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Abstract

Understanding cetacean distribution is essential for conser-

vation planning and decision-making, particularly in regions

subject to rapid environmental changes. Nevertheless,

information on their spatiotemporal distribution is com-

monly limited, especially from remote areas. Species distri-

bution models (SDMs) are powerful tools, relating species

occurrences to environmental variables to predict the spe-

cies' potential distribution. This study aims at using

presence-only SDMs (MaxEnt) to identify suitable habitats

for fin whales (Balaenoptera physalus) on their Nordic and

Barents Seas feeding grounds. We used spatial-block cross-

validation to tune MaxEnt parameters and evaluate model

performance using spatially independent testing data. We

considered spatial sampling bias correction using four

methods. Important environmental variables were distance

to shore and sea ice edge, variability of sea surface temper-

ature and sea surface salinity, and depth. Suitable fin whale

habitats were predicted along the west coast of Svalbard,

between Svalbard and the eastern Norwegian Sea, coastal

areas off Iceland and southern East Greenland, and along

the Knipovich Ridge to Jan Mayen. Results support that

presence-only SDMs are effective tools to predict cetacean

habitat suitability, particularly in remote areas like the Arctic

Ocean. SDMs constitute a cost-effective method for
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targeting future surveys and identifying top priority sites for

conservation measures.

K E YWORD S

Arctic, Balaenoptera physalus, Barents Sea, fin whale, MaxEnt,
Nordic Seas, presence-only data, presence-only models, sampling
bias, species distribution modeling

1 | INTRODUCTION

The Nordic Seas are a large part of the Arctic Ocean, comprising the Greenland, Norwegian, and Iceland Seas (Figure 1;

Campos & Horn, 2018; Loeng & Drinkwater, 2007). The Arctic Ocean has unique physical characteristics, including

strong seasonality in light, overall cold temperatures, and extensive shelf areas around a deep oceanic basin (Drange

et al., 2005; Kovacs et al., 2010; Loeng & Drinkwater, 2007). During summer months, high primary production leads to

seasonally abundant marine mammals that use this area as feeding grounds (Derville et al., 2019; Laidre et al., 2010;

Loeng & Drinkwater, 2007), including fin whales (Balaenoptera physalus; Heide-Jørgensen et al., 2003, 2007, 2008,

2010; Joiris et al., 2014; Laidre et al., 2010; Mikkelsen et al., 2007; Nøttestad et al., 2014; Storrie et al., 2018).

The Arctic sea ice and sea ice extent have decreased substantially in the past decades due to climate change and

most likely will continue declining in the following decades (Overland & Wang, 2013). Altered current patterns are

F IGURE 1 Map of the study area, covering 60�–81�N and 45�W–55�E. The blue color represents depth: shallow
waters (light blue), deep waters (dark blue) (source: GEBCO; Weatherall et al. 2015). The large yellow, green, and red
diamonds represent Knipovich Ridge, Mohns Ridge, and Jan Mayen, respectively. Dots represent all fin whale
sightings used in the models, with colors indicating the data source. Dark gray areas depict land. The yellow line

indicates the approximate mean position of the Polar Front, as defined by Harris et al. (1998).
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expected to change species composition in regions such as Svalbard, e.g., due to poleward shifts of boreal generalists

(e.g., fish and euphausiids), potentially displacing native Arctic species (Carmack & Wassmann, 2006; Dalpadado

et al., 2016; Fossheim et al., 2015; Gluchowska et al., 2016; Kortsch et al., 2015; Loeng & Drinkwater, 2007). These

alterations are predicted to result in changes in the abundance and distribution of cetaceans in the Arctic (see Moore

et al., 2019 for a review; Storrie et al., 2018; Tynan & DeMaster, 1997; Víkingsson et al., 2015). Sea ice has been one

of the limiting factors restricting human access to high latitudes, but the decreasing sea ice coverage due to climate

change may increase anthropogenic activities in the Arctic Ocean (such as shipping, fishing, and oil and gas explora-

tion) (Alter et al., 2010; Burek et al., 2008; Gjøsæter et al., 2009). This could further affect cetaceans in this area,

especially fin whales, which are particularly vulnerable to ship strikes (Cates et al., 2017; Laist et al., 2001; Schleimer

et al., 2019) and entanglement (Ramp et al., 2021). Climate change is expected to strongly impact fin whale

populations (Aguilar, 2009; Tulloch et al., 2019). Fin whales in the North Atlantic have already displayed altered tem-

poral migration patterns in response to rising sea surface temperature and earlier ice break-up (Ramp et al., 2015),

and a distributional expansion was assumed as feeding response to physical and biological changes in the Irminger

Sea (Víkingsson et al., 2015).

