m (SD: 0.05). 
Furthermore, the modeled values of ALT: 0.96–0.99 m (±0.1) and PAW: 17.03–17.24% (±1–1.3)) show a good 
agreement with measured values for SPA presented in Sato et al. (2016) where ALT under larch forest was 1.04 m 
and soil wetness was 20.7% in the top 0.5 m.

Figure 3. Comparison of the climate data forcing of SSP1-2.6 (blue) and SSP5-8.5 (red) for annual average air temperature, 
annual summed liquid and solid precipitation for the period 2020–2050.
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3.2. Climatic Changes

The average annual air temperature projected for 2020–2050 at our study site is −7.4° C under the SSP1-2.6 
scenario and −6.4° C under SSP5-8.5. Under SSP5-8.5 a maximum annual average air temperature of −4.5° C 
is projected for 2050 (see Figure 3), +2.9° C above the 2021 annual average. Under SSP1-2.6 the change from 
2021 to 2050 is +1.0° C. The average total yearly liquid precipitation is 487 mm under SSP1-2.6 and 401 mm 
under SSP5-8.5. The average total yearly solid precipitation is 196 mm under SSP1-2.6 and 186 mm under SSP5-

Figure 4. Active layer thickness, tree height, leaf area index and plant available water trajectories for the natural growth 
scenario, and the logging, and fire (surface and canopy) disturbances under the two climate forcing scenarios SSP2.6 and 
SSP8.5. Shown is the period from 2015 to 2050 with the disturbance occurring in 2021 (dotted red line) followed by 29 years 
of recovery.
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8.5 respectively. The average total yearly precipitation (both liquid and solid) is therefore 96 mm higher under 
SSP1-2.6.

3.3. Forest Stand Development

In the natural growth scenario, where the climate is the only varying factor with yearly average temperatures 
rising between 1.0 and 2.9° C, our simulations show a very stable development of both active layer thickness 
(ALT) and plant available water (PAW, volumetric water content [%]). The system stays in an equilibrium state 
under both climate scenarios, SSP1-2.6 and 5–8.5, for the 29 years analyzed (see Figure 4). While liquid and 
solid precipitation do not follow a clear trend until 2050, tree density and tree height balance out the temperature 
changes leaving the ALT and PAW at a constant level throughout the 29 year period. The average ALT under the 
natural growth scenario shows the lowest variation and is 0.96 m (with a standard deviation (sd) of ±0.1) under 
SSP1-2.6, and 0.99 m (sd: ± 0.1) under SSP5-8.5 force, respectively. PAW has a mean value of 17.24% (±1.3) 
under SSP1-2.6%, and 17.03% (±1) under SSP5-8.5, also resulting in the lowest variations compared to the other 
scenarios. Our simulations further show a decadal height decrease of −0.4 and LAI decrease of −1.2 m 2m −2 
under SSP1-2.6 climate forcing and a decadal height increase of +2 m and LAI increase of +1.4 m 2m −2 under 
SSP5-8.5. Larch stand density stays constant throughout the entire 29-year period analyzed. In most disturbance 
scenarios inducing forest loss, the larch forest cover can not reestablish to pre-disturbance states, which will be 
explained in detail in the following paragraphs on soil moisture and temperature changes. Under SSP5-8.5 forc-
ing we see a faster larch LAI and height decrease for the logging scenario. In the majority of intensity classes of 
the surface fire scenario we see an increase in forest LAI and tree heights compared to the pre-disturbance state. 
The surface fire disturbance results in an increasing tree height and LAI for two intensity classes under SSP1-2.6 
and all three intensities under SSP5-8.5. This suggests that the surface fire scenario has a positive effect on larch 
growth within the forest patch.

We find that a decline in larch LAI and tree height is not the case in a majority of intensities of the surface fire 
scenario. Here, the slight decrease in LAI and average stand height is not followed by an immediate reduction 
in plant available water. The larch LAI is slowly able to recover in five out of six intensities of the surface fire 
scenario. Our simulations until 2050 reveal decadal LAI increases up to +3.8 m 2m −2 (SSP1-2.6) and +9.5 
m 2m −2 (SSP5-8.5) and height increases up to +0.9 m (SSP1-2.6) and +1.5 m (SSP5-8.5). The lowest intensity 
surface fire implemented leads to contrasting forest cover trajectories between the two climate scenarios. In 
scenario 3.1, the lowest intensity surface fire scenario, LAI shows a decadal trend of −4.8 m 2m −2 under SSP1-
2.6 but +1.9 m 2m −2 under SSP5-8.5 forcing. The tree height decadal trends are −1.8 m (SSP1-2.6) and +0.4 m 
(SSP5-8.5).

