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ABSTRACT: We consider the closure problem of representing the higher-order moments (HOMs) in terms of lower-
order moments, a central feature in turbulence modeling based on the Reynolds-averaged Navier–Stokes (RANS)
approach. Our focus is on models suited for the description of asymmetric, nonlocal, and semiorganized turbulence in the
dry atmospheric convective boundary layer (CBL). We establish a multivariate probability density function (PDF) describ-
ing populations of plumes that are embedded in a sea of weaker randomly spaced eddies, and apply an assumed delta-PDF
approximation. The main content of this approach consists of capturing the bulk properties of the PDF. We solve the clo-
sure problem analytically for all relevant HOMs involving velocity components and temperature and establish a hierarchy
of new non-Gaussian turbulence closure models of different content and complexity ranging from analytical to semianalyti-
cal. All HOMs in the hierarchy have a universal and simple functional form. They refine the widely used Millionshchikov
closure hypothesis and generalize the famous quadratic skewness–kurtosis relationship to higher order. We examine the
performance of the new closures by comparison with measurement, LES, and DNS data and derive empirical constants for
semianalytical models, which are best for practical applications. We show that the new models have a good skill in predict-
ing the HOMs for atmospheric CBL. Our closures can be implemented in second-, third-, and fourth-order RANS turbu-
lence closure models of bi-, tri-, and four-variate levels of complexity. Finally, several possible generalizations of our
approach are discussed.

KEYWORDS: Atmosphere; Boundary layer; Convective parameterization; Eddies; Parameterization; Turbulence;
Updrafts/downdrafts

1. Introduction and background

The Reynolds-averaged Navier–Stokes (RANS) turbulence
model (e.g., Monin and Yaglom 2007a,b) is a powerful tool
for studying the convective boundary layer (CBL). Any
RANS model must solve the turbulence closure problem of
representing higher-order moments (HOMs) in terms of
lower-order moments. This problem is still unsolved for the
atmospheric CBL due to the complexity of the CBL turbu-
lence structure. It is proven that only third- and higher-order
closure (HOC) models are able to describe CBL turbulence
statistics properly (Mellor and Yamada 1982; Canuto et al.
1994; Mironov and Machulskaya 2017). The reason is the
asymmetry of CBL turbulence and its nonlocal and semior-
ganized structure (e.g., Deardorff 1970; Hunt 1984; Wyngaard
1987). The asymmetry is due to the main forcing at the surface
leading to the emergence of coherent features, namely, the
evolution of plumes. These plumes are convective circulation
cells roughly of the size of the boundary layer height zi in the
vertical and of several zi in the horizontal direction. The
updraft motions form a localized core, which is surrounded by
wide downdraft motions. This layer of large-scale mixing is
sandwiched by two layers of small-scale mixing. In the surface

layer mixing is dominated by eddies of the sizes l ∼ z in the
vertical and of several l in the horizontal direction. Here, z is
the distance to the underlying surface. Above the mixing
layer, in the entrainment zone, mixing is also due to small-
scale eddies generated by wind shear and due to breaking of
internal gravity waves.

Our main target is the solution of the closure problem for
HOC RANS models of convective turbulence. We apply the
so-called assumed probability density function (PDF) approach,
more precisely, the assumed delta-PDF approximation.

The assumed PDF approach is a straightforward one and
can be traced back to the Millionshchikov hypothesis
(Millionshchikov 1941), where the PDF is quasi Gaussian
such that the fourth-order moments (FOMs) are Gaussian
although the third-order moments (TOMs) are nonzero. Thus
the FOMs are expressed in terms of second-order moments
(SOMs). The widely used Gram–Charlier PDF (Monin and
Yaglom 2007a,b) formalizes the Millionshchikov hypothesis
as a perturbative theory of small deviations of turbulence sta-
tistics from the Gaussian distribution. The obvious advantage
of the general assumed PDF approach is that the PDFs
depend on a finite set of N parameters, which can be deter-
mined using the N lower-order moments, the irreducible
moments. The moments are irreducible in the sense that all
other HOMs based on this PDF are expressed in terms of
these N moments. If so, the system of RANS equations
becomes closed, and only N dynamic equations for the irre-
ducible moments become relevant for the description of the
turbulent flow.
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A PDF model suitable to describe convective turbulence
must explicitly include a bimodal part for the large-scale plumes
(updrafts and downdrafts) and a unimodal part for the small-
scale weak eddies. We illustrate this decomposition feature in
Fig. 1. The upper graph shows a section of a space series of ver-
tical velocity fluctuations measured at low level in a convective
boundary layer. The signal was chosen for no particular reasons
other than that it reflects the typical fluctuations of the vertical
velocity in convective conditions. The data series is split based
on sign persistence on a horizontal scale. Portions where the
sign changes on a horizontal distance shorter than a threshold
length l are defined as background. Here l is the characteristic
horizontal scale of the eddies, such that min(z, L) # l ,, zi,

where L52Qu3*=kgw′u′0 is the Monin–Obukhov length (Obu-

khov 1946), u* 5 w′u′0
2
1 w′y′0

2
( )1=2

is the friction velocity,

w′u′0 , w′y′0 and w′u′0 are the surface values of the momentum
and heat fluxes, k is the Karman constant, g is the acceleration
due to gravity, and Q the reference temperature. Here and in
the following the Reynolds averages of velocity components u′,
y′, and w′ and temperature fluctuations u′ are denoted by over-
line, but the corresponding model dependent averages are
denoted by angle brackets. All longer stretches in Fig. 1a are

either updraft fluctuation wu for w′ . 0 or downdraft fluctua-
tion wd for w′ , 0. Figure 1b shows the splitting in terms of the
univariate PDF P(w′). The black curve is the PDF of the full
signal. The red curve corresponds to updrafts, the blue one to
downdrafts and gray is the background.

The PDF P(w′) has the functional form

P w′( ) 5 puGu w′( ) 1 pdGd w′( ) 1 p0G0 w′( ), (1)

where pu, pd, and p0 are the probabilities (area coverages)
and Gu(w′), Gd(w′), and G0(w′) are shape functions for
updrafts, downdrafts, and background, respectively, cf. Hunt
(1984). The function Gu(w′) is such that Gu(w′) 5 0 for nega-
tive fluctuations w′ , 0, and the shape function Gd(w′) 5 0
for positive fluctuations w′ . 0. All shape functions are nor-
malized to unity. Therefore, integrating Eq. (1) over all fluctu-
ations w′ leads to the normalization condition

pu 1 pd 1 p0 5 1: (2)

The basis of the assumed delta-PDF approximation (ADA)
is to approximate the full PDF by a small number of delta
functions. In this approach any PDF of the functional form
(1) can be approximated as

P w′( ) 5 pud w′ 2 wu( ) 1 pdd w′ 2 wd( ) 1 p0d w′( ) (3)

with the normalization condition (2), where d(f) is the Dirac
delta function, and wu and wd are the mean updraft and
downdraft velocities.

The main content of ADA consists in capturing of the bulk
properties of the PDF, see Fig. 1b. Figuratively speaking, the
ADA based PDF is a skeleton of any PDF. Approximating a
continuous PDF by delta functions allows developing an ana-
lytically tractable description. This approximation is comple-
mentary to one focusing on the properties of a particular
shape of a PDF (e.g., Millionshchikov 1941; Larson and Golaz
2005; Firl and Randall 2015; and references therein).

Figure 2 shows an illustration of using the ADA concept
for the solution of the closure problem.

It is obvious, that with only three probability parameters
pu, pd, and p0 and two velocities wu and wd the PDF (3) is not
yet able to describe the difference of velocity and temperature
fluctuations. Therefore, Gryanik and Hartmann (2002, hereafter
GH02) introduced a 2-scale mass flux model based on the bivar-
iate PDF P(w′, u′) and Gryanik et al. (2005, hereafter GH05),
extended it to a 4-scale model using the PDF P(w′, u′, u′, y′).
GH05 only derived closures for TOMs and FOMs and solved
the closure problem approximately, using a so-called universal-
ity hypothesis. This claims that the actual FOMs are the result
of linear interpolation between the two limits of very skewed
(mass-flux) and nonskewed (Gaussian) turbulence. Thus, the
universality hypothesis states that

w′4 5 3 1 1
1
3
S2w

( )
w′2 2, (4a)

w′3u′ 5 3 1 1
1
3
S2w

( )
w′2 w′u′ , (4b)
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FIG. 1. Illustration of a PDF superposition of up- and downdrafts
and background motion. The figure shows actual measurement
data of the vertical wind velocity recorded during a 100-km-long
aircraft traverse at low level (height of 61 m above ground) through
a well-developed convective boundary layer. (a) An excerpt of
1000-m length of the vertical wind velocity fluctuations. Note that
the fluctuations are calculated with respect to the mean over the
entire flight leg. Portions where the data change sign on a horizon-
tal distance shorter than the threshold (here: 18 m) are marked by
gray color. Red and blue marks up- and downdrafts, respectively,
as defined by a horizontal persistence of at least the length of the
threshold of 18 m. (b) The corresponding frequency distribution of
the up- and downdrafts (red and blue), the background (gray), and
the total (black). The full distribution (black) is the sum of the three
components (blue, red, and gray).
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w′2u′2 5 1 1 2C2
wu 1 CwuSwSu

( )
w′2 u′2 , (4c)

w′u′3 5 3 1 1
1
3
S2u

( )
u′2 w′u′ , (4d)

u′4 5 3 1 1
1
3
S2u

( )
u′2

2
, (4e)

where Cwu 5 w′u′=w′2 1=2u′2
1=2

is a correlation coefficient,

Sw 5 w′3=w′2 3=2 and Su 5 u′3=u′2
3=2

are the skewnesses. The
universality hypothesis refines the Millionshchikov hypothe-
sis, which is often used in RANS turbulence models. GH02
and GH05 also introduced an extended universality hypothe-
sis that allows for a variation of the constants, but keeps the
functional form predicted by the universality hypothesis.

Both the universality and the extended universality hypothesis
have shown good skills in describing the results of field measure-
ments (Hartmann et al. 1999; Lenschow et al. 2012; McNicholas
and Turner 2014), of numerical simulations of the CBL (Raasch
and Schröter 2001; Cheng et al. 2005; Larson and Golaz 2005;
Ilyushin 2018) and, moreover, of deep convection in the ocean
(Losch 2004) and in the sun and stars (Kupka and Robinson

2007; Kupka and Muthsam 2017; Cai 2018) and even of engineer-
ing flows (Waggy et al. 2016; Hsieh and Biringen 2018). Currently,
the closure equation, Eq. (4e), is used in the research version of
the NWPmodel Consortium for Small-ScaleModeling (COSMO;
Mironov and Machulskaya 2017). These are unexpected and
amazing results, keeping in mind how wide the spectrum of these
turbulent flow regimes is and how many assumptions were made
in the derivation of the closure equations.

The results described above motivate us to ask the follow-
ing questions: Where are the roots of the universal features of
this closure? Can the number of assumptions be reduced
while the closure still captures all important ingredients of the
earlier ones, i.e., how simple is simple enough? Can the results
be generalized to multivariate HOMs? These questions spec-
ify the goals of our research as follows.

The first goal is to establish the ADA-based multivariate
PDF that describes a population of plumes embedded in a sea
of weaker randomly spaced eddies of small scales forming a
turbulent background.

The second goal is to solve analytically the closure problem
for all relevant multivariate HOMs using the new PDF as
basis. This solution will clarify several issues, such as the
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FIG. 2. An illustration of the ADA concept. (top) An arbitrary excerpt of a recording of the vertical velocity at
low level in a convective boundary layer. The ordinate is scaled with the standard deviation sw and the abscissa with
the length scale zi. The corresponding normalized probability density distributions P of this data is shown over the
same ordinate to the right in red for w. 0 and in blue for w, 0; gray marks the background (cf. Fig. 1). To illustrate
their respective contributions to the irreducible moments, P is also shown multiplied with increasing powers of w.
Note that the background contribution loses influence with increasing power and the peaks move to larger values.
To the very right the delta-PDFs are shown symbolically, since actual d functions have infinite amplitude and zero
width. (bottom) For comparison with the traditional mass-flux concept, the same turbulence data in light gray and
their mass-flux representation (thick black). To the right the mass-flux probabilities are shown multiplied with
increasing powers of w in analogy to the above graphs.
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functional form of HOMs in advanced RANS closure models,
an impact of interplay of coherent structures with a back-
ground on closures for HOMs and a generalization of the
famous skewness–kurtosis relationships to higher orders.

