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A B S T R A C T   

Over the last years, the development of offshore renewable energy installations such as offshore wind farms led 
to an increasing number of man-made structures in marine environments. Since 2009, benthic impact monitoring 
programs were carried out in wind farms installed in the southern North Sea. We collated and analyzed data sets 
from three major monitoring programs. Our analysis considered a total of 2849 sampling points converted to a 
set of biodiversity response metrics. We analyzed biodiversity changes related to the implementation of offshore 
wind farms and generalized the correlation of these changes with spatial and temporal patterns. Our results 
demonstrate that depth, season and distance to structure (soft-bottom community) consistently determined di-
versity indicators and abundance parameters, whereas the age and the country affiliation were significantly 
related to some but not all indices. The water depth was the most important structuring factor for fouling 
communities while seasonal effects were driving most of the observed changes in soft-sediment communities. We 
demonstrate that a meta-analysis can provide an improved level of understanding of ecological patterns on large- 
scale effects of anthropogenic structures on marine biodiversity, which were not visible in single monitoring 
studies. We believe that meta-analyses should become an indispensable tool for management of offshore wind 
farm effects in the future, particularly in the view of the foreseen development of offshore renewable energies. 
This might lead to a better picture and more comprehensive view on potential alterations. However, this requires 
a modern open-source data policy and data management, across institutions and across national borders.   

1. Introduction 

Ocean sprawl, the expansion of man-made structures into ocean 
space, has increased strongly in European waters in the last decade 
(Birchenough and Degraer, 2020; Firth et al., 2016). In particular the 
development of offshore renewable energy installations such as offshore 
wind farms led to an increasing number of man-made structures in the 
marine environment. At the end of 2020, offshore wind facilities 
installed in European waters were generating a total capacity of 25 
Gigawatt (GW; Wind Europe, 2021), which, assuming 6 MW per turbine, 
amounts to >4000 turbines. Long-term outlooks for the North Sea alone 
predict an installed capacity of 111 GW by 2030 (Wind Europe, 2021; 

~14,000 8 MW turbines) and a total of up to 25,000 wind turbines are 
expected to be present in the southern North Sea by 2050, supporting the 
achievement of the current energy commitments and targets agreed 
across EU waters (de Vrees, 2019). This large-scale introduction of 
man-made structures (MMS hereafter) will have direct ecological con-
sequences for the ecology and communities present at and around the 
MMS, the sum of which could cascade to large-scale environmental ef-
fects, especially for the communities living on the seafloor (Dannheim 
et al., 2020). 

Offshore natural hard substrates in the North Sea (such as gravel and 
boulder fields) are generally restricted to low altitudes on the seafloor 
(Veenstra, 1969). In contrast, many artificial hard structures extend 
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throughout the entire water column and connect the seafloor with the 
intertidal zone. These vertical hard substrates in offshore waters form a 
habitat type that was naturally absent in the southern North Sea and 
provide potential habitat to species that were formerly restricted to the 
rocky coasts of the English Channel and the northern North Sea (De 
Mesel et al., 2015). Indeed, any kind of underwater hard structure in the 
North Sea, man-made or natural, is quickly colonized by hard substrate 
fouling communities (Degraer et al., 2020; Forteath et al., 1982). This 
may lead to organic matter enrichment in the surrounding soft bottoms 
through added faeces production and sedimentation which, in turn, can 
affect community composition in and on the surrounding seabeds 
(Coates et al., 2014). Furthermore, the presence of the structure may 
alter the local hydrodynamic environment which can further impact the 
local seabed communities (Baeye and Fettweis, 2015; Klunder et al., 
2018). Exclusion of bottom fisheries can further alter the communities in 
the direct vicinity of the structures (Bergman et al., 2015). This 
structure-induced local biodiversity change, associated with a biomass 
increase, may induce changes in ecosystem functioning. The modified 
local community is likely to present an altered trophic organization (e.g. 
more suspension-feeders on the hard substrate) and attract mobile 
higher-level predators, such as predatory fish that were originally not 
present in the area (Krone et al., 2013a; Mavraki et al., 2021). Conse-
quently, the presence of such structures has been shown to alter 
ecosystem processes related to the community-relative trophic compo-
sition (Cresson et al., 2014) and the energy flow throughout the local 
food web (Raoux et al., 2017). This can lead to a modification of sec-
ondary production support for higher trophic levels of commercial in-
terest also known as the ‘artificial reef effect’ (Dannheim et al., 2020). 