3.4. Post-Disturbance Hydrological Regime of the Ground

We find that a change in larch forest cover has a consistently large impact on the hydrological regime of perma-
frost at our study site. Under the SSP1-2.6 climate scenario, the average PAW after every disturbance is lower 
than before with decreases from −2 to −7% (volumetric water content [%]). The largest decrease of −7% is 
simulated for the canopy fire scenarios where our simulations show complete forest loss just 1 year post-distur-
bance. The loss in PAW occurs within the first year after the complete forest cover loss. For the natural growth 
scenario PAW values of up to 20% are simulated. Under SSP5-8.5 forcing post-disturbance PAW is also lower, 
with decreases from −1 to −7%. The largest decrease is simulated for scenario 4 where the pre-disturbance PAW 
of 16% (±3) decreases to 9% (±1).

As mentioned above for the lowest intensity surface fire scenario (3.1) our results show contrasting forest cover 
trajectories between the two climate scenarios SSP1-2.6 and SSP5-8.5. Studying these scenarios plant available 
water (PAW) values exchanged between our models, we see a high sensitivity of LAI toward small decreases 
in PAW (see Figure 4 and Figure 5). In scenario 3.1, PAW values under the SSP1-2.6 scenario are lower than 
under SSP5-5.8 for a number of years starting in the year 2021, 1 year after the disturbance. At this point in time, 
the LAI trajectories separate and larch forest can not recover in the 3.1 scenario under SSP1-2.6 forcing (see 
Figure B1).
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The differences in precipitation and air temperature are small for the studied period until 2050 (see Figure 5). 
The annual sum of solid and liquid precipitation as well as the annual average air temperature for 2021 (where 
the LAI trajectories divide) are extremely similar. The sum of the annual precipitation under SSP1-2.6 is 20 mm 
higher than under SSP5-8.5. Similarly, the annual air temperature is 0.5° C colder under SSP5-8.5 (see Figure 5). 
We therefore studied the weekly 2021 solid and liquid precipitation patterns in more detail to understand where 
these small differences in PAW arise, and how they eventually lead to the divergence in LAI. Figure 6 does 
reveal different precipitation patterns throughout the year between the two climate scenarios. These differences 
can further be seen in the PAW development throughout the year 2021 and 2022 (see Figure B2). The curves are 
very similar and only diverge in May, July, August, and September 2021. While SSP1-2.6 shows higher solid 

Figure 5. Leaf area index and plant available water trajectories and the forcing for the surface fire scenario 3.1 under the two 
climate scenarios SSP1-2.6 and SSP5-8.5. Shown is the period from 2015 to 2050 with the disturbance occurring in 2020 
followed by 29 years of recovery.
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precipitation values in December and January, the SSP5-8.5 scenario shows high values of solid precipitation in 
late April. Similarly, under SSP5-8.5 we see an above-average liquid precipitation phase mid-June, while higher 
liquid precipitation values occur under SSP1-2.6 in fall and early spring. So because the sum of liquid and solid 
precipitation shows little difference between the two climate forcings, the timing of the precipitation seems to 
have an effect on the larch forest development. As such, spring and summer precipitation seems to be important 
for larch forest recovery after disturbance.

3.5. Post-Disturbance Thermal Regime of the Ground

Under SSP1-2.6 the average ALT after disturbance is lower than before with decreases up to −0.1 m in all scenar-
ios. This equals an ALT decrease of −2 to −4%. The largest decrease is simulated for the canopy fire scenario 
4.3. Under SSP5-8.5 forcing the average post-disturbance ALT is higher for scenario 3 (+0.1 m) and lower for all 
other scenarios, with decreases up to −0.1 m. At this very dry site, the latent heat content related to ground ice is 
small and therefore we do not see large varieties in the ALT over the studied period. The increases in larch LAI 
following the surface fire scenario have no large impact on the ALT. The simulated differences between SSP1-2.6 
and 5–8.5 are surprisingly small with ALT differences below 0.1 m.