The third goal of our research is to establish a hierarchy of
new HOM closure models of different content and complex-
ity, ranging from analytical to semianalytical models. The
hierarchy appears naturally because the solution of our clo-
sure problem, as well as any other, is not unique. In particular,
we will show how these models unify and/or refine some of
the closure models suggested earlier.

The fourth goal is to examine the performance of the new
closures by comparison with data from measurements, LES,
and DNS. We present results of testing many multivariate
HOMs not considered before and derive empirical constants
for semianalytical models, which are most well suited for prac-
tical use in RANS models.

Finally, comparison of the results from our closure models
with models focusing on a specific shape of PDFs will explic-
itly show what was actually done beyond the basic bulk fea-
tures in the models, and which fundamentally important bulk
features were neglected in the models. The comparison can
provide the key for understanding possible directions for
developing more advanced RANS closure models.

This paper is organized as follows. Sections 2 to 8 present the
theory, including the analytical exact solution for all multivariate
HOMs. Sections 9 to 11 present the results of a comparison of
the theory with datasets from measurements, LES, and DNS. In
sections 12 and 13 a new semianalytical closure model for practi-
cal use is established. Section 14 includes a summary of our main
results, a discussion of possible generalizations and applications.

2. Multivariate 17-delta-PDF and moments

We apply the ADA method to the PDF of four variables
w′, u′, u′, and y′, and approximate the multivariate PDF
P(w′, u′, u′, y′) by a delta-PDF. The 17-delta-PDF follows as a
superposition of the 16 deltas in each respective hexadecant of
our four-dimensional system multiplied by their individual
probability and additionally the probability of the background.

Thus, our proposal reads

P(w′, u′, u′, y′) � puhfrd(w′2 wu)d(u′2 uh)d(u′ 2 uf )d(y′ 2 yr)
1 pdcfrd(w′ 2 wd)d(u′ 2 uc)d(u′ 2 uf )d(y′ 2 yr)
1 pucfrd(w′ 2 wu)d(u′ 2 uc)d(u′ 2 uf )d(y′ 2 yr)
1 pdhfrd(w′ 2 wd)d(u′ 2 uh)d(u′ 2 uf )d(y′ 2 yr)
1 puhbrd(w′ 2 wu)d(u′ 2 uh)d(u′ 2 ub)d(y′ 2 yr)
1 pdcbrd(w′ 2 wd)d(u′ 2 uc)d(u′ 2 ub)d(y′ 2 yr)
1 pucbrd(w′ 2 wu)d(u′ 2 uc)d(u′ 2 ub)d(y′ 2 yr)
1 pdhbrd(w′ 2 wd)d(u′ 2 uh)d(u′ 2 ub)d(y′ 2 yr)
1 puhfld(w′ 2 wu)d(u′ 2 uh)d(u′ 2 uf )d(y′ 2 yl)
1 pdcfld(w′ 2 wd)d(u′ 2 uc)d(u′ 2 uf )d(y′ 2 yl)
1 pucfld(w′ 2 wu)d(u′ 2 uc)d(u′ 2 uf )d(y′ 2 yl)
1 pdhfld(w′ 2 wd)d(u′ 2 uh)d(u′ 2 uf )d(y′ 2 yl)
1 puhbld(w′ 2 wu)d(u′ 2 uh)d(u′ 2 ub)d(y′ 2 yl)
1 pdcbld(w′ 2 wd)d(u′ 2 uc)d(u′ 2 ub)d(y′ 2 yl)
1 pucbld(w′ 2 wu)d(u′ 2 uc)d(u′ 2 ub)d(y′ 2 yl)
1 pdhbld(w′ 2 wd)d(u′ 2 uh)d(u′ 2 ub)d(y′ 2 yl)
1 p0d(w′)d(u′)(u′)d(u′)(u′)d(y′):

(5)

The PDF is normalized as

pS 1 p0 5 1, (6a)

pS 5 puhfr 1 pdcfr 1 pucfr 1 pdhfr 1 puhbr 1 pdcbr 1 pucbr
1 pdhbr 1 puhfl 1 pdcfl 1 pucfl 1 pdhfl 1 puhbl 1 pdcbl
1 pucbl 1 pdhbl,

(6b)

where pS describes the concentration of coherent struc-
tures, and p0 the background. The PDF (5) introduces a
detailed description of coherent structures, because it
specifies 8 independent modes describing coherent struc-
tures and correspondingly 16 area coverage parameters.
The deviation from the mean vertical velocity w′ is repre-
sented by updraft fluctuations wu and downdraft ones wd,
the deviation from mean temperature u′ by hot and cold
fluctuations uh and uc, the deviation from the mean along-
stream velocity u′ is described by forward and backward
fluctuations uf and ub of velocities, and finally the deviation
from the mean cross-stream velocity y′ by left yl and right yr
components. Then, for example, the joint probability of hot
updraft wu, uh together with the along wind forward compo-
nent uf, which deviate to the right yr in the region (w′ . 0) .

(u′ . 0) . (u′ . 0) . (y′ . 0), is denoted puhfr. For more
details, see GH05. Thus, using PDF (5) the complex mor-
phology of convective turbulent flows is described by 25
parameters.

The PDF (5) is the simplest, but nontrivial, delta-PDF of
four variables. Being formed by a linear superposition of the
delta-PDFs for w′, u′, u′, and y′, the PDF (5) potentially can
approximate

• isotropic turbulence at small scales, where all velocity com-
ponents are of the same order wu ∼ 2wd ∼ 2uf ∼ 2ub ∼
2yr ∼ 2yl, temperature fluctuations are similar uh ∼ 2uc,
and all individual probabilities have approximately equal
values;

• highly anisotropic large-scale turbulence represented
by populations of plumes in the mixed layer, dominated
by vertical velocity fluctuations wu .. 2wd .. uf,
ub, yr, yl, strong hot updraft motions uh .. 2uc,
and high correlation between vertical velocity and
temperature;

• highly anisotropic turbulence dominated by horizontal
velocity fluctuations uf, 2ub, yr, 2yl .. wu, 2wd with a
dominance of cold downdrafts uh ,,2uc and very low
probabilities involving vertical velocities in the surface
layer and in the inversion;

• and even very weak turbulence regimes in the stably strati-
fied fluid aloft where both velocity and temperature fluctua-
tions are very small.

Thus, the PDF is desirable to account for full range of physi-
cally relevant parameters.

Using PDF (5) in the definition of the moments
Mnmlk〈 〉5 w′nu′mu′ ly′k

〈 〉
, where n,m, k, and l are integers$ 0,

one can easily obtain these slightly cumbersome but explicit for-
mula for the moments:
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l 1 p0dn0dm0dl0dk0,

(7)

with the Kronecker symbol dij 5 1 if I 5 j, and dij 5 0 if i Þ j.
The first term is the partial contribution of the updraft, hot,
forward, and right fluctuations, the second term is the contri-
bution of the downdraft, cold, forward, and right fluctuations,
and so on.

For the zeroth-order moments (n 5 m 5 k 5 l 5 0) Eq. (7)
gives the normalization condition (6a) with (6b). For the first-
order (n 5 1, but m 5 k 5 l 5 0, and similar for m, k, and l
indices) Eq. (7) gives the mean value of the fluctuations w′〈 〉,
u′〈 〉, u′〈 〉, and y′〈 〉 as

puwu 1 pdwd 5 0,

phuh 1 pcuc 5 0,

pfuf 1 pbub 5 0,

pryr 1 plyl 5 0:

(8)

Finally, note that the PDF P(w′, u′, u′, y′) [Eq. (5)]
describes the fluctuations, i.e., the deviations from the mean
flow fields w〈 〉, u〈 〉, u〈 〉, and y〈 〉. The PDF P(w, u, u, y) of flow
fields w, u, u, y is obtained by shift of variables, i.e.,
P w,u,u, y( )5 P w〈 〉1 w′, u〈 〉1 u′, u〈 〉1 u′, y〈 〉1 y′

( )
.

3. A guide for the solution

The solution of the closure problem for the 17-delta-PDF
(5) consists of solving the system of algebraic nonlinear Eqs.
(7) for the 25 parameters of the PDF (8 positions of delta
functions and 16 1 1 probabilities) using selected moments of
low order (“the irreducible moments”) and then expressing
the other HOMs in terms of these irreducible moments. If the
equations for the normalization condition (6a) with (6b) and
the equation for the mean values of the fluctuations (8) are
used, the amount of required independent irreducible
moments of the order larger than one is equal to 20.

We apply a bottom-up method of solution by establishing a
hierarchy of PDFs of different levels of complexity, as given
in Table 1, and by deriving the relationships for the parame-
ters of these PDF of different levels.

The most general PDF (5) represents level 4 of the hierar-
chy and is described in the previous section.

Formally, on level 3 there are four trivariate 9-delta-PDFs:
P(w′, u′, y′), P(w′, u′, y′), P(w′, u′, y′), and P(u′, u′, y′). They
are obtained by integration of (5) over the variables y′, u′,
u′, or w′, respectively. For example, the trivariate PDF
P(w′, u′, y′) is obtained by integrating (5) over the along-
wind component u′. The functional form of the trivariate
PDF is similar to (5), but with only three variables involved
and only 9 probabilities and 6 positions remaining. Thus
the probability puhr of hot updrafts turned to the right are
given as

puhr 5 puhfr 1 puhbr: (9)

Similar formulas hold for the other seven trivariate probabili-
ties. Each of the remaining probabilities is the sum of two,
becoming hidden after integration. The sum of all probabili-
ties gives the normalization condition

puhr 1 puhl 1 pucr 1 pucl 1 pdhr 1 pdhl 1 pdcr 1 pdcl 1 p0

5 1,

(10)

where the individual probabilities are expressed as sums of
quadrivariate probabilities, similar to Eq. (9).

There are six bivariate 5-delta-PDFs (representing level 2
in Table 1) where each is obtained by integration over two
variables. E.g., averaging over the horizontal velocity compo-
nents the bivariate PDF

P w′, u′( ) 51 puhd w′ 2 wu( )d u′ 2 uh( )
1 pucd w′ 2 wu( )d u′ 2 uc( )
1 pdhd w′ 2 wd( )d u′ 2 uh( )
1 pdcd w′ 2 wd( )d u′ 2 uc( )
1 p0d w′( )d u′( )

(11)

with the normalization condition

TABLE 1. Hierarchy of delta-PDF models. The first column shows the level of complexity of the model. The second column presents
the abbreviation of the model for the given level of complexity. The third column describes the number of corresponding models,
and the fourth column shows the number of parameters, which should be determined to specify the PDF. The first term refers to the
number of probabilities and the second to the number of positions. The last column refers to the equations representing the closure
of the model. The values of the parameter pS in the equation are the same for all levels.

Level Model No. of models No. of variables Closure equations

4 Quadrivariate 1 17 1 8 5 25 (44), (33), (27)
3 Trivariate 4 9 1 6 5 15 (40), (33), (27)
2 Bivariate 6 5 1 4 5 9 (32), (33), (27)
1 Univariate 4 3 1 2 5 5 Part of levels 2–4
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puh 1 pdc 1 puc 1 pdh 1 p0 5 1 (12)

follows. Such a PDF provides a minimal model for the free
convection regime, which is characterized by the presence of
populations of plumes organized in quasi-regular cells. In this
case one can assume homogeneity and isotropy of the convec-
tive turbulence in both horizontal directions. There are four
bimodal probabilities, which can be expressed in terms of tri-
variate probabilities as

puh 5 puhf 1 puhb 5 puhr 1 puhl (13)

and similar formulas for the probabilities pdc, puc, and pdh. In
analogy, the other five bivariate PDFs (see Table 1) can easily
be obtained by renaming of the indices in Eq. (11).