In order to detect possible changes in the seabed communities and to 
capture colonization patterns of communities on the MMS, benthic 
impact monitoring programs were initiated in several wind farms 
installed in the southern North Sea, with the first in Denmark in 2002 
(Leonhard and Christensen, 2006). Analogous programs were also 
conducted in Belgium, the Netherlands and Germany (De Mesel et al., 
2015; Gutow et al., 2014; Lindeboom et al., 2011). Although the 
methodology varied between these programs, seabed infauna was 
generally included by collecting grab or core samples at various dis-
tances from the structures at various temporal scales (Bergman et al., 
2015; Gutow et al., 2014; Leewis et al., 2018; Vandendriessche et al., 
2014). Additionally, scrape samples were collected at various depths on 
the wind turbine foundations and on the surrounding scour protection to 
sample fouling organisms (Bouma and Lengkeek, 2013; Coolen et al., 
2020a; De Mesel et al., 2015; Gutow et al., 2014; Krone et al., 2013b). 
Since most of the analyses are restricted to describing local patterns 
(within the wind farm), and given the high natural variation in North 
Sea macrofaunal communities (Kröncke and Reiss, 2010; Reiss et al., 
2006) any generalization from the results obtained at a local scale is 
challenging. 

Meta-analyses are a powerful tool to detect effects on the ecology by 
combining local results of various studies (Stewart, 2010). This has been 
demonstrated in many studies on different biological aspects such as 
trophic interactions (Worm and Myers, 2003; Marczak et al., 2007) and 
experiments, i.e. combining outcomes of different setups or species (see 
e.g. Wittmann and Pörtner, 2013; Gurevitch et al., 1992). Considering 
the development of renewable energies in the North Sea, there is a need 
for higher level interpretation to identify appropriate temporal and 
spatial scales to guide future monitoring studies on the effect of hard 
MMS on soft bottom seabed structures (Dannheim et al., 2020; Wilding 
et al., 2017). It is important to understand which environmental vari-
ables (both natural and anthropogenic) drive macrofauna diversity 
patterns and to which extent. This level of knowledge is crucial for an 
improved management of renewable energy development, i.e. to in-
crease positive effects and reduce negative effects that may emerge from 
the large-scale installation of renewable energy resources in the North 
Sea. Here, we collated and analyzed existing data sets from three (3) 
national benthic macrofauna monitoring programs in European offshore 

wind farms. Our analysis considered a total of 2849 sampling points 
converted to a set of biodiversity response metrics. We analyzed biodi-
versity changes related to the implementation of offshore wind farms 
and generalized the correlation of these changes with spatial and tem-
poral patterns. 

2. Material & methods 

2.1. Data compilation 

We created an integrated database containing data (i) on fouling 
fauna on turbine foundations and scour protection layers and (ii) on soft 
sediment infauna. Artificial hard substrate samples were collected by 
scientific divers whereas infauna samples were taken by grabs and 
corers in the vicinity of wind turbines within offshore wind farms. The 
datasets covered the southern North Sea, originating from monitoring 
and research studies in Belgium, Germany and the Netherlands (Fig. 1; 
Tables 1 and 2). A metadata template was created to capture biological 
and environmental information from the different datasets (Supple-
mentary information S1). Where not available, distances to the nearest 
structure and sampling depths were estimated in ArcGIS (ver 10.3.1; 
www.esri.com/arcgis). All infauna data was taxonomically matched 
against the World Register of Marine Species (WoRMS Editorial Board, 
2017) and harmonized among the project sub-datasets to the lowest 
possible taxonomic level. All information was screened for abnormal-
ities (extreme values and missing data) and datasets were excluded if 
necessary. The resulting selection of datasets/samples is summarized in 
Table 1. 

Data points that were located >10,000 m from a structure were 
excluded as only a single year in a single dataset was available. All 
fouling samples had been collected using the same method, so gear type 
was not included as a predictor in any analysis on fouling data. 

Unsurprisingly, there was some difference across datasets: 53% of 
seabed samples were taken in autumn and 8% in summer. 65% of the 
seabed samples were obtained in German wind farms and only 7% from 
the Netherlands. By far, the most samples were taken at <50 m from the 
structure (Fig. 2). For the fouling data, again most data originated from 
German locations, but - except for winter months - the frequency of 
samples per season was more even. Furthermore, most samples were 
taken in depths <15 m, and were repeated at specific depths (Fig. 3). All 
data had been collected in the period between the years 2003 and 2012. 

2.2. Analyses 

Different community descriptors were calculated for each record: 
taxonomic richness (S sample-1), Simpson diversity index (d sample− 1), 
Shannon diversity index (H sample− 1), evenness (J sample− 1) and total 
abundance (N sample− 1). Since sampled area varied between records, 
richness was calculated by rarefaction of all records within the fouling 
and seabed datasets using the rarefy function of the vegan package 
(Oksanen et al., 2019), based on the abundance within each sample, 
corrected for the sample size, i.e. rarefying each sample to the smallest 
area in each dataset (0.078 m2 for seabed and 0.01 m2 for fouling data). 
The abundance per sample was scaled down to these same smallest 
sample sizes as well. There were four (4) samples for which these indices 
could not be calculated (i.e. only one species in the sample; 3 fouling 
samples and 1 seabed sample), were excluded from further analysis. 
Each sample was assigned to a sampling season. The obtained data were 
screened again and checked for consistency and completeness of all 
predictor variables in the respective datasets (Table 3). The final selec-
tion of data to be included in analysis included 677 fouling samples and 
2172 seabed samples. For data analysis, R version 3.6.1 (R Core Team, 
2019) and RStudio version 1.2.5001 (RStudio, 2019) were used. 