4. Discussion
4.1. Larch Forest Recovery and Disturbances Under a Warming Climate

The natural growth simulations show that larch height and LAI play an important role in controlling the perma-
frost conditions underneath and maintaining the ecosystem's stable conditions. Under natural growth, our model 
simulates a stable development for both climate scenarios until 2050. At SPA this stable trajectory was also found 
in a previous study by Sato et al. (2016), while larch forest is declining in some southern, drought-prone regions 
and expanding at the northern treeline (i.e., Mamet et al.  [2019]). In central Yakutia, this trend is not visible 
for the studied period until 2050. Our simulations reveal decadal tree height increases between +0.9 m (SSP1-
2.6) and +1.5 m (SSP5-8.5) which is in line with a previous assessment of the potential tree height increases in 
Siberia. Tchebakova et al. (2016) reported height increases until 2080 in light deciduous larch forests between 5 
and 15 m depending on the climate projection.

Our simulations show that the plant available water (PAW) and the thawing conditions control the recovery 
of larch. The disturbance scenarios all lead to a change in LAI, tree height, ALT and PAW at varying degrees. 
Logging and canopy fire scenarios, with high mortality rates, lead to a consistent loss of larch forest cover and 
very low PAW values. Generally, lower LAI leads to decreasing transpiration through the vegetation which can 
lead to wetting of the ground (O’Donnell et  al.,  2011) but sandy soils offer good drainage conditions which 

Figure 6. Leaf area index and plant available water trajectories and the forcing for the surface fire scenario 3.1 under the two 
climate scenarios SSP1-2.6 and SSP5-8.5. Shown is the weekly 2021 solid (left) and liquid (right) precipitation pattern for 
both climate forcing scenarios.
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enhance the drying of the ground at this study site (see also i.e., Zhang et al. [2011]). In previous studies we 
have additionally found higher snowpacks in dense forests, hence there is higher availability of melt water in 
spring (Stuenzi, Boike, Cable, et  al.,  2021). The substantial decrease in soil moisture presented here cannot 
sustain constant larch conditions (LAI and height) nor trigger the reestablishment of pre-disturbance larch tree 
heights and LAIs within the studied 29 years. A decline in LAI and tree height is consistent for all intensities 
of the logging and canopy fire scenarios. This is in agreement with the study conducted by Takahashi (2006) at 
Spasskaya pad where they found a post-fire reforestation period of 30–35 years with a likely change in domi-
nant species from the light conifer larch or dark conifers such as spruce, fir or cedar, to soft deciduous (birch or 
aspen), to mixed forests. The modeling setup here does not simulate the growth of different taxa. Several studies 
have found that burned forest patches can serve as ecological niches for evergreen needleleafs and deciduous 
broadleafs (V. I. Kharuk et al., 2005; V. Kharuk et al., 2007; Y. Liu et al., 2017). Furthermore, moderate burn 
severity has shown a high rate of larch recruitment while high-severity burns favor the growth of shrubs, grasses, 
and broadleaf trees and possibly never recover to the previous dominance of larch (Chu et al., 2017). Our results 
suggest that larch forests generally thrive after surface fires which could be an important factor for larch forest 
persistence. This is in agreement with previous studies claiming that larch are less vulnerable to surface fires than 
other conifers and the ecosystem is most accustomed to this type of disruption because it is the most common 
disturbance (Ponomarev et al., 2016; Schulze et al., 2012; Takahashi, 2006). Accordingly, surface fire is a regular 
phenomenon that is important for the stability, productivity, and carbon sequestration in the fire-adapted conif-
erous forests of Siberia (Alexander et al., 2012; Wirth, 2005). Our simulations even show increased larch LAIs 
and heights after surface fires.

Our simulations of the surface fire scenario finally reveal that small differences in precipitation can potentially 
change the trajectory of the tightly coupled forest-permafrost ecosystem. Notably, small differences in weather 
patterns, such as the differences in the timing of precipitation events found here, or extreme weather events can 
also be dampened in a natural forest, that is, because of bushy undergrowth which impacts snow depth, snow 
redistribution, lateral surface water flow, shading, etc.