At the lowest level of hierarchy (see Table 1) we have
four univariate 3-delta-PDFs: P(w′), P(u′), P(u′), and P(y′).
These PDFs, as the simplest ones, were often used in the
past, e.g., by Wyngaard (1987) for vertical velocity fluctua-
tions. Only three probabilities and two positions describe
this delta-PDF. They are related to probabilities of higher
levels. Thus, the probability of updrafts consists of the sum
of 2 probabilities

pu 5 puh 1 puc 5 puf 1 pub 5 pur 1 pul (14)

for bivariate PDFs, of the sum of 4 probabilities

pu 5 puhf 1 puhb 1 pucf 1 pucb
5 puhf 1 pucb 1 puhb 1 pucb
5 puhr 1 pucr 1 puhl 1 pucl

(15)

for trivariate PDFs, and finally of the sum of 8 probabilities

pu 5 1 puhfr 1 pucfr 1 puhbr 1 pucbr
1 puhfl 1 pucfl 1 puhbl 1 pucbl

(16)

for the most general PDF (5). Each of the other probabilities
ph, pf, and pr is derived similarly.

The procedure of the solution consists of these steps:

1) Establish the factorized functional form of the HOMs in
terms of the width of the PDF (in section 4).

2) Solve for the bivariate moments using one of the bivariate
5-delta-PDFs. Extrapolate the results to all bivariate
PDFs (section 5).

3) Solve for the trivariate moments using one of the tri-
variate 9-delta-PDFs and the results from step 2.
Extrapolate the results to all trivariate 5-delta-PDFs
(section 6).

4) Solve for the quadrivariate moments using the general
quadrivariate 17-delta-PDF and the results from steps 2
and 3 (section 7).

5) Specify the probability pS (section 8).
6) Identify a connection of the modeled irreducible

moments with their corresponding Reynolds moments
(section 8).

Step 1 consists of solving for all position in terms of width
using the zeroth- and first-order univariate moments.

Steps 2 to 4 include the following:

(i) Choice of the irreducible moments.
(ii) Solution of the equations for the width and the individ-

ual probabilities (except for pS) in terms of the irreduc-
ible moments of the second and third order.

(iii) Solution of the other HOMs in terms of the irreducible
moments and pS, using the results from (i) and (ii).

(iv) Extension of the solution to all members of the same
level of hierarchy using the results from (i), (ii), and
(iii).

Step 5 completes the formal mathematical solution of the
closure problem. Step 6 completes the solution at the physical
level, since it relates the model results to measurements, LES
and DNS results. The solution of our closure problem is not
unique, as the choice of irreducible moments [see steps 2(ii),
3(ii), and 4(ii) of the guide of solution] is not unique. Also,
several hypothesis can be used for specification of the param-
eter pS, thus step 5 is not unique either. Finally, we stress that
our method of solution is new, because we do not use an
assumption (often implicit) that all the lowest-order moments
of a given level of hierarchy must be used before switching to
higher levels. The new method does not lead to additional dif-
ficulties, because all moments of a given PDF are related to
each other.

4. Formulation of HOMs in a factorized form
and symmetries

The important characteristic of a PDF is its width. In our
case the width is the distance D between the d functions in the
direction of the respective variable. There are four such
widths for the quadrivariate PDF (5). They are

Dw 5 wu 2 wd,

Du 5 uh 2 uc,

Du 5 uf 2 ub,

Dy 5 yr 2 yl:

(17)

All widths are positive.
Combining Eqs. (17) and (8) the positions of delta func-

tions can be related to the widths as

wu 5 1 2 p̂u
( )

Dw, wd 52 p̂uDw,

uh 5 1 2 p̂h
( )

Du, uc 52 p̂hDu,

uf 5
(
1 2 p̂f

)
Du, ub 52 p̂fDu,

yr 5 1 2 p̂r
( )

Dy, yl 52 p̂fDy,

(18)

where

p̂u 5 pu=pS, p̂d 5 pd=pS (19)

are the conditional probabilities for the vertical velocity com-
ponents, and similar expressions hold for the probabilities of
temperature and horizontal velocity components.

Substituting Eqs. (18) in Eq. (7) and rearranging, the terms
for the quadrivariate HOMs follow as
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〈w′nu′mu′ly′k〉 � pS
[
p̂uhfr(1 2 p̂u)n(1 2 p̂h)m(1 2 p̂f )l(1 2 p̂r)k

1 p̂uhfl(1 2 p̂u)n(1 2 p̂h)m(1 2 p̂f )l(2 p̂r)k
1 p̂uhbr(1 2 p̂u)n(1 2 p̂h)m(2 p̂f )l(1 2 p̂r)k
1 p̂uhbl(1 2 p̂u)n(1 2 p̂h)m(2 p̂f )l(2 p̂r)k
1 p̂ucfr(1 2 p̂u)n(2 p̂h)m(1 2 p̂f )l(1 2 p̂r)k
1 p̂ucfl(1 2 p̂u)n(2 p̂h)m(1 2 p̂f )l(2 p̂r)k
1 p̂ucbr(1 2 p̂u)n(2 p̂h)m(2 p̂f )l(1 2 p̂r)k
1 p̂ucbl(1 2 p̂u)n(2 p̂h)m(2 p̂f )l(2 p̂r)k
1 p̂dhfr(2 p̂u)n(1 2 p̂h)m(1 2 p̂f )l(1 2 p̂r)k
1 p̂dhfl(2 p̂u)n(1 2 p̂h)m(1 2 p̂f )l(2 p̂r)k
1 p̂dhbr(2 p̂u)n(1 2 p̂h)m(2 p̂f )l(1 2 p̂r)k
1 p̂dhbl(2 p̂u)n(1 2 p̂h)m(2 p̂f )l(2 p̂r)k
1 p̂dcfr(2 p̂u)n(2 p̂h)m(1 2 p̂f )l(1 2 p̂r)k
1 p̂dcfl(2 p̂u)n(2 p̂h)m(1 2 p̂f )l(2 p̂r)k
1 p̂dcbr(2 p̂u)n(2 p̂h)m(2 p̂f )l(1 2 p̂r)k
1 p̂dcbl(2 p̂u)n(2 p̂h)m(2 p̂f )l(2 p̂r)k

]
3 Dn

wD
m
u D

l
uD

k
y : (20)

Expression (20) is called a factorized form of the HOMs
because it represents the moments as a product of a nondi-
mensional factor (depending on probabilities only) and of
products of individual widths in the corresponding powers.

The factorization of moments clarifies the relabeling sym-
metry of the delta-PDF model (5). This symmetry states that
permutations of indices u ↔ d, h ↔ c, f ↔ b, and r ↔ l lead
to the same moments except for the sign factor.

5. Bivariate closures for HOMs

Counting the number of independent parameters of the
bivariate PDF (11) we find that bivariate closures can be com-
pleted at the level of TOMs. Following the guide for solution
the five moments

w′2〈 〉
, u′2
〈 〉

, w′u′〈 〉, w′3〈 〉
, u′3

〈 〉
(21)

can be chosen as independent irreducible moments. All the
other can be expressed in terms of these irreducible moments
and the probability pS as a parameter, which will be specified
later in section 8.

a. Calculation of bivariate irreducible moments in terms
of PDF parameters

The bivariate moments in the vertical velocity and tempera-
ture are given by the general Eq. (20) as

w′nu′m〈 〉 5 pS p̂uh 1 2 p̂u
( )n 1 2 p̂h

( )m
1 p̂uc 1 2 p̂u

( )n
2 p̂h( )m[

1 p̂dh 2 p̂u( )n 1 2 p̂h
( )m

1 p̂dc 2 p̂u( )n

3 2 p̂h( )m]Dn
wD

m
u , (22)

where the first, second, third, and fourth terms are the partial con-
tributions w′nu′m〈 〉uh, w′nu′m〈 〉uc, w′nu′m〈 〉dh, and w′nu′m〈 〉dc,
respectively.

Correspondingly the irreducible moments are the second-
order moments

w′2〈 〉 5 pSp̂u 1 2 p̂u
( )

D2
w, (23a)

u′2〈 〉 5 pSp̂h 1 2 p̂h
( )

D2
u, (23b)

w′u′〈 〉 5 pS p̂uh 2 p̂up̂h( )DwDu, (23c)

and third-order moments

w′3〈 〉 5 pSp̂u 1 2 p̂u
( )

1 2 2p̂u
( )

D3
w, (23d)

u′3〈 〉 5 pSp̂h 1 2 p̂h
( )

1 2 2p̂h
( )

D3
u, (23e)

The physical meaning of these moments is clear from the
lowest-order normalized moments, the correlation coefficient

C〈 〉wu 5 w′u′〈 〉
w′2〈 〉1=2 u′2

〈 〉1=2 5 p̂uh 2 p̂up̂h�����������������������������
p̂u 1 2 p̂u

( )
p̂h 1 2 p̂h

( )√ , (24)

and the normalized third-order moments}the skewnesses of
vertical velocity and temperature:

S〈 〉w 5
w′3〈 〉

w′2〈 〉3=2 5
1����
pS

√ 1 2 2p̂u���������������
p̂u 1 2 p̂u

( )√ , (25a)

S〈 〉u 5 u′3
〈 〉
u′2

〈 〉3=2 5 1����
pS

√ 1 2 2p̂h���������������
p̂h 1 2 p̂h

( )√ : (25b)

The correlation coefficient (24), correspondingly the heat
flux, (23c), can be positive or negative depending on the sign
of p̂uh 2 p̂up̂h. This allows resolving the problems of negative
fluxes in the entrainment zone, appearing in conventional
mass flux models. Similarly, Eqs. (25a) and (25b) allow resolv-
ing the problems of the difference of vertical velocity and
temperature skewnesses without additional assumptions,
because p̂hÞ p̂u. One can also see from these equations that
an unskewed flow corresponds to p̂u 5 p̂h 5 1=2. The skew-
ness is positive for p̂u , 1=2 and p̂h , 1=2, and negative for
p̂u . 1=2 and p̂h . 1=2.

b. Calculation of the PDF parameters in terms of the
irreducible moments and pS

To find the PDF parameters in terms of moments we need
to solve the set of nonlinear Eqs. (23a)–(23e).

First, combining Eqs. (23a), (23d), (23b), and (23e), we
determine the parameters p̂u and p̂h in terms of the skew-
nesses of vertical velocity and temperature, and the parameter
pS. The result is

p̂u 5
1
2

1 2
S〈 〉w�����������������

4=pS 1 S〈 〉2w
√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 5 S2〈 〉w
S1〈 〉w 1 S2〈 〉w , (26a)

p̂h 5
1
2

1 2
S〈 〉u����������������

4=pS 1 S〈 〉2u
√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 5 S2〈 〉u
S1〈 〉u 1 S2〈 〉u , (26b)

with
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S6〈 〉f 5
1
2

�����������������
4=pS 1 S〈 〉2f

√
6 S〈 〉f

( )
, f 5 w, u[ ] · (27)

The complementary conditional probabilities p̂d and p̂c fol-
low from the normalization condition. They are expressed by
Eqs. (26a) and (26b), where the sign minus is replaced by plus
in the first equality, and the skewnesses S6〈 〉 are replaced by
S7〈 〉 in the second equality.
Second, using Eqs. (23a) and (23b), we determine the

widths of the vertical velocity Dw and temperature Du in terms
of their respective variances w′2〈 〉 and u′2〈 〉 and the already
known parameters p̂u and p̂h. Then, expressing p̂u and p̂h by
Eqs. (26a) and (26b), we find that

Df 5 S1〈 〉f 1 S2〈 〉f
( )

f′2
〈 〉1=2

, f 5 w, u( ): (28)

The widths Dw and Du are proportional to the corresponding
variances with the proportionality factors nonlinearly depend-
ing on the skewnesses Sw and Su. Equation (18) also shows

wu 5 S1〈 〉w w′2〈 〉1=2
, wd 52 S2〈 〉w w′2〈 〉1=2

: (29)

Both wu and wd are proportional to the variance of the verti-
cal velocity with the coefficient of proportionality equal to the
S6〈 〉w functions. This also explains the physical meaning of
the S6〈 〉w functions as positions of updraft and downdraft
normalized by the variance. Analogous expressions also hold
for uh and uc.