The selected data were then explored using the protocol by Zuur 
et al. (2010). The presence of outliers, multicollinearity, and relations 
between response variables and environmental variables was assessed 
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using boxplots, Cleveland dotplots (Cleveland, 1985), pairplots, Pearson 
correlation coefficients, variance inflation factors, and multi-panel 
scatterplots from the lattice package (Sarkar, 2008). 

We tested for functional correlations by applying general additive 

models (GAMs) in order to assess the influence of the predictors on the 
calculated response variables. Models were created for each of the five 
biodiversity metrics from (1) fouling community data and (2) seabed 
community data, resulting in a total of 10 models (Table 3). The 
descriptor ‘gear type’ was excluded from seabed data because of a strong 
collinearity with country (box corer samples were taken in the 
Netherlands and van Veen samples in Germany and Belgium). Since 
samples taken around a specific turbine were considered to be not in-
dependent, the turbine ID was included in the models as a random effect. 

Models were built using the “gam” function of the “mgcv” package 
(Wood, 2006). As the relation between diversity metrics and environ-
mental variables can be non-linear, e.g. with maximum richness at in-
termediate depths (Coolen et al., 2020a), all continuous environmental 
variables were included in the models as smoothed terms. The maximum 
number of knots per term was set to three to reduce model complexity 
(Coolen et al., 2020a). The effective degrees of freedom from the 
resulting models were used to assess the level of non-linearity (1 =
linear, 2 = maximum smoothed) of each variable. 

Model structure for the fouling community data:  

DivMetricij = α + f(depth ij) + f(age ij) + β1.seasonij + β2.countryij + turbinei 
+ εij                                                                                                    

DivMetricij is the diversity metric of choice for sample j within 

Fig. 1. Data locations. Positions of all data points with seabed sample stations indicated as grey dots and fouling sample stations as red dots. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Overview of the different collated datasets available for the meta-analysis. 
Number of samples indicate the total number of samples available after cleaning.  

Country Wind farm Seabed 
samples 

Fouling 
samples 

Source 

NL Egmond 
aan Zee 

49 0 Bergman et al. (2015);  
Bouma and Lengkeek (2013) 

NL Prinses 
Amalia 

105 92 Coolen et al. (2020a); Leewis 
et al. (2018); Vanagt and 
Faasse (2014) 

BE Belwind 357 37 De Mesel et al. (2015);  
Vandendriessche et al. 
(2014) 

BE C-Power 231 96 Degraer et al. (2018) 
GE Alpha 

Ventus 
952 234 Gutow et al. (2014) 

GE FINO1 
(platform) 

478 218 Krone et al. (2013b),  
Schröder et al. (2013) 

Total  2172 677   

Table 2 
Meta data per wind farm, with the seabed depth range (m), dominant habitat types, area sampled (m2) from the seabed and from the turbine foundation.  

Wind farm Seabed depth Habitat type Sampled area seabed Sampled area turbine 

Egmond aan Zee 12–20 Circalittoral sand 0.078 0.056 
Prinses Amalia 17–23 Circalittoral sand 0.078 0.056 
Belwind 22–31 Circalittoral sand 0.1 0.0625 
C-Power 20–29 Circalittoral sand & Circalittoral coarse sediment 0.1 0.0625 
Alpha Ventus 28–34 Circalittoral sand 0.1 0.01 and 0.04 
FINO1 (platform) 29–33 Circalittoral sand 0.1 0.04  
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turbine i. Smoothing functions are delineated with f(). The residuals εij 
were assumed to be normally distributed with a mean of 0 and variance 
of σ. 

Model structure for the seabed community data:  

DivMetricij = α + f(depth ij) + f(age ij) + β1.seasonij + β 2.countryij + f 
(distanceij) + turbinei + εij                                                                      

Both model structures are similar with the exception of the inclusion 
of distance to structure for the seabed community data. For each model, 

the residuals were plotted against the fitted values and visually inspec-
ted to confirm the assumptions of homogeneity of variance and 
normality. Furthermore, residuals were plotted against all variables in 
and outside the model as well as fitted values to assess model fit. The 
variance inflation factor was <3 for all variables in all models, therefore 
collinearity was not an issue for the regarded predictors (Zuur et al., 
2010). Model results, the relation between each predictor variable and 
each response variable, were predicted by using the predict.gam func-
tion, while keeping all other predictor variables at a fixed value. The 

Fig. 2. Data summary seabed. Number of occurrences of variables in data on seabed samples, with top left to bottom right: Season in which the sample was 
acquired, seabed depth from which the sample was acquired, age of the nearest installation at date of sampling, distance from the nearest installation, gear type used 
to collect the sample. 

Fig. 3. Data summary fouling. Number of occurrences of variables in data on fouling samples, with left to right: season in which the sample was acquired, depth on 
the installation from which the sample was taken and age of the installation at date of sampling. 
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fixed values were the average depth, age and distance, and the most 
frequent value for season (autumn) and country (Germany). 