Furthermore, it is clearly visible that the LAI decreases every time PAW values reach the critical threshold of 
15%. In on intensity (3.1), this threshold is reached, while for the other two intensities of the surface fire scenario, 
PAW values are very similar under both climate scenarios and LAI can recover or even surpass pre-disturbance 
conditions because the critical value of 15% is not reached (see Figure B1). Wherever the threshold of 15% is 
reached, such as in the 3.3 subarea, in the years 2032 and 2044, we also see the effect of the 10% growth penalty 
with its related LAI decrease. We recognize that this is a set parameter within our model setup which is highly 
important for the forest trajectory. This value is derived from the literature value of the lower boundaries of the 
optimum water availability which is 21.1% for larch as defined by (Sato et al., 2010). The set threshold of 15% 
as the critical PAW value as well as the 10% growth penalty introduced thereafter is highly relevant in terms of 
the larch forest trajectories simulated here. To understand where exactly these thresholds lay, the two values need 
to be further evaluated in field studies to improve the validity of the model threshold and to make even better 
projections for larch forest development after disturbances.

Wherever the exact threshold value occurs in nature, drought-like states which lead to the under-passing of 
this plant's available water value can trigger larch forest decline. In our simulations, larch cover loss increases 
the chance that the PAW value falls below the 15% threshold again. This finding is an indicator for a feed-
back behavior between plant available water and larch growth and is in line with previous findings. Zhang 
et al.  (2011) found that the trees maintain permafrost through radiation interception and control the freeze-
thaw dynamics in summer. The limited ALT in summer then guarantees sufficient moisture availability for 
trees and further lowers the frequency of fires. Zhang et al. (2011) furthermore found that this tightly coupled 
system cannot be maintained beyond a warming of about +2° C. Previous studies using the model framework 
applied here have found that the forest has a net stabilizing effect on the permafrost ground at Spasskaya pad. 
The main controlling mechanism behind this is canopy shading, along with enhanced longwave radiation 
(due to low below-canopy windspeeds resulting in low turbulent fluxes), higher groundwater content, and a 
higher snowpack. Forest loss was found to lead to higher ground surface temperatures in the snow-free and the 
snow-covered periods, and a doubling of the plant available water in the thawed active layer in the summer, 
resulting in an active layer thickness increase of 25% (Stuenzi, Boike, Cable, et  al.,  2021; Stuenzi, Boike, 
Gädeke, et al., 2021).
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The introduced shift in ground surface albedo after the fire scenarios and the inability of the model to simulate a 
vegetation cover with an LAI below 0.7 m 2m −2 introduce some uncertainty in our modeling results. Accordingly, 
we have compared the results of the highest intensity canopy fire scenario which includes larch forest loss, a 
changed ground surface albedo, and the removal of the organic layer (scenario 4.3, see Figure 2) to the logging 
scenarios where these parameters were not modified (see scenario 2.3, which includes the complete removal of 
larch trees but no modification to the albedo or the organic layer). As such, under the SSP5-8.5 scenario, the 
average PAW in the first 5 years after the disturbance in the high-intensity logging scenario is 8.7% (SD: 0.6) and 
the same value is 11.3% (SD: 1.6) in the canopy fire scenario. The average maximum ALT of the first 5 years 
after the disturbance is 0.9 m (SD: 0.03) in the logging scenario and 0.9 m (SD: 0.04) in the canopy fire scenario. 
Under the SSP1-2.6 scenario, the 5 years post-disturbance average PAW in the logging scenario is 8.9% (SD: 
0.7) and 11.4 m (SD: 1.5) in the surface fire scenario. Here, the average maximum ALT of the first 5 years after 
the disturbance is 0.8 m (SD: 0.05) in the logging scenario and 0.9 m (SD: 0.04) in the canopy fire scenario. The 
differences between the two scenarios with complete larch forest removal in 2020 are a result of the combined 
effects of the litter and organic layer damage and the ground surface albedo change. The differences in PAW 
between the two scenarios are 2.6% (SSP5-8.5) and 2.5% (SSP1-2.6), which is much smaller than the differences 
found between the pre- and post-disturbance states. Following the comparison of these two scenarios, we are 
confident that the change in PAW is largely due to the loss of larch forest and not a result of the ground surface 
albedo or organic layer change.