According to the most recent global IUCN Red List assessment, fin whales are listed as “Vulnerable,” with an

increasing population trend (Cooke, 2018). Fin whales generally occur in temperate and cold waters of the world

(Aguilar & García-Vernet, 2018). Fin whales generally migrate between summer feeding grounds at high latitudes and

winter breeding grounds at low latitudes (Edwards et al., 2015; Mizroch et al., 2009). However, some individuals stay

at high latitudes throughout winter (Edwards et al., 2015; Haver et al., 2017; Lydersen et al., 2020; Moore et al., 2012;

Simon et al., 2010). They are also common in temperate waters (e.g., in the Mediterranean Sea) (Forcada et al., 1996;

Gannier, 2002). Fin whales are opportunistic feeders that forage on krill and pelagic fish (Santora et al., 2010; Sig-

urj�onsson & Víkingsson, 1997; Skern-Mauritzen et al., 2011) and likely are capable of switching prey upon availability

(Gavrilchuk et al., 2014). Studies of fin whale distribution in the Nordic Seas (e.g., Nøttestad et al., 2014; Skern-

Mauritzen et al., 2011; Storrie et al., 2018; Víkingsson et al., 2015) are still limited compared to other regions, such as

the Mediterranean (e.g., Druon et al., 2012; Sciacca et al., 2015), but currently increasing.

Species distribution models (SDMs), also known as ecological niche models, are helpful tools linking species occur-

rences to environmental conditions to provide insight into potential species' distribution. Correlative SDMs estimate the

relationship between species occurrences (presence-only or presence-absence) and environmental characteristics in a

given study area (Franklin, 2010). SDMs for marine species are generally less frequent than for terrestrial species, yet

there is a notable increase in their application in the marine realm (Robinson et al., 2011; Smith et al., 2021). SDMs are

particularly useful in estimating habitat suitability in remote regions with limited access, such as the polar oceans (El-

Gabbas et al., 2021a; Storrie et al., 2018). Cetaceans are highly mobile and spend a considerable amount of time under-

water, which hampers accurate absence data collection (Praca et al., 2009). In such cases, species data are often available

in the form of presence-only data (Elith et al., 2011), e.g., from global open-access data repositories such as the Global

Biodiversity Information Facility (GBIF) and Ocean Biodiversity Information System (OBIS).

Despite the valued use of presence-only SDMs to support conservation decision making in data-poor situations

(El-Gabbas et al., 2020; Smith et al., 2021), these data are usually opportunistic and come without information on the

group size, sampling design and efforts, which can lead to spatial, temporal, or environmental biases (El-Gabbas &

Dormann, 2018a; Fourcade et al., 2013). This sampling bias can highly affect SDMs performance and inference and

thus needs to be corrected for (El-Gabbas & Dormann, 2018a; Phillips et al., 2009; Warton et al., 2013). A few

presence-only SDM methods exist (Renner et al., 2015), amongst which is MaxEnt (Phillips et al., 2006). In addition

to presence locations, MaxEnt uses a random sample of locations (background information) to characterize the envi-

ronmental conditions in the study area (Phillips et al., 2006; Renner et al., 2015). Detailed information on how

MaxEnt works is presented in Elith et al. (2011) and Merow et al. (2013).

This study aims at using MaxEnt and presence-only sightings to identify suitable habitats for fin whales in the

Nordic and Barents Seas during the feeding season (May to September) and determine important environmental vari-

ables affecting their distribution. As available sightings are opportunistic and show spatial biases, we implemented
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four methods to correct for sampling bias. We tuned MaxEnt parameters and evaluated model performance using

spatial-block cross-validation, maintaining spatial independence between training and testing data sets. Few studies

have modeled cetaceans' potential distribution from polar regions (e.g., Bombosch et al., 2014; El-Gabbas

et al., 2021b; Storrie et al., 2018; Zerbini et al., 2016), and this study is one of the first to use MaxEnt to model suit-

able habitats of fin whales in the Arctic Ocean.

2 | METHODS

2.1 | Study area

The study area encompasses the Nordic Seas, the Barents Sea, and northern parts of the Irminger Sea (60�–81�N,

45�W–55�E; Figure 1). The boundaries of the study area were determined by inspecting fin whale data availability,

with a buffering area of 20 km around sightings. Models were calibrated at an equal-area projection, following Elith

et al. (2011) and Budic et al. (2016). We used a grid cell of 100 km2 (10 � 10 km; 51,595 cells in total) as we found

this resolution a suitable compromise for the large study area, high mobility of fin whales, and the variant spatial res-

olution of the original environmental data (Table 1). Appropriate map projection was determined using the projection

wizard tool v1.2 (Savric et al., 2016; https://projectionwizard.org/): Polar Lambert azimuthal equal-area projection

(WGS 1984: EPSG 8326, with a central meridian of 5�00E). We excluded the Baltic Sea area from the analysis

because this area is ecologically highly dissimilar to the rest of the study area, and fin whales are not commonly

recorded within this area (Sk�ora, 1997).