3. Results 

3.1. Fouling communities 

The fouling samples had been collected between 3 and 90 months 
after installation of the turbine and sampling depth varied between 
0 and 30 m. Taxonomic richness varied between 1 and 21 taxa per 
sample (Table 4). The maximum abundance found was 2.4 × 106 ind. 
m− 2, mostly composed of the amphipod Jassa herdmani. The common 
mussel Mytilus edulis was the dominant species in 0–5 m depth, followed 
by J. herdmani in 5–15 m, after which the plumose anemone Metridium 
senile was dominant up to the seabed. These species patterns were 
similar between wind farms and had been reported extensively for the 
separate datasets (see references in Table 1) and are therefore not 
treated further here. 

The GAMs explained between 26 and 44% of the variation in the five 
different response variables (Table 5). Deviance explained varied 
strongly between different independent variables in the models. The 
country explained less than 0.1% in all models, while season explained 
between 2 and 27%. Highest deviance explained was found for the re-
lations between depth and Simpson diversity (25%) as well as between 
season and richness (27%). 

Most of the regarded variables had a significant (p < 0.05) influence 
on biodiversity metrics. The descriptors ‘depth’ and ‘season’ were sig-
nificant for all 5 responses, whereas the descriptor ‘age’ was only sig-
nificant for richness, Simpson diversity and abundance. The effective 
degrees of freedom indicated a non-linear relation (e.d.f > 1.0) between 
depth and all diversity indices excluding richness and for age with 

richness, Simpson diversity and Abundance, but not with Shannon di-
versity and Evenness (Fig. 4). All indices increased with age, with the 
steepest slopes in richness and Simpson diversity in the first 50 months 
after construction, after which it levels off (Simpson) or becomes slightly 
negative (richness). It should, however, be noted that standard errors 
increase strongly with later ages and a positive slope remains within 
their range. 

The seasonal effect showed the highest richness and abundance in 
summer and lowest in winter time. The German samples held the highest 
abundance per sample but the lowest richness, while samples from 
Belgium held the lowest value for abundance, and highest for richness 
(Table 6). 

3.2. Seabed communities 

All available samples had been collected between 1 and 78 months 
after installation of the nearest turbine and sampling depth varied be-
tween 12.5 and 34 m. Distance from the nearest structure ranged be-
tween 1 and 9761 m. Rarefied taxonomic richness varied between 1.67 
and 59 taxa per sample (Table 7). The highest abundances were found in 
the polychaetes Spiophanes bombyx (up to 25,588 ind m− 2) and Owenia 
fusiformis (up to 12,840 ind m− 2) as well as in Horseshoe worms of the 
genus Phoronis (up to 45,670 ind m− 2). 

The GAMs explained between 15 and 59% of the variation in the five 
different response variables (Table 8). Similar to fouling community 
models, the response variables for seabed communities varied strongly 
in their amount of deviance explained. As found for the fouling com-
munities, country affiliation explained no more than 0.1% variation in 
all models. Highest deviance explained was found for the relations be-
tween season and richness (52%), season and abundance (40%) and 
season and evenness (24%). Deviance of the Shannon diversity was 
explained best by season of sampling (11%) and age of the community 
(9%). The predictor variables depth, season and distance were signifi-
cant for all five response variables, age was significant for all but 
abundance and country was significant for all but the Simpson diversity. 
Relations between depth and Simpson and Shannon diversity, as well as 
between age and abundance and distance with richness were modelled 
as strictly linear (effective degrees of freedom = 1.0). All other variables 
had a non-linear relation with at least 1.88 degrees of freedom. 

The seasonal effect was strong, with highest richness and abundance 
in summer and lowest in winter time (Fig. 5). The German samples held 
both the highest values for abundance and richness per sample; lowest 
values were recorded for Belgian samples for both of these response 
variables (Table 9). 

Table 3 
Details of the 10 GAMs to analyze biodiversity indices relations of fouling and seabed data, with model ID, response metric of the model, distribution name with link 
(log or logit), depth (meters seawater), age (months since construction), season, country (name of country in which the wind farm was based), gear type (box corer or 
van Veen) and distance (meters from the nearest structure). ✓ indicates inclusion in the model, - indicates exclusion.  

Model ID Data type Response metric distribution link Predictor variable 

Depth Age Season Country Distance 

FS Fouling Richness (S sample− 1) quasiPoisson log ✓ ✓ ✓ ✓ – 
FD Fouling Simpson (d sample− 1) beta logit ✓ ✓ ✓ ✓ – 
FH Fouling Shannon (H sample− 1) Gaussian log ✓ ✓ ✓ ✓ – 
FJ Fouling Evenness (J sample− 1) beta logit ✓ ✓ ✓ ✓ – 
FN Fouling Abundance (N sample− 1) quasiPoisson log ✓ ✓ ✓ ✓ – 
SS Seabed Richness (S sample− 1) quasiPoisson log ✓ ✓ ✓ ✓ ✓ 
SD Seabed Simpson (d sample− 1) beta logit ✓ ✓ ✓ ✓ ✓ 
SH Seabed Shannon (H sample− 1) Gaussian log ✓ ✓ ✓ ✓ ✓ 
SJ Seabed Evenness (J sample− 1) beta logit ✓ ✓ ✓ ✓ ✓ 
SN Seabed Abundance (N sample− 1) quasiPoisson log ✓ ✓ ✓ ✓ ✓  

Table 4 
Sample statistics of the data used as response and predictor variables in the five 
fouling community models. Columns: minimum, maximum, average and stan-
dard deviation of the continuous data used in model calculations. Rows: model 
variables, with depth (m seawater), age (months after construction), Richness (S 
sample− 1, rarified to a sampled area of 0.01 m2), Simpson diversity index (d 
sample− 1), Shannon diversity index (H sample− 1), evenness (J sample− 1) and 
abundance (N sample− 1 of 0.01 m2).   

