Air Mass Transport to the Tropical West Pacific Troposphere inferred from O₃ and RH Balloon Observations above Palau

Kati Müller, Ingo Wohltmann, Peter von der Gathen, Markus Rex

(7.34°N 134.47° E)

ACCLIP STM 10.-13.2022

0

Contact: katrin.mueller@awi.de

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR UND MEERESFORSCHUNG

Quick intro: Palau Atmospheric Observatory

Palau Atmospheric Observatory StratoClim (2015-2019) Lidar: Vertical profiles of MaxDOAS: ACCLIP → Müller 2020 (thesis), Strato Clir aerosol properties Pandora25 -Since 2018: multi-\lambda cloud Pandonia Network and aerosol lidar ComCAL O₃, NO₂, AOD 2x Müller et al. in prep, (, H₂O, SO₂, ...) in new lab **Research balloons: FTIR Spectrometer:** Vertical profiles of Total abundances of Cairo et al. 2021 ~ 20 chemical species Aerosol Water vapour MICA: **POSIDON (2016)** Ground sampling of POSIDON OCS, CO, CO2, H2O emp. @ CRRF site 12 **PARTNERS:** ETH ISAC LUFTBLICK 0 Atmospheric Observator Freie Universität Berlin JÜLICH Cesa Forschungszent

soon:

By Ingo Ben

Ballooning Program

- Continuous fortnightly ECC soundings (SPC) since 2016 + several intensive campaigns
- Irregularly: CFH-COBALD-ECC payload (12 x)

ACCLIP operations:

- Intensive (pre-)campaign in Feb-Apr (1st time since the pandemic)
- Jul-Sept: ECC sondes on demand and every 2-3 days, additionally 3-4 ECC-CFH-COBALD
- All other instrumentation (FTIR, Cloud&Aerosol Lidar, Pandora2S) operational (fingers crossed)

Main Scientific Objectives

• Assess tropospheric O₃ (and OH) variability in the TWP

https://epic.awi.de/id/eprint/54569/

- Identify tropospheric air mass origin and its seasonality using observed unique tracer-tracer relation O₃/RH
- Next up: more focus on TTL O₃ and H₂O variability and related STE processes
- Open for collaborations within the ACCLIP community

Free-tropospheric O₃/RH distribution of all observations

Palau (3-14km, 01/2016-12/2021)

Backward Trajectories

Transport module of Langrangian Chemistry and Transport Model ATLAS (Wohltmann et al. 2010)

Setup:

- driven by ERA5 reanalysis data, no diffusion, no convective model parameterization, 10-min time steps
- initialized from ozone sounding data, 01/2016-10/2019, 2-14 km, every 10th measurement
 → focus on 5-10 km altitude range

Assumptions:

- 10-day-backtrajectories for dynamical footprint
- Due to typical lifetime of marine boundary layer O₃:
 5-day-backtrajectory ending points

 = origin of air mass composition

https://epic.awi.de/id/eprint/54569/ ⁶

5-days-back trajectory ending points ≡ origin, trajectory start @ 5-10 km in Palau **x**

All Observations by season:

O₃ VMR distributions:

- Center of low O₃ in both seasons, FMA and ASO, East of Palau
- Secondary center of enhanced O₃ in FMA, North of Palau from India to East China

Vertical displacement:

- Mainly in FMA, North of Palau air masses descend towards Palau (anticyclonic route), consistent with largescale descent within the Hadley circulation and subsequent dehydration
- Ascent dominates ASO air masses (Pacific origin), corresponding well with the dominance of convective uplift

5-days-back trajectory ending points ≡ origin, trajectory start @ 5-10 km in Palau **x**

All Observations by season:

O₃ VMR distributions:

- Center of low O₃ in both seasons,
 FMA and ASO, East of Palau
- Secondary center of enhanced O₃ in FMA, North of Palau from India to East China

Vertical displacement:

- Mainly in FMA, North of Palau air
 masses descend towards Palau (anticyclonic route), consistent with largescale descent within the Hadley
 circulation and subsequent
 dehydration
- Ascent dominates ASO air masses (Pacific origin), corresponding well with the dominance of convective uplift

Anomalies from O_3 /RH Background (3-14 km) per season

5-days-back trajectory ending points ≡ origin, trajectory start @ 5-10 km in Palau **x**

5-days-back trajectory ending points ≡ origin, trajectory start @ 5-10 km in Palau **x**

All Observations by $\Delta O_3 / \Delta RH$ group :

Separation of air masses according to processes controlling RH (Convective uplift, ASO; dehydration during descent, FMA) and spatially separate source regions

No indication for significant contribution of **stratospheric air:**

Potential Vorticitiy analysis for all trajectories (from 4 years, 138 profiles, 5-10 km) revealed essentially **no air mass crossing the 1.5 PVU threshold** for more than a day during 10 days backwards.

Take home messages

We are prepared for and looking forward to the 2022 campaigns. Using the Palau ECC O₃ sounding data set (01/2016-10/1019), seasonal analysis, trajectory modelling and a statistical approach to distinguish air masses by O₃/RH relation, we identified transport processes and pathways to the TWP troposphere:

Humid, O₃-poor

ProcessesConvective backgroundOriginPacific or localFrequencyYear-round, dominates Aug-Oct

Large scale descent, pollution Tropical Asia (anticyclonic route) Most frequent in Feb-Apr

Dry, O₂-rich

Watch out for the upcoming publications! I am happy to collaborate and provide data any time!