Finally, we find the parameter p̂uh in terms of the correla-
tion coefficient Cwu and the already known parameters p̂u and
p̂h. To this end we solve Eq. (23c) with respect to p̂uh and sub-
stitute the expressions for widths. We get

p̂uh 5
1
pS

w′u′〈 〉
DwDu

1 p̂up̂h: (30a)

The other three probabilities follow using the relationships
(14) and (12):

p̂uc 5 p̂u 2 p̂uh, (30b)

p̂dh 5 p̂h 2 p̂uh, (30c)

p̂dc 5 1 2 p̂uh 2 p̂uc 2 p̂dh: (30d)

All the probabilities (30a)–(30d) can be expressed in terms
of the correlation coefficient C〈 〉wu and skewnesses by using
Eqs. (26a), (26b), and (28). The results read as

p̂uh 5

S2〈 〉w S2〈 〉u 1 1
pS

( )
C〈 〉wu

S1〈 〉w 1 S2〈 〉w
( )

S1〈 〉u 1 S2〈 〉u
( ) , (31a)

p̂uc 5

S2〈 〉w S1〈 〉u 2 1
pS

( )
C〈 〉wu

S1〈 〉w 1 S2〈 〉w
( )

S1〈 〉u 1 S2〈 〉u
( ) , (31b)

p̂dh 5

S1〈 〉w S2〈 〉u 2 1
pS

( )
C〈 〉wu

S1〈 〉w 1 S2〈 〉w
( )

S1〈 〉u 1 S2〈 〉u
( ) , (31c)

p̂dc 5

S1〈 〉w S1〈 〉u 1 1
pS

( )
C〈 〉wu

S1〈 〉w 1 S2〈 〉w
( )

S1〈 〉u 1 S2〈 〉u
( ) : (31d)

The new feature here is that the individual probabilities
(area coverages) (31a)–(31d) depend on not only the skew-
nesses, as in univariate and conventional trivariate bi-Gauss-
ian models, but on the correlation coefficients as well. The
PDF used by Larson and Golaz (2005) and Mironov and
Machulskaya (2017) do not contain the correlation coefficient
between scalars and vertical velocity, although they account
for the correlation between temperature and humidity. The
reason is that in the conventional models p̂u and p̂d are
defined as in univariate models by equations similar to (26a),
while the correlation coefficients are attributed to a shape of
PDF only.

Summarizing, all the parameters of the bivariate PDF
(11) are determined in terms of the 5 lowest-order
moments: w′2〈 〉, u′2〈 〉, w′u′〈 〉, w′3〈 〉, and u′3〈 〉, and the
parameter pS.

c. Calculation of closure for bivariate HOMs

All bivariate HOMs are obtained by using Eqs. (26a),
(26b), (28), and (30a)–(31d) in Eq. (22). The result of the cal-
culations is

w′nu′m〈 〉5 C〈 〉wnum w′2〈 〉n=2 u′2
〈 〉m=2

5
1
pS

An21m21 1 Anm C〈 〉wu
[ ]

w′2〈 〉n=2 u′2〈 〉m=2
,

(32)

where C〈 〉wnum are the normalized moments (also often
called generalized correlation coefficients, or generalized
skewnesses),

Anm 5 AnAm, Aa 5
S1〈 〉af 1 2 1( )a21 S2〈 〉af

S1〈 〉f 1 S2〈 〉f , (33)

where a 5 [n, m], f 5 [w, u], A21 5 pS, A0 5 0 and S6〈 〉 are
defined by Eq. (27).

The predicted TOMs [n 5 2, m 5 1 and n 5 1, m 5 2 in
Eq. (32)] are as follows:

C〈 〉w2u 5 S〈 〉w C〈 〉wu, C〈 〉wu2 5 S〈 〉u C〈 〉wu: (34)

The first Eq. (34) describes the flux of heat flux, and the sec-
ond one the flux of temperature variance. Both fluxes w′2u′

〈 〉
and w′u′2

〈 〉
are responsible for the nonlocal transport.

According to Eqs. (34) these TOMs do not dependent of pS
explicitly, but only implicitly via the dependence of the skew-
ness on pS, see Eqs. (25a) and (25b). It is in contrast to the
other bivariate moments, see, e.g., equations for FOMs (35a)
to (35e). It is an unexpected result, implying that the TOMs
would be the same for flows possessing the same skewness
and the heat flux. Moreover, the result shows that the same
fluxes exist for closely packed and for dilute distributions of
plumes in a convective flow.
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Similarly, the FOMs are

C〈 〉w4 5
1
pS

1 S〈 〉2w, (35a)

C〈 〉w3u 5
1
pS

1 S〈 〉2w
( )

C〈 〉wu, (35b)

C〈 〉w2u2 5
1
pS

1 S〈 〉w S〈 〉u C〈 〉wu, (35c)

C〈 〉wu3 5
1
pS

1 S〈 〉2
u

( )
C〈 〉wu, (35d)

C〈 〉
u4 5

1
pS

1 S〈 〉2
u: (35e)

The FOM w′4〈 〉 can be considered as the vertical flux w′w′3〈 〉
of the asymmetric fluctuations w′3. Since this flux is positive,
the vertical transport of asymmetric fluctuations must be
always upward. The moments (35a), (35b), (35d), and (35e)
become Gaussian w′4〈 〉5 3 w′2〈 〉2, w′3u′

〈 〉
5 3 w′2〈 〉 w′u′〈 〉,

w′3u′
〈 〉

5 3 u′2
〈 〉

w′u′〈 〉, and u′4
〈 〉

5 3 u′2
〈 〉2

for pS 5 1/3 and
S〈 〉w 5 0, S〈 〉u 5 0.
Although the TOMs (34) are independent of pS, this does

not mean that all odd-order moments are independent of
pS too. An example of the fifth-order moment w′5〈 〉

(n 5 5,
m5 0) is as follows:

C〈 〉w5 5 S〈 〉w 2
pS

1 S〈 〉2w
( )

· (36)

The closure (36) demonstrates the opposite, as well as the
similar formula for u′5

〈 〉
. In the limit of unskewed turbulence

w′5〈 〉
5 u′5

〈 〉
5 0 for all values of pS. For the Gaussian turbu-

lence w′5〈 〉
5 u′5

〈 〉
5 0 also, because these are odd-order

moments.
For further increasing order of the moments, e.g., to sixth

order with n5 6,m5 0, we obtain the closure as

C〈 〉w6 5
1
p2S

1 S〈 〉2w
3
pS

1 S〈 〉2w
( )

· (37)

Equation (37) shows that for pS 5 1/3 in the unskewed limit
w′6〈 〉

5 9 w′2〈 〉3, while for the corresponding Gaussian
moment w′6〈 〉

5 15 w′2〈 〉3. Thus, while for pS 5 1/3 the FOMs
and the fifth-order moments are Gaussian in the unskewed
turbulence limit, all further HOMs are non-Gaussian. This
moment demonstrates the correlation of asymmetric fluctua-
tions w′3, since w′6 5 w′3w′3 from one hand side, and of sym-
metric fluctuations w′2 and w′4, since w′6 5 w′2w′4 from the
other side. Similarly for u′6.

Finally, we derive the bivariate HOM w′u′4
〈 〉

(n 5 1,
m 5 4), which is important for discussion of advanced closure
models (see section 8). This moment describes the nonlocal
transport of u′4

〈 〉
and is given as

C〈 〉wu4 5 S〈 〉u 2
pS

1 S〈 〉2
u

( )
Cwu · (38)

This flux becomes zero for unskewed turbulence, i.e., if
S〈 〉w → 0. For the Gaussian turbulence w′u′4

〈 〉
5 0 also.

Similar to Eqs. (32) and (33), closures can be calculated
for all 5 remaining bivariate PDFs, see Table 1. For each
pair of variables one can easily obtain all of them by
applying relabeling symmetry to the above-mentioned
Eqs. (32) and (33). As an example, we consider w′nu′k

〈 〉
,

which describes features related to the vertical transport of
the along-wind fluctuations. In this case the explicit formu-
las are given by Eqs. (32) and (33), where the variable
u is replaced by u. Thus, we obtain, e.g., for w′2u′〈 〉 and
w′u′2〈 〉, the closure equations as C〈 〉w2u 5 S〈 〉w C〈 〉wu and
C〈 〉wu2 5 S〈 〉u C〈 〉wu. These equations are very similar to
Eqs. (34). However, this similarity of the functional
form of the closures does not imply a similarity of the
momentum and heat transfer in the convective boundary
layer.

6. Trivariate closures for HOMs

The trivariate 9-delta-PDF P(w′, u′, u′) depends on 15 param-
eters, correspondingly the closure equations for HOMs are
defined by 10 irreducible moments and pS as a parameter. Simi-
larly to Eqs. (32) and (33) the closures for the trivariate HOMs
are calculated following the solution guide reported in section 3.

We chose as irreducible moments

w′2〈 〉, u′2
〈 〉

, u′2〈 〉, w′u′〈 〉, w′u′〈 〉, u′u′〈 〉,
w′3〈 〉, u′3

〈 〉
, u′3〈 〉, w′u′u′〈 〉:

(39)

These include all SOMs, all univariate TOMs, and one
moment describing triple correlation of the lowest order. All
the other HOMs are predicted using the moments (39) and
parameter pS.

The result of the straightforward but lengthy calculations
(outlined in appendix A) reads

w′nu′mu′l〈 〉 5 C〈 〉wnumul w′2〈 〉n=2 u′2
〈 〉m=2

u′2〈 〉l=2

5
1
p2S

An21m21l21 1
1
pS

(
Anml21 C〈 〉wu

[

1 Anm21l C〈 〉wu 1 An21ml C〈 〉uu
)

1 Anml C〈 〉wuu
]
w′2〈 〉n=2

u′2
〈 〉m=2

u′2
〈 〉l=2

, (40)

whereAnml 5 AnAmAl,Aa(Sf), and Sf6(pS) are defined as before
by Eqs. (33) and (27) with a5 [n,m, l] and f 5 [w, u, u]. The final
formulas (40) have a functional form that is an inductive extension
of that of the bivariate Eqs. (32).

Several trivariate FOMs are of special interest, these
are the moments that present the transport terms of
dynamic equations for irreducible TOMs, e.g., w′2u′u′

〈 〉
describing a vertical transport of w′u′u′〈 〉. Using n 5 2 and
m 5 l 5 1 in Eq. (40) we obtain the following explicit
expressions:
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C〈 〉w2uu 5
1
pS

C〈 〉uu 1 S〈 〉w C〈 〉wuu: (41a)

In contrast to the transport of heat flux and variances
[Eq. (34)], the transport of trivariate moment w′u′u′〈 〉
depends on the background (parameter pS). This moment is
non-Gaussian in the limit of S〈 〉w → 0 (the Gaussian reads
w′2u′u′

〈 〉
5 w′2〈 〉 u′u′〈 〉1 2 w′u′〈 〉 w′u′〈 〉). The other two tri-

variate FOMs w′u′2u′
〈 〉

and w′u′u′2
〈 〉

are given by formulas
similar to (41a). Thus the closure describing the correlations
of vertical w′u′ and horizontal u′u′ fluctuations of heat flux
reads as

C〈 〉wu2u 5
1
pS

C〈 〉wu 1 S〈 〉u C〈 〉wuu, (41b)

and the closure for correlations of vertical heat flux w′u′ and
horizontal variance u′2 fluctuations as

C〈 〉wuu2 5 1
pS

C〈 〉wu 1 S〈 〉u C〈 〉wuu: (41c)

They are non-Gaussian as well.
As explained in the section 3, see also Table 1, there are

four families of trivariate moments w′nu′mu′l〈 〉, w′nu′my′k〈 〉,
w′nu′ly′k〈 〉, and u′mu′ly′k〈 〉. An extension to all trivariate
complementary closures is similar to this for bivariate
closures. Thus the closures describing the vertical
transport of trivariate moment w′u′y′〈 〉 can be easily
obtained using relabeling symmetry in Eq. (41a). The
result reads as

C〈 〉w2uy 5
1
pS

C〈 〉uy 1 S〈 〉w C〈 〉wuy · (42)

7. Quadrivariate closures for HOMs

For the general 17-delta-PDF (5) the following 19 moments
are the irreducible ones:

w′2〈 〉, u′2
〈 〉

, u′2〈 〉, y′2〈 〉,
w′u′〈 〉, w′u′〈 〉, w′y′〈 〉, u′u′〈 〉, u′y′〈 〉, u′y′〈 〉,
w′3〈 〉, u′3

〈 〉
, u′3〈 〉, y′3〈 〉,

w′u′u′〈 〉, w′u′y′〈 〉, w′u′y′〈 〉, u′u′y′〈 〉,
w′u′u′y′〈 〉:

(43)

Here all SOMs and the four univariate TOMs are chosen as
irreducible moments. The other six TOMs are predicted. All
four trivariate moments describing triple correlation of the
lowest order are used. The only quadrivariate moment
w′u′u′y′〈 〉 is chosen to combine all independent variables. All
other HOMs are predicted in terms of the moments (43) and
parameter pS.