Minimum Maximum Average Standard 
Deviation 

Depth (m) 0 30.00 10.69 8.14 
Age (months) 3 90 34.06 19.44 
Richness (S sample− 1) 1 21 7.31 3.89 
Simpson (d sample− 1) 0 0.91 0.31 0.22 
Shannon (H sample− 1) 0 2.78 0.65 0.46 
Evenness (J sample− 1) 0 1 0.28 0.19 

Abundance (N 
sample− 1) 

1 24,146 1366 2220  
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4. Discussion 

4.1. Biological patterns 

Knowledge on benthic responses to the introduction of MMS in the 
North Sea environment is crucial for monitoring and management of 
these systems (Lindeboom et al., 2011). To our knowledge, this is the 
first time that a study of this nature has been conducted to explore 
general patterns of change of natural benthic communities associated 
with the installation of offshore wind farms over soft sediment areas. 
Our study explored the use of ten (10) models parameterized from a 
unique combination of fouling (hard substrate) and surrounding 
soft-bottom communities. Our results demonstrated that the predictor 
variables, such as depth and season (and distance to structure for 
soft-bottom community) consistently determined diversity indicators 
and abundance parameters, whereas the age and the country affiliation 
were significantly related to some but not all indices. Our analysis 
revealed that water depth was the most important structuring factor for 
fouling communities and seasonal effects were driving most of the 
observed change for soft-sediment communities. 

4.1.1. Fouling communities 
Depth explained up to 25% of the variation in diversity and 26% of 

abundance. Shallower depth zones showed the largest abundance and 
were dominated by mussels and amphipods (Jassa herdmani). This 
pattern of colonization has been consistently observed across other 
offshore wind farms (Degraer et al., 2020). These observed taxa are 
characterized by a filter feeding strategy and most likely benefit from 
high food availability (i.e. plankton and detritus) in the upper light 
penetration zone (Slavik et al., 2019; De Mesel et al., 2015). The lower 
diversity and evenness in intermediate depths are likely caused by the 
large abundances of amphipods, with Jassa herdmani reaching densities 
>106 per m2 while other species showed much lower densities. The 
presence of structure forming hydrozoans in this depth zone has been 
suggested to increase richness (Coolen et al., 2020a). Our analysis 
showed that age was not significantly related to the Shannon diversity 
index. Connell and Slatyer (1977) postulated four types of expected 
successional colonization, categorized depending on the species pres-
ence and interactions. Our results suggest that there is an ‘inhibitory 
response’ based on this model, in which early colonizers occupy most of 
the resources, occupying all available spatial resources and which may 
consume arriving larvae of other taxa, thus preventing other species 
from establishment on the structure. However, species such as Mytilus 
edulis are also known to provide secondary hard substrates and could be 
considered as a keystone species, increasing habitat availability, also 
increasing richness (Coolen et al., 2020a). This would be in contrast to 
the inhibition model. In an environment with constant disturbance, 
these combined effects may lead to the observed ‘pseudo-equilibrium’ in 
shallower depth zones where losses are quickly compensated by 
recolonization (via short- and long-distance dispersal) by the predomi-
nant species. This would strongly depend on seasonal patterns as 

observed in our study – season had a clear effect on richness, Shannon 
diversity and abundance, all of which were highest in summer or 
autumn and lowest in winter or spring. The decrease in abundance with 
age may be explained by the aging of individuals of the dominant spe-
cies, in particular Mytilus edulis. With growth in size, space will become 
limiting and many mussels fall from the structure (Krone et al., 2013b). 
The remaining individuals will grow to a larger size, at lower 
abundances. 

4.1.2. Surrounding seabed communities 
The species diversity of the animal assemblages in the surrounding 

soft bottoms showed a small (up to 5.5%) but significant relation with 
the distance to the structure. Very close to the foundation, diversity was 
higher than at intermediate distances. This response could be attribut-
able to the presence of fouling species being detached and therefore, 
falling off the structures and inhabiting proximate substrates only, 
creating an ‘artificially’ increased diversity in the very local seabed 
(Fernandez-Gonzalez et al., 2016; Mavraki et al., 2020), in combination 
with a fining and enriched level of the soft sediments surrounding the 
structure, resulting in higher abundance and diversity (Coates et al., 
2014). 