Regeneration in the North is slow due to small turnover rates and short growing seasons. Stand-replacing distur-
bances were found to cause succession with a change in dominant species (Takahashi, 2006). A typical progres-
sion for larch-dominated ecosystems progresses from deciduous needleleaf towards deciduous broadleaf (mostly 
birch or aspen) to mixed deciduous and evergreen needleleaf (mostly spruce or pine). In our simulations, we do 
not account for these successional stages or the growth of taxa besides larch. Succession towards a deciduous 
broadleaf or evergreen needleleaf-dominated forest would nevertheless also modify the surface energy balance 
of the ground (Stuenzi, Boike, Gädeke, et al., 2021; Zhang et al., 2011). The resulting changes to the surface 
energy balance and hence the ground thermal and hydrological regime could potentially again lead to condi-
tions suitable for larch reestablishment, assuming the availability of nearby seed sources. Our model further 
does not include size-based mortality impacts of fires or the effects of reoccurring disturbances. Especially the 
establishment of evergreen taxa highly depends on the frequency of disturbance events, which has increased 
over the past few decades (Mekonnen et al., 2019; Meredith et al., 2019; Shuman et al., 2011). Furthermore, 
larger disturbed areas are likely to favor the establishment of deciduous broadleaf (mostly birch) as they have 
a wider seed dispersal range and higher reproduction capability than evergreen or deciduous needleleaf which 
are much more limited by seed dispersal (Otoda et al., 2013; Rogers et al., 2015). Accordingly, Z. Liu (2016) 
found that post-fire recovery mainly depends on seed availability in relation to fire severity and spatial extent. 
Additionally, the germination and successful establishment of saplings are controlled by moisture conditions 
and local site characteristics. In our simulations, seed availability does not seem to be a deciding factor for the 
successful establishment of larch trees after disturbance. Following the model spin-up period where after the 
simulated larch forest stands are in equilibrium with climate, the difference in LAI is insignificant between 0, 
100, and 200 seeds/year/hectare (see Figure C1). Therefore, the establishment is mostly determined by the local 
site and moisture conditions. The tree removal simulated in the disturbance scenarios as well as the missing 
competition by early-successor species (mostly deciduous broadleaf (Takahashi, 2006)) allows for increased 
resource access for larch saplings. This might lead to an overestimation of larch regrowth. Finally, in our mode-
ling setup the organic layer thickness is based on observations and does not change in composition or quality 
based on the upper storey vegetation. The thickness and content of the organic layer do have a large impact on 
the surface energy balance of the ground and should therefore be further explored (see e.g., Foster et al. [2019]). 
In this case study, we try to understand the rather short-term impacts of typical disturbance scenarios. The focus 
lies on the differences between a variety of common scenarios. We do not assess the frequency or the effect of 
multiple overlapping disturbances which would be an important process to look at in further studies. We focus 
on the most common disturbances while there are many more scenarios to be studied, among others droughts, 
windfalls, or pests, which have also been reported to increase in number or intensity under climatic changes (V. 
I. Kharuk et al., 2021).

In summary, our simulations show that whether larch forests can return to a larch-dominated post-disturbance 
state is also dependent on permafrost dynamics, mainly the hydrological conditions of the ground. Within our 
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modeling framework, we find indicators that dry or wet years following the disturbances as well as the timing of 
the precipitation throughout the seasons, can affect the larch reestablishment.

5. Conclusions
We find that ecosystem resilience toward different disturbances depends on the intensity and the type of distur-
bance event. We used a coupled larch dynamics permafrost model and applied different disturbance scenarios, 
such as surface and canopy fires and logging. Our modeling study is in agreement with observations that have 
shown that larch forests foster resilience against regional, typical fire regimes, such as the surface fire scenario 
implemented here. In contrast, the larch forest simulated here remains severely disturbed after the other distur-
bances (canopy fire and logging) studied here. We find that after such disturbances the ground becomes drier 
and the larch forests do not recover to pre-disturbance larch densities within the 29 years analyzed. We further 
find that the amount of precipitation, as well as the timing of precipitation events within the individual years 
after disturbances, can affect the larch forest trajectory. This points to a threshold-bound tipping behavior of larch 
forests to changes in plant-available soil moisture. Further studies on exact threshold values for plant-available 
soil water and related growth penalties for larch taxa are needed.