The final closure equations can be written in a func-
tional form that is an inductive extension of that of the
bivariate and trivariate equations [(32) and (40), respec-
tively]. The result reads

w′nu′mu′ly′k〈 〉 5 C〈 〉wnumulyk w′2〈 〉n=2 u′2
〈 〉m=2

u′2〈 〉l=2 y′2〈 〉k=2

5
1
p3S

An21m21l21k21 1
1
p2S

Anml21k21 C〈 〉wu
([

1 Anm21lk21 C〈 〉wu 1 Anm21l21k C〈 〉wy
1 An21mlk21 C〈 〉uu 1 An21ml21k C〈 〉uy

1 An21m21lk C〈 〉uy), 1 1
pS

Anmlk21 C〈 〉wuu
(

1 Anml21k C〈 〉wuy 1 Anm21lk C〈 〉wuy

1 An21mlk C〈 〉uuy)1 Anmlk C〈 〉wuuy
]

3 w′2〈 〉n=2
u′2

〈 〉m=2
u′2

〈 〉l=2
y′2

〈 〉k=2
, (44)

where Anmlk 5 AnAmAlAk, and Aa(Sf) with a 5 [n, m, l, k] is
given by Eq. (33) and Sf6 with f 5 [w, u, u, y] is defined by
Eqs. (27). The intermediate calculations are given in appendix B.

Although the moments provided by Eqs. (44) obey the same
universal functional form as bivariate and trivariate moments, a
new feature exists: it is the presence of one more new object,
the correlation coefficient C〈 〉wuuy relating all four variables.

Equations (44) give the following explicit expressions for
the lowest-order (n5 2,m5 l 5 k5 1) quadrivariate HOM:

C〈 〉w2uuy 5 S〈 〉w C〈 〉wuuy · (45)

There are four such moments that are quadratic in one of the
variables. For the other variables the closures are similar to
Eq. (45). The quadrivariate HOM w′2u′u′y′

〈 〉
describes the

transport of the irreducible FOM w′u′u′y′〈 〉 in dynamic clo-
sure models. For S〈 〉w 5 0 we have w′2u′u′y′

〈 〉
5 0, as for the

corresponding Gaussian moment. The other moments also
describe the correlations of any variable w′, u′, u′, and y′ with
quadrivariate fluctuations w′u′u′y′ defining the irreducible
moment w′u′u′y′〈 〉. Similarly to TOMs (34), but contrary to
trivariate moments (41a), these four moments do not depend
on the background (parameter pS). Thus the moments remain
unchanged for regimes with dense packing of plumes (pS ∼ 1)
and for those of dilute packing (pS → 0). The other quadri-
variate HOMs can be derived similarly.

The quadrivariate closure Eqs. (44) complete the solution
of the closure problem for 17-delta-PDF (5) when the param-
eter pS is specified.

8. Specification of parameter pS and analytical ADAMs

The choice of the parameter pS is not unique. We consider
several hypotheses, which result in several assumed delta-
PDF approximation closure models (ADAMs). Probably the
most straightforward approach is to determine pS by using
one more irreducible moment. Since the predicted TOMs do
not depend of pS [see Eqs. (34)], they cannot be used for this
purpose. And since pS is a scalar we prefer a moment based
on a scalar. There is only one such fourth-order moment: u′4.
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Taking the closure for u′4
〈 〉

, the equation defining the param-
eter pS follows from Eq. (35e) as

pS 5
1

C〈 〉
u4 2 S〈 〉2

u

, (46)

where C〈 〉
u4 is the kurtosis in temperature. Substituting Eq.

(46) in Eq. (44) one can obtain a completely closed model.
However, the analysis of the resulting closure equations
reveals that such closure model has a drawback. Namely, sub-
stitution of Eq. (46) in Eq. (35a), and similar for all the other
variables, shows a separation of variables as

C〈 〉
u4 2 S〈 〉2

u 5 C〈 〉w4 2 S〈 〉2w 5 C〈 〉u4 2 S〈 〉2u 5 C〈 〉y4 2 S〈 〉2
y

5
1
pS

· (47)

This equation is satisfied trivially when C〈 〉
u4 5 C〈 〉w4 5

C〈 〉u4 5 C〈 〉y4 and S〈 〉u 5 S〈 〉w 5 S〈 〉u 5 S〈 〉y. Thus the solu-
tion (46) is well suited only for the univariate limit of PDF
(5), but not in the general case.

a. ADAM/PS

A more general solution, which fulfills Eq. (47), suggests
that pS should not depend on a moment at all, i.e.,

pS 5 const, 0 , pS # 1: (48)

The solution is not unique. Any constant in the range 0, pS # 1
can be used. This leads to an analytical ADAM/PS, where the
abbreviation PSmeans that the probability of structures is chosen
according to Eq. (48).

An approach that allows a specification of the value of the
constant pS would be to apply some correspondence principle:

b. ADAM/QN

For consistency of ADAMs with the HOM closure models
using quasi normality of FOMS (Millionshchikov hypothesis)
one can propose pS as a constant

pS 5
1
3
· (49)

Thus, after substituting Eq. (49) in Eq. (44), the model
ADAM/QN follows. QN in the abbreviation means the
Gaussian limit of FOMs.

In particular, substituting Eq. (49) in Eqs. (35a)–(35e) we
get the closure Eqs. (4a), (4b), (4d), (4e) based on the univer-
sality hypothesis of GH02 and GH05. Nevertheless, a concep-
tual difference exists in the treatment of the closures of GH02
and GH05 and the new closure model ADAM/QN. The for-
mer are derived using additionally a linear interpolation
assumption, while the latter are obtained as exact solution of
the closure Eq. (44). In this respect the universality hypothesis
of GH02 and GH05 [Eqs. (4a)–(4e) and similar ones for other
variables] is proven now, using ADAM/QN, for all FOMs
with exception of the moment (4c) and similar ones for other
variables. In ADAM/QN the latter moments are replaced by
the moment (35c) and analogously for other variables.

c. ADAM/MF

For correspondence with the mass-flux theories one can use

pS 5 1, (50)

that is, we have no background turbulent motion [p0 5 0, see
Eq. (6a)]. This leads to one more closure model ADAM/MF
(MF means mass flux), after substituting Eq. (50) in Eq. (44).
The ADAM/MF provides an extension of the traditional
mass-flux closures to multivariate HOMs.

Summarizing, the closure problem for the 17-delta-PDF (5)
is solved completely. The general quadrivariate ADAMs
include 6 bivariate and 4 trivariate submodels of lower levels
of complexity, see Table 1. The solution is not unique, as it
should be for any closure problem. But we stress that all solu-
tions are derived without any ad hoc simplifying assumptions.
All closures have correct physical dimensions, respects sym-
metries, including sign changes of variables and relabeling.
For all choices of closure for the parameter pS, as long as pS
remains in the range 0 , pS # 1, the resulting closures for
HOMs are realizable closures, because they are derived using
the same PDF.

The testing of closures assumes that a connection of the
modeled moments to the moments based on atmospheric
measurements, DNS and LES data is established. For the irre-
ducible moments we use the proposition

w′nu′mu′ ly′k
〈 〉

5 w′nu′mu′ ly′k , (51)

where the averaging is defined by the Reynolds rule and by
the 17-delta-PDF, as before. Thus, finally, the closure prob-
lem for 17-delta-PDF (5) is solved in terms of the Reynolds
moments.

9. Background of testing

The fidelity of the new closure equations must be supported
by comparison with data from measurements and appropriate
numerical simulations (a priori test) or by their implementa-
tion in dynamic closure models (a posteriori test). In our a pri-
ori test we mostly rely on a comparison with data from field
measurements (Hartmann et al. 1999), but also use data from
LES (Raasch and Schröter 2001) and DNS (Waggy et al.
2016) simulations. The field data have the advantage of large
Reynolds numbers in comparison to DNS and of indepen-
dence on subgrid closure assumptions in comparison to LES.
For a description of the data please refer to the original
papers. All data represent a well-developed dry convective
turbulent boundary layer as shown in Fig. 3 by a constant
wind speed and zero gradient of the potential temperature in
the bulk of the mixed layer. In Fig. 3 and most of the follow-
ing figures we present vertical profiles of the data by applying
a locally weighted regression method (lowess) suggested by
Cleveland (1979). We show an example in Fig. 4. Lowess com-
bines smoothing and interpolating of scattered data in order
to facilitate graphical presentation. For each point x of the
output data individual weights are calculated for the input
data depending on the distance of their abscissa value from
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this x and an individual regression is calculated based on the
entire input data field. Lowess is thus an n2 algorithm and
designed for small datasets. We use an inverse distance
weighting, the weights are (1/distance), with a limitation to a

maximum weight of 10 for small distances. A third-degree
polynomial fit is used for the regression function.

For comparison of the statistics we apply Deardorff scaling
(Deardorff 1970): w* for all components of velocities and

0 0.5 1.0
wind speed (v/ lUgl),(u/ lUgl)

0

0.5

1.0

1.5

z/zi

vLES
vDNS
va/c

uLES
uDNS
ua/c

0 0.01 0.02
potential temperature (θ−θML)/θML

0

0.5

1.0

1.5

z/zi

LES  (Raasch&Schröter, 2002)

DNS  (Waggy et al., 2017)

airborne data  (Hartmann et al., 1999)

FIG. 3. Vertical profiles of the wind components and of the potential temperature for the measurements (red), the
LES (purple), and the DNS (blue) data. The height is normalized by zi. The airborne profiles represent the average
of a descent and subsequent ascent directly after stack I on 5 Apr 1998 (refer to Table I in GH02). (left) The horizon-
tal wind components, with u positive along the mean wind, and y positive to the right of the mean wind; both are nor-
malized by the geostrophic wind speed. The geostrophic wind speed is Ug 5 u2g 1 y2g

( )1=2 ≈ 12m s21 at z/zi . 1.1.
(right) The potential temperature referenced to the mean potential temperature in the middle of the mixed layer. Note
that the LES and DNS profiles are averages over the entire domain of the simulations while the aircraft data are instan-
taneous measurements that contain some turbulent fluctuations.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1.0
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-0.1 0 0.1
0

0.5

1.0

b

FIG. 4. An example of the lowess procedure applied to present the scattered measurement
data. In both graphs the red dots are the normalized measurement data. The red lines show the
lowess fits and the gray areas the standard deviation of the data points with respect to their indi-
vidual lowess fit. (a) w2 and (b) wuy.
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u* for temperature:w* 5 w′u′0zi
( )1=3

, u* 5 w′u′0
( )2=3

=z1=3i , where
w′u′0 is the surface value of the heat flux and zi is the
boundary layer height. The quasi-stationary turbulence
statistics are quantified by the nondimensional moments
Mnmlk 5 w′nu′mu′ ly′k=wn1l1k

* um* .
All irreducible moments (51) are shown in Fig. 5. Although

there is a significant scatter in some of the aircraft measure-
ments around the LES and DNS profiles, especially in the sur-
face layer, these irreducible moments can be considered as
representative for determining the parameters of PDF and for
testing of the closures.

10. Testing the parameters of the 17-delta-PDF

With the irreducible moments chosen (43), the 25 parameters
of the 17-delta-PDF [Eq. (5)], i.e., the 8 PDF components wu,
wd, uh, uc, uf, ub, yr, and yl can be determined using Eqs. (18)
with (19), and (26a) to (30d) for the vertical velocity compo-
nents and the temperature and in analogy with permutations
for the other variables. The 16 probabilities puhfr, … , pdcbl can
be obtained using Eqs. (B2)–(B3o) given in appendix B.