As the studied wind farms were closed for fisheries, a reduced 
disturbance by bottom trawling may also have affected local richness 
(Bergman et al., 2015). Additionally, export of organic matter by the 
fouling community to the seabed (Ivanov et al., 2021) may have altered 
the seabed diversity as well (Davis et al., 1982; Coates et al., 2014). This 
can be observed with the slight increase of diversity with the time since 
construction. However, there is a negative slope visible at higher ages. 
These data originate from studies in Belgian wind farms. It is unclear 
whether this decrease at higher wind farm age is caused by a lower 
biodiversity in Belgium or by other environmental influences. Water 
depth was a good predictor for all regarded response variables of the 
soft-bottom communities, confirming the common natural pattern in the 
shallow North Sea where species richness increases with depths up to 30 
m (Armonies et al., 2014). However, the relation of depth and richness 
remains unclear, as the model shows large errors in depths <25 m, 
which should be noted when interpreting these results. A similar pattern 
is visible in the relation between abundance and depth, where shallower 
depths show very large errors. This may be caused by larger variation in 
abundance in shallow waters, or by the data originating from only one 
country. Effects of anthropogenic activities such as the presence of MMS 
may differ among locations and may be locally restricted (i.e. on small 
spatial scales; Gutow et al., 2014; Kenworthy et al., 2016). As for fouling 
communities, season had a very strong effect on most of the responses, in 
particular for abundance, which was more than 7 times higher in sum-
mer than in winter. 

4.1.3. The power of meta-analysis for environmental management 
As the available dataset was large enough, local (i.e. small-scale) 

effects contributed only to a small extent to the total variation and 
only those effects that were present in multiple wind farms independent 

Table 5 
Summary statistics of all model components for the five models created for fouling communities, with columns for p-value (P, <0.001 = ***; <0.01 = **; <0.05 = *; 
non-significant = n.s.), effective degrees of freedom (edf) and % deviance explained (DE), rows for sampling depth (m seawater), age (months since construction of 
wind farm), temperature (⁰C at water surface), longitude (⁰ east), total deviance explained for the model and adjusted R2 for the model. N samples = 675. Richness was 
rarified and abundance scaled down to a sampled area of 0.01 m2.   

Richness Simpson Index Shannon Index Evenness Abundance 

P edf DE P edf DE P edf DE P edf DE P edf DE 

Depth * 1.00 1.9% *** 1.99 25% *** 1.98 18% *** 1.99 18% *** 1.95 26% 
Age *** 1.98 15% ** 1.87 7.6% n.s. 1.00 0.4% n.s. 1.00 1.0% *** 1.97 14% 
Season *** – 27% ** – 2.4% *** – 7.9% *** – 7.4% *** – 14% 
Country ** – <0.1% *** – 0.3% *** – 0.4% ** – 0.1% n.s. – 0.1% 
Total DE   44%   35%   26%   26%   43% 
Total R2   0.44   0.17   0.24   0.14   0.33  
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Fig. 4. Non-linear relations fouling. Relations between predictor variables (columns) and response variables (rows), as estimated with GAMs based on fouling 
community data. Variables within rows are from a single model. Sample size in all models was 678. Continuous line: predicted relation between response variable (y- 
axis) and predictor variable (x-axis). Dashed lines: standard errors (SE). N sample = 675. 
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of their location in the southern North Sea were able to dominate the 
resulting patterns. This is an important step towards understanding the 
effects of the presence of MMS on the wider North Sea ecosystem. If 
small effects are present in most wind farms but cannot be detected in 
the individual studies, meta-analyses may be able to detect any signals 
due to the increased statistical power resulting from the larger sample 
size (Cohen, 1988; Gurevitch and Hedges, 1999). For example, Coolen 
et al. (2020a) applied identical modelling methods to a smaller dataset 
to assess the effect of age on species richness in fouling communities, but 
age only explained <0.3% of the variation. Here, when combining this 
dataset with several others, we showed that up to 12% of the variation in 
richness can be explained by age. By pooling together multiple datasets, 
the power to detect changes strongly increased. 

The power of meta-analyses to detect previously “undetectable” ef-
fects has been demonstrated in many studies on different biological 
aspects such as trophic interactions (Worm and Myers, 2003, Marczak 
et al. 2007) and experiments, i.e. combining outcomes of different 

experiments (Gurevitch et al., 1992). Monitoring studies as those used in 
the current meta-analysis, are designed to detect possible changes 
within or in the vicinity of single wind farms. Due to the ‘local’ nature of 
each study, however, observed changes can only be considered in a 
spatially and thus ecologically restricted context. Furthermore, natural 
variation in environmental conditions may cause large changes in spe-
cies communities, obscuring effects of the individual wind farm on the 
benthic community. These limitations can be partly overcome by a 
meta-analysis. However, merging datasets and performing 
meta-analyses, is only possible if all the parameters needed for the 
meta-analysis are available for each of the separate studies (Gurevitch 
and Hedges, 1999). 