2.2 | Fin whale sightings

Fin whale presence-only sightings from 2004 to July 2021 were collected from 18 R/V Polarstern cruises

(Burkhardt, 2019; for more information, see Table S1), GBIF (https://gbif.org, accessed on July 12, 2021, via the rgbif

R-Package; Geffert & Ram, 2021), iOBIS (https://obis.org/, accessed on July 12, 2021, via the robis R-package;

Provoost & Bosch, 2019), and two relatively recent publications (Løviknes, 2019; Nøttestad et al., 2014). The total

year span (2004–2021) was determined according to the availability of the data. These sightings are mainly opportu-

nistic citizen science observations made on research cruises, whale watching boats, or from near the shore. We

included only sightings from May to September, as this time frame covers fin whales' main feeding season in the Arc-

tic (Víkingsson, 1997). R/V Polarstern data were collected from multidisciplinary research cruises to the Arctic from

2007 to 2018, with species identification conducted by nautical officers on duty, and sighting date, time, location, and

group size were recorded systematically using WALOG software v1.3 (Burkhardt, 2019). Species were identified to

the lowest taxonomic level possible, associated with a certainty level of identification. Uncertain identifications (cate-

gory “possible”) were left out of the analysis. All data were quality-controlled to exclude doubtful or erroneous occur-

rences (e.g., inaccurate coordinates that indicate being on land) and occurrences outside of the study area. Group size

per detection was not systematically reported in available data sources. As our main objective is to estimate fin whale

habitat suitability, instead of abundance, we considered each detection event as a single occurrence, irrespective of

how many individuals were recorded per detection. In total, there are 1,736 independent sightings (Figures 1 and S1).

2.3 | Environmental data

Our models employed static SDMs, in which species sightings were spatially matched with environmental variables

summarizing environmental conditions in the Nordic and Barents Seas between 2004 and 2018, only from May to
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September (El-Gabbas et al., 2021b). Potential environmental variables were determined based on ecological rele-

vance for fin whales and availability, including dynamic and static variables (see Table 1 for more information on the

original spatiotemporal resolution and sources of the environmental variables). Dynamic variables include

chlorophyll-a concentration, temperature and salinity at the surface (0 m) and 100 m depth, sea ice concentration,

current speed, and sea surface height.

We prepared two summary maps for each dynamic predictor: the mean and standard deviation of environmental

conditions over five months (May–September) for each predictor-specific temporal availability range (Table 1). When

used in combination with the mean, variables representing long-term environmental variability (standard deviation)

can express extreme values not represented in the mean (Zimmermann et al., 2009). This can further reduce the

potential effect of temporal mismatch between sightings and long-term mean environmental conditions (El-Gabbas

et al., 2021b). To avoid the influence of uncertain values of sea ice concentration close to land (due to land-spillover),

mean sea ice concentration values at a two-cell buffer from shore were replaced with their interpolated values

(Markus & Cavalieri, 2009; Marcus Huntemann, personal communication, May 2019), using “Kriging” tool in ArcGIS

(ArcMap v10.6.1; Environmental Systems Research Institute, Redlands, CA). As an additional predictor, we calculated

the minimum distance between each cell and the sea ice edge. We determined the sea ice edge as the largest poly-

gon with >15% mean sea ice concentration (Parkinson, 2017; May–September). Cells intersecting with the sea ice

edge line were assigned a value of zero, while cells with sea ice concentration <15% (south of the sea ice edge) were

assigned positive values, and cells with sea ice concentration >15% (north of the sea ice edge) were assigned nega-

tive values (following Williams et al., 2014; see Figure S2). Static variables include depth, aspect, slope, distance to

shore, and distance to 100 m, 200 m, and 500 m isobaths, all derived from the depth map (Weatherall et al., 2015).

Distance to isobaths and shore were calculated using “Contour” and “Near” tools in ArcGIS.

In total, 24 initial variables were prepared at consistent projection (WGS 1984: EPSG 8326, with a central merid-

ian of 5�00E), extent, and resolution using ArcGIS, QGIS (v3.4.5; QGIS Association; http://www.qgis.org), and R

(v3.5.3; R Core Team, 2019). Variables were projected using spTransform function of sp R-package (Bivand

et al., 2013; Pebesma & Bivand, 2005). Cells with missing values were interpolated using “Kriging” tool in ArcGIS. To

maximize variables' uniformity, potential variable transformations were checked using box-cox transformations

(Box & Cox, 1964), following Dormann and Kaschner (2010); see Table S2. Multicollinearity can cause instability in

parameter estimation and affect model predictions (Dormann et al., 2013; Graham, 2003). Therefore, we only consid-

ered low-correlated variables in the models: maintaining a variance inflation factor (VIF) <4, followed by ensuring a

maximum Pearson correlation coefficient of 0.7 (Dormann et al., 2013; Zuur et al., 2010; see Table S2). In total, ten

variables were excluded from fitting the model due to multicollinearity, which resulted in 14 variables used in the

models (Table 1 and Figure S2).