Vertical profiles of the delta-PDF components and the
individual probabilities are shown in Fig. 6. The profiles of
wu and wd reflect the decay of w′2 near the surface and in
the stably stratified inversion above (Fig. 5), as well as the
maximum in the middle of mixing zone. In contrast, the pro-
files of uh and uc increase near the surface, have maximum
in the inversion layer reflecting all the characteristic fea-
tures of the profile of u′2 (Fig. 5). In Fig. 6 we also show the
profiles of uf and ub, which are nearly constant in the middle
of the boundary layer, but show a maximum at the surface
and a weak increase near the inversion. There the moments
of the horizontal velocity components u′2 and y′2 are largest
(see Fig. 5). The large asymmetry in the values of updrafts
wu and downdrafts wd, and hot uh and cold uc PDF compo-
nents can be explained by large skewnesses Sw and Su. And
vice versa the large skewnesses give rise to the asymmetry
of wu and wd. The profile of skewnesses for all four variables
are shown in Fig. 7. This figure also shows that the skew-
nesses Su and Sv are small due to compensations ub ≈ 2uf
and yl ≈ 2yl.

The profiles of the individual probabilities are not simple as
Fig. 6 shows. It is an expected result, because the quadrivariate
probabilities are expression in terms of four skewnesses, six bivar-
iate, four trivariate, and one quadrivariate correlation coefficients.
But what is most important, none of the probabilities is negative,
as it should be. Thus, all moments pass the test on realizability.

11. Predicting and explaining the profiles of HOMs

In this section we present vertical profiles of the moments
as predicted by the closure equations and compare them to
profiles from measurements, LES and DNS data. Our theory
predicts an infinite number of HOMs based on the 19 irreduc-
ible moments. We have tested a total of 72 predicted lowest-
order moments and present here those moments, which play
a key role in HOC RANS models and some further ones that
have very nontrivial profiles, in order to assess the strengths

and the weakness of the new closure models [see Eqs. (34) to
(38) and (41a) to (42)].

The profiles of these HOMs are shown in Fig. 8. We visual-
ize the HOMs for the case of the ADAM/QN, ADAM/MF
and for the case of a large background coverage pS 5 0.2
(p0 5 0.8). Shaded areas show the range 0.2 # pS # 1.
Although the profiles of the predicted HOMs look very com-
plex and different from each other, qualitatively their charac-
teristic features can be understood quite simply.

a. Impact of the area coverage parameter pS

The impact of parameter pS on all HOMs is significant, see
the shaded areas in Fig. 8. In the range 0.2 , pS # 1, the abso-
lute values of the moments can vary by a factor of 2–3 or even
more. The absolute value of all moments increases with
decreasing parameter pS. A small pS means a small area cov-
erage of the circulation cells, corresponding to large ampli-
tudes due to the mass conservation constraint. The impact of
pS on moments increases when the order of moments
increase, cf. the moments w′3 , w′5 and w′4 , w′6 and similar
for temperature.

For several moments, such as w′4 , u′4 , u′4 , w′u′3 , and
w′2u′u′ , ADAM/QN shows a good agreement of the pre-
dicted profiles and corresponding profiles from measure-
ments. For the other moments the agreement is marginal
in amplitude, but the shape of profiles is reproduced by

ADAM/QN very well, see, e.g., the moments w′3u′ , w′3u′ ,
and w′2u′y′ .

However, the ADAM/QN is not acceptable for the descrip-

tion of the moment w′2y′2 . The best fitting for this moment
gives ADAM/MF, which is based on pS 5 1. ADAM/QN and

ADAM/MF are unable to describe w′2u′2 and u′2u′2 at all
heights. Only in the middle of the boundary layer the profiles
approach those of the measurements.

b. Impact of variances

As predicted by the general closure Eqs. (44), the moments
are directly proportional to the variances in the corresponding
powers. Moments involving vertical velocity fluctuations are
small near the surface and near the inversion and are larger in
the middle of the mixed layer just as the vertical velocity vari-
ance. Please compare, e.g., the profiles of moments w′4 , w′6 ,
and w′2 in Figs. 8 and 5. On the contrast, moments involving
fluctuations of temperature and horizontal velocity are large
toward the limits of the convection zone and small in the mid-
dle of the mixed layer, as temperature and horizontal velocity
variances do. Compare, e.g., the profiles of moments u′4 and
u′2 , see Figs. 8 and 5.

However, as stated by the closure equations, Eqs. (44), this
explanation is correct only if correlation coefficients and
skewnesses are constants in height. This is indeed the case for
the HOMs in the horizontal velocity fluctuations, but does not
hold for moments in the vertical velocity and temperature,
see Fig. 7. Thus, in explaining the profiles we cannot neglect
the dependence of the correlation coefficients and skewnesses
on height.
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FIG. 5. The 19 irreducible moments used as a base to determine the parameters of the PDF [Eq. (5)]. In this paper the
model is fitted to the ARTIST airborne measurements, shown as solid red lines after applying the lowess procedure
described in section 9 (cf. Fig. 4). The shaded areas represent the scatter as described in Fig. 4. For comparison, the LES
and DNS data (where available) are plotted as purple and blue lines, respectively. Note that several profiles from meas-
urements correspond to those presented in GH02. The essential difference, however, exists as increase of the moments
near the surface where the small-scale fluctuations (partly filtered in GH02) are largest.
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c. Impact of the correlation coefficients

The dependence of the HOMs on the correlation coeffi-
cients is linear for all moments. The values of moments are
larger in regions where the correlations are positive and vice
versa. The value of Cwu is always positive, near the surface
and in the mixing layer indicating an upward heat transport.
This correlation coefficient decays with height and become
negative in the entrainment zone. Thus the moment w′2u′

and w′3u′ depending on Cwu [see Eqs. (34) and (35b)] display
this property very well. The moment w′3u′ depending on Cwu

is negative because this coefficients is negative, see Fig. 7. The
trivariate moment w′2u′u′ depending on two correlations
coefficients Cuu and Cwuu [Eq. (41a)] is negative, because Cuu

is negative, but Cwuu is small. Thus the triple correlations
w′u′u′ are transported by plumes downward only. The com-
plementary moment w′2u′y′ [Eq. (42)] changes sign in the
middle of the CBL by the similar reason, i.e., because Cuy

changes the sign, but Cwuu is small. We stress that the moment
w′2u′y′ is extremely small; however, the closure captures the
sign change effect. The trivariate moment w′u′2u′ depending
on two correlations coefficients Cwu and Cwuu [Eq. (41b)] is

nearly zero in the upper part of CBL, because both Cwu and
Cwuu are small in this region. This shows that correlation of
u′2 and momentum flux w′u′ are significant only in the lower
part of CBL, where it is negative, because Cwu is negative. In
contrary, the moment w′u′u′2 [Eq. (41c)] describing the cor-
relation of heat flux and horizontal velocity variance is large
and positive, because Cwu is large and positive near the sur-
face and in the middle part of CBL.

d. Impact of skewness

Further information about the profiles is provided by the
skewness. Most transparent for this analysis are the moments
Cw4, Cw5, and Cw6 because they are polynomials in the skew-
ness only. As shown in Fig. 7, Sw and Su are always positive,
indicating that hot updrafts dominate. While Su is negative,
indicating that backward fluctuations dominate, but Sy are
small. The predicted profiles of HOMs reflect these properties.
However, the skewness are nonmonotonic functions of height,
so their effect on profiles of HOM depends on height also.
The odd moments increase when the skewness increase for
positive skewness and decrease for negative, while the even
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FIG. 6. (top) Vertical profiles of the positions of the delta functions [Eq. (18)]. The blue and red shading mark the range of variation of
the values depending on the choice of the parameter pS for 0.2 , pS , 1. The solid black line corresponds to pS 5 1/3. The four graphs
show (from left to right) wd, wu, uc, uh, ub, uf, yl, and yr, normalized by w*. (bottom) Vertical profiles of the 16 probabilities defining the
PDF [Eq. (5)] as given by Eqs. (B2)–(B3o) with (A3a)–(A3i), (30a)–(30d), and (26a), (26b), and (27). The probabilities are explained by
color coding. The width of the shaded areas corresponds to the range of variation of the values depending on the choice of the parameter
pS for 0.2, pS # 1.
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moments always increase with increasing skewnesses, cf. the
moments w′4 and w′5 . Only for regions where the skewnesses
are small, the profiles of HOMs, e.g., u′4 , have the structure
prescribed by the profiles of variances.

e. Net effect

To show the effects of the individual components (varian-
ces, correlation coefficients, skewness, and area coverage
parameter) our predicted moments are composed of, we pre-
sent in Fig. 9 examples of a quantitative analysis of selected
bivariate TOMs w′2u′ and w′u′2 and univariate FOMs w′4

and u′4 . We use the cumulative budget method, which is con-
venient for analyzing of functions having a multiplicative
functional form. In the plots we present by a thin line the vari-
ance in temperature in the right-hand side of Eq. (34), a
thicker line corresponds to the product of the variances in
temperature and in vertical velocity, and so on. The final,
most thick line expresses the full moment. In a similar manner
we present the monovariate FOM in vertical velocity (35a)
and temperature (35e). The only difference is that cumulative
budget is used for each term separately, see figure caption for
details. The quantitative analysis confirms the validity of the
qualitative explanation of the predicted profiles given above.
We conclude that all four impacts are important for explana-
tion of the full set of closures for HOMs.

12. Semianalytical ADAMs

Above we have shown that the analytical ADAMs predict
the majority of the vertical profiles of HOMs reasonably well,
but we cannot expect that they are able to describe the CBL
turbulence in its full complexity. One of the obvious possibili-
ties for improvement is the introduction of empirical constants
by keeping the functional form of closures unchanged. The
ADAMs are flexible for such a generalization. The empirical
constants can account for some of the fluctuations of the area
coverages (i.e., values of pS), the subplume (i.e., finite width for
delta functions) and interplume (i.e., distribution in positions
of delta functions) contributions. A systematic procedure of
introducing empirical constants simultaneously in all closure
equations is not so obvious. Our proposal consists of two steps:

Step 1: ADAM/S. To account for the subplume and inter-
plume fluctuations we apply the similarity hypothesis

w′nu′mu′ ly′k
〈 〉

5 kwnumulykw′nu′mu′ly′k (52)

to the irreducible moments in the general closure Eq. (44).
Here the averaging is defined by the Reynolds rule and by the
17-delta-PDF, as before, and 0, kwnumulyk #1 are empirical
constants. In the following we call the ADAM that uses the
assumption (52) semianalytical ADAM/S (S for similarity).
The resulting equations of the general closures for the pre-
dicted multivariate HOMs read as
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FIG. 7. Profiles of (top, left to right) correlation coefficients Cwu, Cwu, Cuu, and Cuy and (bottom, left to right) skewnesses Sw, Su, Su and Sy,
based on the irreducible moments shown in Fig. 5. Red lines are the aircraft measurements, purple lines the LES data, and blue lines the
DNS data.
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FIG. 8. Predicted HOMs. Red lines are the aircraft measurements, purple lines the LES data and blue lines the DNS.
The thin solid black lines are the predicted moments of ADAM/QN based on pS 5 1/3. The gray shaded area marks the
range of variation of the respective moment with dependence on the parameter pS for ADAM/PS. Light gray for 0.2 ,

pS , 1/3 and dark gray for 1/3 , pS # 1. The boundary of dark gray pS 5 1 corresponds to ADAM/MF. Note that sev-
eral profiles from measurements are corresponding to those presented in GH02. The essential difference, however, exists
as increase of the moments near the surface where the small-scale fluctuations (partly filtered in GH02) are largest.
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w′nu′mu′ly′k � Cwnumulykw′2 n=2u′2
m=2

u′2
l=2
y′2

k=2

� 1
p3S

kn=2w2 k
m=2
u2

kl=2u2 k
k=2
y2

kwnumulyk
An21m21k21l21

[

1
1
p2S

kwu
kn=221=2
w2 km=221=2

u2
kl=2u2 k

k=2
y2

kwnumulyk
Anml21k21Cwu

(

1 kwu
kn=221=2
w2 km=2

u2
kl=221=2
u2 kk=2

y2

kwnumulyk
Anm21lk21Cwu

1 kwy
kn=221=2
w2 km=2

u2
kl=2u2 k

k=221=2
y2

kwnumulyk
Anm21l21kCwy

1 kuu
kn=2w2 k

m=221=2
u2

kl=221=2
u2 kk=2

y2

kwnumulyk
An21mlk21Cuu

1 kuy
kn=2w2 k

m=221=2
u2

kl=2u2 k
k=221=2
y2

kwnumulyk
An21ml21kCuy

1 kuy
kn=2w2 k

m=2
u2

kl=221=2
u2 kk=221=2

y2

kwnumulyk
An21m21lkCuy

)