In order to allow for useful combinations in the context of a meta- 
analysis, it is of pivotal importance that a minimum set of parameters 
are registered in routine monitoring programs. The registration of some 
of these simple-to-acquire data during monitoring programs is impor-
tant to address different questions that were originally not intended to 
be answered when the local monitoring was designed. However, given 
the increasing installation of offshore wind farms across large areas, 
answering questions arising on the effect of multiple wind farms on a 
larger geographical scale (De Borger et al., 2021; Ivanov et al., 2021) 
requires the compilation of standardized databases. We suggest that 
future monitoring programs associated with offshore structures include 
the following minimum set of parameters to register:  

- Sampling date;  
- Longitude and latitude for each sample;  
- Sampling depth;  
- Sampling height from seabed in case of fouling samples;  
- Sediment composition (median grain size, % fines, total organic 

carbon content) for seabed samples;  
- Substrate type (steel/concrete/presence and type of antifouling 

treatment) for fouling samples;  
- Seawater temperature at sampling depth;  
- Whether fishery is allowed at the sample location in case of seabed 

samples; 
o If yes: type of fishery  

- Seawater salinity at sampling depth;  
- Distance to nearest structure for seabed samples;  
- Date of construction of that nearest structure. 

Most of these variables have also been suggested by the Working 
Group on Marine Benthal Renewable Developments (WGMBRED), a 
group of benthic ecology & renewable energy experts that listed the 
important variables to measure around renewable energy devices (ICES, 
2021). 

It is important that the timeline of projects is long enough to be able 
to distinguish smaller long-term changes from larger short-term natural 
variation. We combined datasets varying in age between 1 month and 
7.5 years, elucidating biodiversity parameters are still evolving. 

The formatting and quality control during combination of these 

Table 6 
Fouling model predicted response values for each category in season and 
country, with all other predictor variables set to a the mean value for continuous 
variables and most frequent values for categorical variables. N sample = 675. 
Richness was rarified and abundance scaled down to a sampled area of 0.01 m2.   

Richness Simpson 
Index 

Shannon 
Index 

Evenness Abundance 

Spring 4.39 0.14 0.37 0.18 441.60 
Summer 6.43 0.16 0.38 0.17 1109.87 
Autumn 5.36 0.19 0.51 0.24 674.82 
Winter 3.78 0.17 0.37 0.20 274.72 

Belgian 7.37 0.36 0.89 0.46 248.51 
Dutch 7.20 0.22 0.75 0.29 432.24 
German 5.36 0.19 0.51 0.24 674.82  

Table 7 
Sample statistics of data used as response and predictor variables in the five 
seabed community models. Columns: minimum, maximum, average and stan-
dard deviation of all data used in model calculations. Rows: Predictor variables, 
with depth (m seawater), age (months after construction), distance (m from 
structure), Richness (S sample− 1, rarified to a sampled area of 0.078 m2), 
Simpson diversity index (d sample− 1), Shannon diversity index (H sample− 1), 
evenness (J sample− 1) and abundance (N sample− 1 of 0.078 m2). N sample =
2172.   

Minimum Maximum Average Standard deviation 

Depth 12.50 33.88 28.12 3.94 
Age 1.00 78.00 31.01 20.62 
Distance 1.00 9761.47 1868.51 2648.80 
Richness 1.67 58.81 19.90 10.28 
Simpson 0.14 0.96 0.83 0.10 
Shannon 0.27 3.45 2.28 0.45 
Evenness 0.13 1.00 0.78 0.13 
Abundance 2.00 3884.00 148.67 288.26  

Table 8 
Summary statistics of all model components for the five models created for seabed communities, with columns for p-value (P, <0.001 = ***; <0.01 = **; non-sig-
nificant = n.s.), effective degrees of freedom (edf) and % deviance explained (DE), rows for sampling depth (m seawater), age (months since construction of wind 
farm), season, distance (m from structure), and country, total deviance explained (total DE) for the model and adjusted R2 for the model (Total R2). N sample = 2172. 
Richness was rarified and abundance scaled down to a sampled area of 0.078 m2.   

Richness Simpson Index Shannon Index Evenness Abundance 

P edf DE P edf DE P edf DE P edf DE P edf DE 

Depth ** 2.00 2.7% *** 1.02 0.9% *** 1.00 0.4% *** 1.94 2.3% *** 2.00 2.6% 
Age *** 2.00 4.5% *** 1.98 5.8% *** 1.97 9.3% *** 1.93 4.0% n.s. 1.00 <0.1% 
Season *** – 52.0% *** – 5.7% *** – 10.8% *** – 23.9% *** – 39.8% 
Distance * 1.00 <0.1% *** 1.95 2.8% *** 1.90 4.1% *** 1.96 5.4% ** 1.88 2.1% 
Country *** – <0.1% n.s. – 0.1% ** – <0.1% *** – <0.1% *** – <0.1% 
Total DE   59.0%   15.3%   24.6%   35.7%   44.6% 
Total R2   0.57   0.14   0.23   0.25   0.25  
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Fig. 5. Non-linear relations seabed. Relations between predictor variables (columns) and response variables (rows), as estimated with gams based on seabed 
community data. Variables within rows are from a single model. Continuous line: predicted relation between response variable (y-axis) and predictor variable (x- 
axis). Dashed lines: standard errors (SE). N sample = 2172. 
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datasets is very labor-intensive. The use of standardized registration 
templates that include all the variables described above, and can easily 
be submitted to online repositories such as the Ocean Biodiversity In-
formation System (OBIS, 2022) or directly shared between researchers, 
would significantly reduce the time needed to perform similar studies. 
Ideally, this would facilitate international collaborations, sharing data 
on a regular basis and conducting joint meta-analyses as performed here. 
This would strongly increase the use of these data, thus improving our 
understanding of potential impacts. 