The main findings of our study can be summarized as follows:

1.  We find that disturbances with high mortality rates, such as canopy fires and logging, lead to a reduction in 
plant-available soil water by up to −44%. This results in a continuous decline of larch forest cover

2.  Only surface fires, the most common disturbance type, can lead to an increased larch density and constant soil 
moisture values over the studied period of 29 years

3.  Finally, we find that the trajectory of larch forests after surface fires is dependent on the precipitation condi-
tions in the years after the disturbance. Dryer years can change the direction of the larch forest development 
within the studied period

Here, we demonstrate the capabilities of a dynamic multilayer-forest-permafrost model in simulating the 
complex interactions and feedbacks between boreal forest cover, permafrost, climate, and disturbances. Our study 
provides an overview of possible mid-term permafrost and larch forest trajectories after different disturbance 
scenarios that disrupt the tightly coupled ecosystem. These findings are particular to dry, larch-dominated, and 
permafrost-underlain larch forests in eastern Siberia. Nevertheless, our study has implications for other boreal 
areas because our model showcases how fragile the quasi-equilibrium between active layer thickness, plant-avail-
able soil moisture, disturbances, and forest cover is.

Appendix A: Model Parameters Used and Constants

Process/Parameter Value Unit Source

Density falling snow ρsnow 80–200 kg m −3 Stuenzi, Boike, Gädeke et al. (2021)

Ground surface albedo α 0.15 - field measurement

Roughness length z0 0.001 m Westermann et al. (2016)

Roughness length snow z0snow 0.0001 m Boike et al. (2019)

Geothermal heat flux Flb 0.05 W m −2 Westermann et al. (2016)

Thermal cond. mineral soil kmineral 3.0 W m −1 K  −1 Westermann et al. (2016)

Emissivity ϵ 0.99 - Langer et al. (2011)

Root depth DT 0.2 m field measurement

Evaporation depth DE 0.1 m Nitzbon et al. (2019)

Hydraulic conductivity K 10 −5 m s −1 Boike et al. (2019)

Table A1 
Overview of the CryoGrid Parameters Used
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Parameter Larix gmelinii Reference

Minimum active layer 20 Abaimov et al. (1998)

January threshold temperature −45C Kruse et al. (2016, 2018, 2019)

Minimum soil water 21.1% vol. Sato et al. (2010)

Mortality drought 0.237805 Kruse et al. (2016, 2018, 2019)

Rooting depth 50 Abaimov et al. (1998)

Maximum age 609 Kruse et al. (2016, 2018, 2019)

Mortality age 8.18785 Kruse et al. (2016, 2018, 2019)

Resprouting 0.01 Kruse et al. (2016, 2018, 2019)

Table A2 
Overview of the LAVESI Parameters Used

Study site Tree height(m) Soil layer depth(Litter/Organic/Mineral) Respective soil type ERA-interim coordinate

Spasskaya 12 0/0.08/0.16 Peat/Clay/Sand N 62.14, E 129.37

Table A3 
Parameter Set-Up for the Study Site

Constants Value Unit

von Karman 0.4 -

Freezing point water (normal pres.) 273.15 K

Latent heat of vapourization 2.501 × 10ˆ6 J kg −1

Molecular mass of water 18.016 g mol −1

Molecular mass of dry air 28.966 g mol −1

Specific heat dry air (const. pres.) 1004.64 J kg −1 K −1

Density of fresh water 1000 kg m −3

Heat of fusion for water at 0° C 0.334 × 10ˆ6 J kg −1

Thermal conductivity of water 0.57 W m −1 K −1

Thermal conductivity of ice 2.2 W m −1 K −1

Kinem. visc. air (0° C, 1013.25 hPa) 0.0000133 m 2 s −1

Sp. heat water vapor (const. pr.) 1810 J kg −1 K −1

Table A4 
Constants
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Parameter Value Unit Source

Leaf angle dep. from spherical 0.01 - Bonan (2002)

Leaf reflectance (VIS/NIR) 0.07/0.35 - Bonan (2002)

Stem reflectance (VIS/NIR) 0.16/0.39 - Bonan (2002)

Leaf transmittance (VIS/NIR) 0.05/0.01 - Bonan (2002)

Stem transmittance (VIS/NIR) 0.001/0.001 - Bonan (2002)

Max. carboxylation rate (25° C) 43 μmol m −2 s −1 Bonan (2002)

Photosynthetic pathway C3 - Bonan (2002)

Leaf emissivity 0.98 - Bonan (2002)

Leaf dimension 0.04 m Bonan (2002)

Roughness length 0.055 m Bonan (2002)

Displacement height 0.67 m Bonan (2002)

Root distribution (a/b) 7.0/2.0 - Bonan (2002)

Min. vapor pressure deficit 100 Pa Bonan (2019)

Plant capacitance 2500 mmol H2O m −2 leaf

area MPa −1 Bonan (2019)

Minimum leaf water potential −2 MPa Bonan (2019)