1
1
pS

kwuu
kn=221=2
w2 km=221=2

u2
kl=221=2
u2 kk=2

y2

kwnumulyk

(

3 Anmlk21Cwuu

1 kwuy
kn=221=2
w2 km=221=2

u2
kl=2u2 k

k=221=2
y2

kwnumulyk
Anml21kCwuy

1 kwuy
kn=221=2
w2 km=2

u2
kl=221=2
u2 kk=221=2

y2

kwnumulyk
Anm21lkCwuy

1 kuuy
kn=2w2 k

m=221=2
u2

kl=221=2
u2 kk=221=2

y2

kwnumulyk
An21mlkCuuy

)

1 kwuuy
kn=221=2
w2 km=221=2

u2
kl=221=2
u2 kk=221=2

y2

kwnumulyk

3 AnmlkCwuuy

]
w′2 n=2u′2

m=2
u′2

l=2
y′2

k=2
, (53)

with Anmlk 5 AnAmAlAk, where Aa(Sf) with a 5 [n, m, l, k] is
given by Eq. (33) with A21 5 pS,A0 5 0, and Sf6 is defined as

S6〈 〉f 5
1
2

������������������
4
pS

1
k2
f3

k3
f2

S2f

√√√
6

kf3

k3=2
f2

Sf

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, f 5 w, u, u, y[ ], (54)

cf. Eqs. (27).
ADAM/S keeps the functional form of all HOM closures

(44), but uses empirical constants kwnumulyk , their number
being equal to the number of irreducible moments. Equations
(52) extend the similarity hypothesis for bivariate TOMs

(Abdella and Petersen 2000; Lappen and Randall 2001) and
for bivariate FOMs (GH02) to multivariate HOMs. However,
the ADAM/S still has deficiencies in the detailed description
of convective turbulence. Several predicted moments, e.g.,
bivariate TOMs w′2u′ and w′u′2 , which are given by Eqs. (53)
with n5 2,m5 1, and k5 l5 0 as

w′2u′ 5
kw3kwu

k3=2w2 kw2u

w′3

w′2

( )
w′u′ , (55)

cannot distinguish turbulence regimes with dense packing of
plumes (pS ∼ 1) from those of dilute packing (pS → 0),
because these moments do not depend on pS. Moreover, the
clusters of constants involved in predicted HOM of ADAM/S
are mutually dependent, as is apparent from Eqs. (53).

Step 2: ADAM/E. To overcome these limitations of ADAM/S
we introduce a further extended similarity hypothesis. This states
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FIG. 9. Illustration of the components of some of the predicted

moments. (a) For w′4〈 〉 [Eq. (35a)], the thin black line is w′2〈 〉2,
the blue line is w′2〈 〉2 1=pS( )

, the green line is w′2〈 〉2 S〈 〉2w, and

the thick black line is w′2〈 〉2 1=pS( )
1 w′2〈 〉2 S〈 〉2w. (b) For u′4〈 〉

[Eq. (35e)], the thin black line is u′2
〈 〉2

, the blue line is

u′2
〈 〉2

1=pS
( )

, the green line is u′2
〈 〉2

S〈 〉2
u, and the thick black line is

u′2
〈 〉2

1=pS
( )

1 u′2
〈 〉2

S〈 〉2u. (c) For w′2u′
〈 〉

[Eq. (34)], the lines

show, starting from the thinnest with increasing thickness: w′2〈 〉,
w′2〈 〉 u′2

〈 〉1=2
, C〈 〉wu w′2〈 〉 u′2

〈 〉1=2
, and S〈 〉w C〈 〉wu w′2〈 〉 u′2

〈 〉1=2
.

(d) For w′2u′
〈 〉

[Eq. (34)], accordingly, w′2〈 〉, w′2〈 〉 u′2
〈 〉1=2

,

C〈 〉wu w′2〈 〉 u′2
〈 〉1=2

, and S〈 〉u C〈 〉wu w′2〈 〉 u′2
〈 〉1=2

.
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that the functional form of the closures remains the same as for
ADAM/S, but all clusters of constants in Eq. (53) should be con-
sidered as new mutually independent constants. Such a generali-
zation results in a new closure model ADAM/E, where E means
extended ADAM.

For example, for Eqs. (55) the extended similarity hypothe-
sis predicts that

w′2u′ 5 aw2u

w′3
w′2

( )
w′u′ , (56a)

and similarly

w′u′2 5 awu2
u′3

u′2

( )
w′u′ , (56b)

w′u′2 5 awu2
u′3

u′2

( )
w′u′ , (56c)

where aw2u, awu2 , and awu2 are the new empirical constants.
We stress that aw2uÞkw3kwu=k

3=2
w2 kw2u in general case, and simi-

larly for all the other constants.
We present 17 more closure equations of ADAM/E for the

predicted HOMs: the univariate FOMs, generalizing Eqs.
(35a) and (35e) and the other bivariate FOMs, which are
closely related to the solution of the problem of the refine-
ment of the Millionshchikov hypothesis. These closure equa-
tions are as follows:

w′4 5 aw4w′2 2 1 bw4
w′3

w′2

( )2
w′2 , (57a)

w′3u′ 5 aw3uw′u′w′ 2 1 bw3u

w′3

w′2

( )2
w′u′ , (57b)

w′2u′2 5 aw′2u′2w
′ 2u′

2
1 bw2u2

w′3

w′2

( )
u′3

u′2

( )
w′u′ , (57c)

w′u′3 5 awu3w′u′u′2 1 bw3u

u′3

u′2

( )2
w′u′ , (57d)

u′4 5 au4u
′2 2 1 bu4

u′3

u′2

( )2
u′2 , (57e)

u′4 5 au4u′2
2
1 bu4

u′3

u′2

( )2
u′2 , (57f)

w′3u′ 5 aw3uw′u′ w′2 1 bw3u
w′3

w′2

( )2
w′u′ , (57g)

w′2y′2 5 aw2y2w′2y′2 1 bw2y2
w′3

w′2

( )
y′3

y′2

( )
w′y′ , (57h)

u′2u′2 5 au2u2u′2u
′2 1 bu2u2

u′3

u′2

( )
u′3

u′2

( )
u′u′ , (57i)

u′2y′2 5 au2y2u′2y′2 1 bu2y2
u′3

u′2

( )
y′3

y′2

( )
u′y′: (57j)

The univariate FOMs (57a), (57e), and (57f) attracted
much interest recently in relation to the problem of kurtosis–
skewness relationships in turbulence. We already addressed
this problem in section 5, where we present an extension of
the kurtosis–skewness relationships to HOMs, see Eqs. (36)
and (37). For this reason we present w′5 , u′5 , and w′6 :

w′5 5 aw5
w′3

w′2

( )
w′2 2 1 bw5

w′3

w′2

( )3
w′2 , (58a)

u′5 5 au5
u′3

u′2

( )
u′2

2
1 bu5

u′3

u′2

( )3
u′2 , (58b)

w′6 5 aw6w′2 3 1 bw6
w′3

w′2

( )2
w′2 2 1 cw6

w′3

w′2

( )4
w′2 , (58c)

cf. Eqs. (36) and (37).
In addition we also consider the bivariate HOM

w′u′4 5 awu4u
′2 1 bwu4

u′3

u′2

( )2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ u′3

u′2

( )
wu, (59)

which generalizes Eq. (38).
We provide a generalization of fluxes for triple correlations,

which are important for parameterizing the transport terms in
HOC RANS models. These closures are given by equations

w′2u′u′ 5 aw2uuw′2u′u′ 1 bw2uu
w′3

w′2

( )
w′u′u′ , (60a)

w′2u′y′ 5 aw2uyw′2u′y′ 1 bw2uy

w′3

w′2

( )
w′u′y′ , (60b)

generalizing Eqs. (41a) and (42). Similarly, the generalization
of Eqs. (41b) and (41c) leads to closures

w′u′2u′ 5 awu2uu
′2w′u′ 1 bwu2u

u′3

u′2

( )
w′u′u′ , (60c)

w′u′u′2 5 awuu2u′2w′u′ 1 bwuu2
u′3

u′2

( )
w′u′u′ : (60d)

In all 20 Eqs. (56a) to (60d) a****, b****, and c**** are empir-
ical constants, which we specify in the next step.

13. Specification of empirical constants for the
semianalytical ADAM/E

Calculated values of the empirical constants in Eqs. (56a)
to (60d) are given in Fig. 10, where we present the best fit to
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FIG. 10. Selected moments of the semianalytical model ADAM/E with fitted coefficients vs their corresponding measurements
from the ARTIST campaign. The abscissas are always the airborne measurements normalized by Deardorff scaling. The ordinates
are the ADAM/E moments [Eqs. (53)–(60d)]. In each graph ordinate and abscissa are scaled identically. In the upper-left corner
of each panel, the values of the empirical constants are given for the moments fitted to the ARTIST airborne data. In the lower-
right corner of each panel the explained variance is given.
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the field measurements from the Arctic Radiation and Turbu-
lence Interaction Study (ARTIST) campaign (Hartmann et al.
1999). The available vertical range of the normalized heights
for fitting is z2/zi 5 0.05 to z1/zi 5 0.95. Figure 10 shows the
high quality of the closure equations.

To specify the values of the empirical constants we use the
method of maximization of the explained variance s2 (GH02;
GH05; Waggy et al. 2016). The explained variance is defined
as

s2 5 1 2

&z1=zi

z2=zi
Mnmlk 2 Mnmlk〈 〉( )2dz&z1=zi

z2=zi
Mnmlk 2 M̂nmlk

( )2
dz

,

M̂nmlk 5
1

z1
zi

2
z2
zi

&z1=zi

z2=zi
Mnmlkdz,

(61)

whereMnmlk are the measured moments and Mnmlk〈 〉 the ones
following from the closure equations. The normalized heights
z2/zi and z1/zi specify the relevant range for optimization.
This metrics assesses the ability of the closure equations to
correctly describe the results of the measurements and associ-
ates the optimal values of the empirical constants with the
largest explained variance.

The explained variances range from 0.82 to 1.00 except for

w′5 , where it is only 0.65. Especially high is the explained vari-
ance for moments involving the temperature, see the TOM

w′u′2 (s2 5 0.97), FOMs moments u′4 , w′u′3 (s2 5 1.00, s2 5

0.99), and even fifth-order moments u′5 (s2 5 1.0) and w′u′4

(s2 5 0.99).
Interesting to note that trivariate moments, which are

TOMs or higher-order moments, are explained even better
than some bivariate TOMs and FOMs. The explained vari-
ance s2 for w′2u′ is 0.82, for w′3u′ is 0.79, while for all of the
presented trivariate moments s2 is in the range [0.84, 0.99].

Figure 10 also reveals that several constants of ADAM/E
are very close to those predicted by ADAM/QN. Thus for

coefficients a** we have 0.91 versus 1 for TOM w′u′2 and 2.96,

3.04, 3.12, and 3.25 versus 3 for the FOMs w′3u′ , , w′4 , w′3u′ ,
and u′4 , respectively. We stress that this similarity of the
Gaussian limit for non-Gaussian closures has nothing in com-
mon with the shape of a Gaussian PDF. Most clearly this

difference can be seen for the fifth-order moment w′u′4

(s2 5 0.99). The coefficient awu4 5 5:55 versus 6 predicted by

ADAM/QN, while the Gaussian moment w′u′4 5 0. Also,
several coefficients a** are close to 1 as predicted by ADAM/MF.

These are u′2y′2 with au2y2 5 1:04 and w′2y′2 with aw2y2 5 1:14.
This shows that although many of the moments are well
described by only a bulk PDF, a shape of the PDF can have a
large impact on several moments in the general case. Thus
ADAM/E is superior to ADAM/PS, ADAM/QN, and
ADAM/MF as expected.

Summarizing, we established a new HOM closure model
(ADAM/E) for practical use and derived the empirical

constants for this model. Thus, finally, the third and fourth
goals of our research are reached.

14. Summary and concluding remarks

Exact solutions of the closure problem are very rare in tur-
bulence theory. We developed an analytically solvable and
semianalytical non-Gaussian closure models. All models are
derived using the assumed delta-PDF approximation (ADA),
focusing on the most robust the bulk properties of any PDF.
In this respect the models minimize the number of assump-
tions, but still capture the most important ingredients of ear-
lier models.