4.2. Management implications 

Meta-analyses of data from independently conducted monitoring 
projects, proved to be a valuable tool for the generalization of effects of 
offshore wind farms on their surrounding benthic communities. Long- 
term small changes, such as alterations to biodiversity over time, can 
be detected better than in separate local (i.e. spatially restricted) pro-
jects despite the effects of season and depth on biodiversity of benthic 
communities. Furthermore, even though some effects may remain 
invisible in single monitoring programs, long-term changes on a larger 
scale may only become apparent if the small-scale data was collected 
from the start in all the separate initiatives. These large-scale changes 
may include an altered functioning of communities, changes in nutrient 
cycles or predator prey-relations (Dannheim et al., 2020). Some aspects 
that are currently unknown, may become important when offshore wind 
farms are indeed upscaled to the current outlooks of 25,000 turbines in 
the southern North Sea (de Vrees, 2019). Patterns observed by that time, 
can only be detected as changes, if the baseline is measured now and in a 
way that allows these future assessments. Once the end of life of MMS 
has been reached, new questions will arise on the effect of removal of 
such installations (Coolen et al., 2020b). This can only be evaluated 
against a proper understanding of the effects of their presence (Fowler 
et al., 2020). 

To further improve the potential to perform meta-analyses, we sug-
gest making a registration of a standard minimum number of parameters 
at a defined high-quality mandatory in renewable energy monitoring 
programs. Data storage using internationally standardized templates 
would greatly enhance generalizations of effects and the exchange of 
knowledge (Murray et al., 2018). This should be considered as a crucial 
prerequisite for the approval of future monitoring studies. We encourage 
managers, stakeholders and authorities to demand future projects to 
follow these requirements and stimulate researchers to standardize and 
share their data. 

We demonstrated that a meta-analysis provided an improved level of 
understanding of ecological patterns on large-scale ecological effects 
such as diversity, which couldn’t be detected in single monitoring 
studies. Meta-analyses should be an indispensable tool for management 
of offshore wind farm effects in the future, particularly in the view of the 
foreseen development of offshore renewable energies. Combined with 
an ecosystem approach, i.e. including several ecosystem components 

from plankton to top predators, this may lead to a better picture and 
more comprehensive view on potential alterations. However, this re-
quires a modern open-source data policy and data management, across 
institutions and across national borders. 
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Schröder, A., Gutow, L., Joschko, T.J., Krone, R., Gusky, M., Paster, M., Potthoff, M., 

2013. Benthosökologische Auswirkungen von Offshore-Windenergieparks in Der 
Nordsee BeoFINO II Prozesse Im Nahbereich Der Piles. Alfred-Wegener-Institut für 
Polar- und Meeresforschung report, p. 193. 

Slavik, K., Lemmen, C., Zhang, W., Kerimoglu, O., Klingbeil, K., Wirtz, K.W., 2019. The 
large-scale impact of offshore wind farm structures on pelagic primary productivity 
in the southern North Sea. Hydrobiologia 845, 35–53. https://doi.org/10.1007/ 
s10750-018-3653-5. 

Stewart, G., 2010. Meta-analysis in applied ecology. Biol. Lett. 6, 78. https://doi.org/ 
10.1098/RSBL.2009.0546. 

Vanagt, T., Faasse, M., 2014. Development of Hard Substratum Fauna in the Princess 
Amalia Wind Farm. Monitoring Six Years after Construction eCOAST report 
2013009. Oostende, Belgium.  

Vandendriessche, S., Derweduwen, J., Hostens, K., 2014. Equivocal effects of offshore 
wind farms in Belgium on soft substrate epibenthos and fish assemblages. 
Hydrobiologia 756, 19–35. https://doi.org/10.1007/s10750-014-1997-z. 

Veenstra, H.J., 1969. Gravels of the southern North Sea. Mar. Geol. 7, 449–464. https:// 
doi.org/10.1016/0025-3227(69)90017-6. 

Wilding, T.A., Gill, A.B., Boon, A., Sheehan, E., Dauvin, J., Pezy, J.-P., O’Beirn, F., 
Janas, U., Rostin, L., De Mesel, I., 2017. Turning off the DRIP (‘Data-rich, 
information-poor’) – rationalising monitoring with a focus on marine renewable 
energy developments and the benthos. Renew. Sustain. Energy Rev. 74, 848–859. 
https://doi.org/10.1016/j.rser.2017.03.013. 

Wind Europe, 2021. Wind Energy in Europe in 2020. 
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