Stem hydraulic conductance 4 mmol H2O m −2 s −1

leaf area MPa −1 Bonan (2019)

Atmospheric CO2 380 μmol mol −1 Bonan (2019)

Atmospheric O2 209 mmol mol −1 Bonan (2019)

Soil evaporative resistance 3361.509 s m −1 Bonan (2019)

Specific heat of dry-wet soil 1396 J kg −1 K −1 Oleson et al. (2013)

Specific heat of fresh H2O 4188 J kg −1 K −1 Oleson et al. (2013)

Specific leaf area (TOC) 0.024 m 2 g −1 C Bonan et al. (2018)

Fine root biomass 500 g biomass m −2 Bonan (2019)

Leaf drag coefficient 0.25 - Bonan (2019)

Foliage clumping index 0.7 - Bonan (2019)

Table A5 
Multilayer Canopy Parameters for Deciduous Needleleaf (NDT) Plant Functional Type
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Appendix B: Plant Available Water Trajectories After Surface Fire

Figure B1. Leaf area index and plant available water trajectories for the surface fire scenarios 3.1–3.3 under the two climate scenarios SSP1-2.6 and SSP5-8.5. Shown 
is the period from 2015 to 2050 with the disturbance occurring in 2020 followed by 29 years of recovery.

Figure B2. Weekly plant available water trajectories for the surface fire scenario 3.1 under the two climate scenarios SSP1-
2.6 and SSP5-8.5. Shown is the period from July 2020-August 2022.

0

5

10

15

20

25

P
la

nt
 a

va
ila

bl
e 

w
at

er
 [%

] 

Ja
n 2

02
1

Ju
l 2

02
1

Ja
n 2

02
2

Ju
l 2

02
2

Apr
il 2

02
2

Apr
il 2

02
1

Oct 
20

21

Oct 
20

20

SSP5-8.5 SSP1-2.6



Journal of Geophysical Research: Biogeosciences

STUENZI ET AL.

10.1029/2021JG006630

20 of 24

Appendix C: Model Verification

Figure C1. Simulation experiment at our study site using LAVESI with different levels of permanent seed introduction. Left: At the beginning of the LAVESI 
simulation (exponential phase) the introduction of seeds and the average LAI value show a positive effect and more introduced seeds lead to a quicker population 
growth. However, the differences between 0 and 500 seeds become insignificant after 700 simulation years. Right: The LAI values across the entire simulation area do 
not differ between the introduction of 100, 200, 500, or even 1,000 seeds/yr/ha. The mean LAI values are 3.28 ± 1.34 with 0 seeds, 3.28 ± 1.33 with 100, 3.31 ± 1.33 
with 200, 3.34 ± 1.34 with 500, 3.44 ± 1.36 with 1,000, and 3.89 ± 1.44 with 5,000, respectively. The difference in means is insignificant between 0 and 100 (Welch-
two sample t-test, p = 0.821) and 0 and 200 (p = 0.061), but significantly different beginning with 500 seeds (p < 0.001).
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Figure C2. Top: Histogram of simulated mean LAVESI tree heights [m] for 2015 (before coupling) and 2019 (after 
coupling). Bottom: Tree height distribution in the LAVESI simulated forest plot for 2015 and 2019.

2015 2019

0 10 20 30 0 10 20 30
0

500

1000

1500

2000

2500

Mean tree height [m]

0 400 800 1200 0 400 800 1200
0

400

800

1200

y

10

20

Mean tree 
height [m]

Mean tree height [m]

y

xx

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
The CryoGrid-Vegetation code developed for the use with LAVESI is available on Zenodo https://doi.org/10.5281/
zenodo.5119987 (Stuenzi, Kruse, et al., 2021). Accordingly, the LAVESI code for the coupled model version used 
here is available on Github https://github.com/StefanKruse/LAVESI/releases/tag/1.0 and permanently stored on 
Zenodo https://doi.org/10.5281/zenodo.5963455 (Kruse, Stuenzi, & Gloy, 2022). Hersbach, H. et al. (2018) was 
downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store. The results contain modi-
fied Copernicus Climate Change Service information 2020. Neither the European Commission nor ECMWF 
is responsible for any use that may be made of the Copernicus information or data it contains. This supporting 
information section contains model parameters and constants for CryoGrid-Vegetation and Lavesi, as well as the 
parameter set-up for the study site.
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