The general quadrivariate assumed delta-PDF approxima-
tion model (ADAM) includes four trivariate, six bivariate,
and four univariate submodels of lower levels of complexity,
see Table 1. All HOMs in this hierarchy have a universal and
simple functional form. The analytical closure models have no
fitting constants, and the relevant semianalytical HOMs
depend on only one, two, or three constants for any HOM.
All HOMs are dimensionally consistent and preserve symme-
tries. The analytical ADAMs are realizable since they have
been derived using the same PDF for all moments. For the
semianalytical ADAMs, realizability must be checked a
posteriori.

The ADAMs show a good skill in predicting the vertical
profiles of HOMs for a statistically stationary convective dry
atmospheric boundary layer. The profiles of the predicted
HOMs have the correct shapes and also the magnitudes are
reproduced reasonably well. These are our main results.

The ADAMs are suited for implementation in second-,
third-, and fourth-order RANS turbulence closure models of
bi-, tri-, and four-variate levels of complexity. If the general
ADAMs turn out to be too cumbersome for practical applica-
tions in numerical weather prediction and climate models, the
trivariate and even bivariate submodels of ADAMs, contain-
ing a smaller number of irreducible moments, can be used for
such applications. Also, our analysis reveals that several irre-
ducible moments are small in comparison to the other. This
opens a door for further simplifications of the ADAMs by
reducing the number of relevant moments. The knowledge of
the HOMs from the general ADAMs can help to evaluate the
accuracy of such simplifications.

As the ADAMs have been developed without moisture
consideration, our closure is in the current form only applica-
ble to a dry atmospheric boundary layer, where the effects of
moisture can be neglected, or where parameterization
schemes distinguish between dry and moist areas. Several
moments presented in GH05 and coinciding with those of
ADAMs performed well in a wide range of flow regimes in
describing the results of deep convection in the ocean (Losch
2004) and in the sun and stars (Kupka and Robinson 2007;
Kupka and Muthsam 2017; Cai 2018) and of engineering flows
(Waggy et al. 2016; Hsieh and Biringen 2018).

In future studies the capabilities of the ADAMs can be
extended by considering different thermodynamic variables,
e.g., liquid-water potential temperature ul and total suspended
water specific humidity q, for moist convective boundary

G RYAN I K AND HARTMANN 1425MAY 2022

Brought to you by STIFTUNG ALFRED WEGENER INST. F. POLAR | Unauthenticated | Downloaded 05/24/22 02:12 PM UTC



layers, as well as more scalar variables s, if air pollution mix-
ing is considered. The bottom-up recursive procedure of
deriving the closures described in section 3 can be generalized
to these cases by enlarging the number of independent
variables.

Future work could account for the fluctuations of both
structures and background and will require theoretical analy-
sis of subplume (i.e., finite width for delta functions) and
interplume (i.e., distribution in positions of delta functions)
contributions as well as of an asymmetry of the background
(i.e., number of delta functions and its finite width). At the
moment these features are only implicitly taken into account
in the semianalytical ADAM/S and ADAM/E via the values
of empirical constants.

Summarizing, our findings lead us to the conclusion that
the new models (ADAMs) exhibit some remarkable and non-
trivial properties:

(i) minimization of the number of assumptions in earlier
models, but keeping the most important of their proper-
ties unchanged,

(ii) the generalization of earlier models to the HOMs,
(iii) the universal functional form of the HOMs,
(iv) the hierarchical structure of the moments of different

levels of complexity and
(v) the realizability of all moments for analytical ADAMs,

and
(vi) the simplicity of the functional form of all moments,

thus being well suited for practical implementations,

which in their qualitative form could survive in more compli-
cated RANS models, and as such form a conceptual basis for
understanding convective turbulence in the atmospheric
boundary layer, the ocean, in stars and in engineering turbu-
lent flows. The semianalytical version of our closure is based
on only one test case. Thus it is obvious that more testing,
using different flow regimes, would be desirable. We recom-
mend testing the new closure models, especially ADAM/E, in
a priori tests for the full spectrum of HOMs, e.g., in order to
establish the best set of empirical constants and to specify the
degree of their uncertainty. Also, and more important, a pos-
teriori testing in HOC RANS models is desirable, and even
necessary. It is not an easy task because a simple exchange of
existing closure implementations might cause difficulties, e.g.,
due to the need to tune old empirical constants in order to
compensate for the effects of the new parameterizations for
HOMs.
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APPENDIX A

Trivariate HOMs and Closures

Following the guide of solution (section 3), the trivariate
HOMs w′nu′mu′ l

〈 〉
are calculated very similar to the bivari-

ate moments (section 5). The procedure is simple and
straightforward: Using Eq. (20) w′nu′mu′l

〈 〉
can be written

in terms of probabilities and widths as

w′nu′mu′l〈 〉 5 pS p̂uhf 1 2 p̂u
( )n 1 2 p̂h

( )m(
1 2 p̂f

)l[
1 p̂uhb 1 2 p̂u

( )n 1 2 p̂h
( )m

2 p̂f
( )l

1 p̂ucf 1 2 p̂u
( )n

2 p̂h( )m(
1 2 p̂f

)l
1 p̂ucb 1 2 p̂u

( )n
2 p̂h( )m 2 p̂f

( )l
1 p̂dhf 2 p̂u( )n 1 2 p̂h

( )m(
1 2 p̂f

)l
1 p̂dhb 2 p̂u( )n 1 2 p̂h

( )m
2 p̂f
( )l

1 p̂dcf 2 p̂u( )n 2 p̂h( )m(
1 2 p̂f

)l
1 p̂dcb 2 p̂u( )n 2 p̂h( )m 2 p̂f

( )l]Dn
wD

m
u D

l
u: (A1)

Here the expressions for the probabilities p̂u and p̂h and
for p̂f are known from the solution for the bivariate
moments [Eqs. (26a) and (26b)] and the widths Dw, D, and
Du are given by the formulas (28). To find the probability
p̂uhf and similar, we consider the new irreducible moment
w′u′u′〈 〉 describing the triple correlations:

w′u′u′〈 〉 5 pS p̂uhf 2 p̂up̂hf 2 p̂hp̂uf 2 p̂f p̂uh 1 2p̂up̂hp̂f
( )

DwDuDu,

(A2)

where probability p̂uh is defined by (30a) and similar formu-
las for p̂uf and p̂hf , which differ only by a permutation of
the indices.

Solving this equation we find the probability p̂uhf as

p̂uhf 5
1
pS

w′u′u′〈 〉
DwDuDu

1 p̂u
u′u′〈 〉
DuDu

1 p̂h
w′u′〈 〉
DwDu

1 p̂f
w′u′〈 〉
DwDu

1 p̂up̂hp̂f :

(A3a)

In terms of skewnesses and correlation coefficients this
probability reads

p̂uhf 5
Sw2Su2Su2 1 4CwuSu2 1 4CwuSu2 1 4CuuSw2 1 8Cwuu

(Sw1 1 Sw2)(Su1 1 Su2)(Su1 1 Su2) :

(A3b)

This equation is obtained by substituting equations for
widths (28), probabilities p̂u (26a), p̂h (26b), and similarly
for p̂f , in Eq. (A3a).

The solutions for the other 7 probabilities is derived by
using the relationships for probabilities of different levels of
hierarchy, see section 3. They are

p̂uhb 5 p̂uh 2 p̂uhf , (A3c)
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p̂ucf 5 p̂uf 2 p̂uhf , (A3d)

p̂dhf 5 p̂hf 2 p̂uhf , (A3e)

p̂ucb 5 p̂u 2 p̂uh 2 p̂ucf , (A3f)

p̂dhb 5 p̂h 2 p̂uh 2 p̂dhf , (A3g)

p̂dcf 5 p̂f 2 p̂uf 2 p̂dhf , (A3h)

p̂dcb 5 1 2 p̂uhf 2 p̂uhb 2 p̂ucf 2 p̂ucb 2 p̂dhf 2 p̂dhb 2 p̂dcf :

(A3i)

All these probabilities differ from probability (A3b) only
by indices, if so they can be derived using the permutation
rules for indices similar to the bivariate case.

Finally, substitution of the formulas for all probabilities
and widths in Eq. (A1) gives the explicit formula (40) of
the main text. This describes any trivariate HOM in terms
of three variances, three skewnesses, and three bivariate
and one trivariate correlation coefficients.

APPENDIX B

Quadrivariate HOMs and Closures

The quadrivariate HOMs w′nu′mu′ lu′h
〈 〉

are calculated
very similar to the bivariate and trivariate case, using the
factorized form of the HOMs (20). The bottom-up proce-
dure of derivation (see section 3) is applied again, using the
results for bivariate closures from section 5 and trivariate
closures from appendix A.

The new irreducible moment w′u′u′y′〈 〉, which is necessary
for calculation of individual probabilities p̂uhfr, is given as

w′u′u′y′〈 〉 5 pS p̂uhfr 2 p̂up̂hfr 2 p̂hp̂ufr 2 p̂f p̂uhr 2 p̂rp̂uhf
(

1 p̂up̂hp̂fr 1 p̂up̂f p̂hr 1 p̂up̂rp̂hf 1 p̂hp̂f p̂ur

1 p̂hp̂rp̂uf 1 p̂f p̂rp̂uh 2 3p̂up̂hp̂f p̂r)DwDuDuDy,

(B1)

where the formulas for all probabilities with the exception
of p̂uhfr are given in section 5 and appendix A.

The solution of Eq. (B1) for p̂uhfr gives

p̂uhfr 5
1
pS

w′u′u′y′〈 〉
DwDuDuDy

1 p̂u
u′u′y′〈 〉
DuDuDy

1 p̂h
w′u′y′〈 〉
DwDuDy

1 p̂f
w′u′y′〈 〉
DwDuDy

1 p̂r
w′u′u′〈 〉
DwDuDu

1 p̂up̂h
u′y′〈 〉
DuDy

1 p̂up̂f
u′y′〈 〉
DuDy

1 p̂up̂r
u′u′〈 〉
DuDu

1 p̂hp̂f
w′y′〈 〉
DwDy

1 p̂hp̂r
w′u′〈 〉
DwDu

1 p̂f p̂r
w′u′〈 〉
DwDu

1 p̂uphpf pr:

(B2)

The other 15 probabilities are obtained using the generic
probability puhfr and relationships for probabilities of differ-
ent level of complexity from section 3. The result is as
follows:

p̂uhfl 5 p̂uhf 2 p̂uhfr, (B3a)

p̂uhbr 5 p̂uhr 2 p̂uhfr, (B3b)

p̂ucfr 5 p̂ufr 2 p̂uhfr, (B3c)

p̂dhfr 5 p̂hfr 2 p̂uhfr, (B3d)

p̂uhbl 5 p̂uh 2 p̂uhf 2 p̂uhbr, (B3e)

p̂ucfl 5 p̂uf 2 p̂uhf 2 p̂ucfr, (B3f)

p̂ucbr 5 p̂ur 2 p̂uhr 2 p̂ucfr, (B3g)

p̂dhfl 5 p̂hf 2 p̂hfr 2 p̂uhfl, (B3h)

p̂dhbr 5 p̂hr 2 p̂uhr 2 p̂dhfr, (B3i)

p̂dcfr 5 p̂fr 2 p̂ufr 2 p̂dhfr, (B3j)

p̂ucbl 5 p̂u 2 p̂uh 2 p̂ucf 2 p̂ucbr, (B3k)

p̂dhbl 5 p̂h 2 p̂uh 2 p̂dhf 2 p̂dhbr, (B3l)

p̂dcfl 5 p̂f 2 p̂uf 2 p̂dhf 2 p̂dcfr, (B3m)

p̂dcbr 5 p̂r 2 p̂ur 2 p̂dhr 2 p̂dcfr, (B3n)

p̂dcbl 5 1 2 p̂uhfr 2 p̂uhfl 2 p̂uhbr 2 p̂uhbl 2 p̂ucfr 2 p̂ucbr

2 p̂ucfl 2 p̂ucbl 2 p̂dhfr 2 p̂dhfl 2 p̂dhbr 2 p̂dhbl 2 p̂dcfr

2 p̂dcbr 2 p̂dcfl · (B3o)

After substituting the formulas for widths and probabili-
ties in the right-hand side of Eq. (20), we find the explicit
expression in terms of four skewnesses, six bivariate, four
trivariate, and one quadrivariate correlation coefficients. It
is the main result, i.e., the Eqs. (44) in the main text.
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