2.4 | Species distribution models

Static models were fit using MaxEnt v3.4.1 (Phillips et al., 2006, 2017) through maxent function of dismo R-package

(Hijmans et al., 2017). Initial models were fitted without correction for sampling bias (modelbiased) under the point

process framework, following Renner et al. (2015). As species occurrences are opportunistic, we accounted for spa-

tial sampling bias using four methods (see Table 2 for a summary). First, assuming that site-accessibility is the main

driver for spatial sampling bias in the data, we employed model-based bias correction (Warton et al., 2013) using dis-

tance to shore as a bias predictor. In this method, the distance to shore variable was used as one of the model pre-

dictors but was then fixed at an optimum accessibility value (distance = zero) during prediction (modelaccessibility),

assuming all cells have perfect accessibility (El-Gabbas & Dormann, 2018a; Warton et al., 2013). This method does

not require refitting the modelbiased: modelaccessibility is an extension from the modelbiased, with the only difference

being how the distance to shore variable is manipulated during predicting habitat suitability. Second, we filtered

duplicated occurrences in each cell, i.e., using only one occurrence per 10 � 10 km cell, yielding 972 unique cells
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with species sightings. The filtered sightings were then used with the same 14 environmental variables (Table 1) to

calibrate the second models (modelrarefaction). Spatial filtering (or rarefaction) is commonly used in SDMs to correct

for sampling bias and reduce the effect of spatial autocorrelation (Aiello-Lammens et al., 2015; Boria et al., 2014).

For the other two bias correction methods, we estimated a pattern of spatial sampling efforts in the study area

using the intensity of ship tracks or the intensity of fin whale sightings. Ship track data between 2004 and 2021

(May–September) were extracted from the sailwx database (https://www.sailwx.info/). The number of quality-

controlled ship tracks intersected with each cell was calculated (log10 scale; Figure S3) and used as an additional bias

predictor to the models (modeleffortTracks), implementing model-based bias correction. To predict from

modeleffortTracks, the ship track bias predictor was fixed at the maximum ship track intensity in the study area (follow-

ing El-Gabbas & Dormann, 2018a), assuming that all cells received similarly high sampling efforts. Finally, we used

the intensity of fin whale sightings in each cell as a bias grid (� bias file) to sample background locations with similar

spatial bias as fin whale sightings (modeleffortFW) (Merow et al., 2013). As most cells lack species sightings, we cannot

use the sighting intensity map directly as a bias grid. We used fin whale sighting coordinates to calculate a two-

dimensional kernel density estimation using MASS R-package (kde2d function; Venables & Ripley, 2002; see

Figure S3). For all the models, all cells in the study area were used as background information, except for the mod-

eleffortFW in which background locations were sampled as 20,000 cells (5,000 from each spatial cross-validation fold,

see below) using the fin whale sighting intensity as sampling weight (using “randomPoints” function from the raptr

R-package, Hanson et al., 2017).

Evaluating SDM performance typically requires independent data sets. As such data sets are unavailable in most

situations, we used spatial-block cross-validation to ensure spatial independence between the training and testing

data set (Roberts et al., 2017). We used blockCV R-package (Valavi et al., 2019) to determine the block size and dis-

tribute blocks into four-fold cross-validation. Block size was estimated as the median spatial autocorrelation range of

environmental variables, while the allocation of blocks into cross-validation folds was estimated by balancing the

number of presence and background locations between folds. We determined two spatial block structures, one for

modelrarefaction and another for other models (Figure S4). Model performance was evaluated using the area under the

ROC curve (AUC) by comparing the ranking of predicted habitat suitability values at testing presences against

predicted values at background locations in testing blocks (i.e., testing AUC).

MaxEnt's default settings were originally tuned using empirical data (Phillips & Dudik, 2008); therefore, optimum

settings can vary between species, characteristics of species and environmental data, and study areas

(Radosavljevic & Anderson, 2014). Thus, we tuned MaxEnt's settings, estimating the best combination of feature

classes (transformations of variables) and regularization multiplier (representing model complexity) using ENMeval R

package (Muscarella et al., 2014). For each model type, a total of 40 submodels were calibrated on spatial-block

cross-validation: combinations of five feature classes (linear, L; quadratic, Q; hinge, H; product, P; and threshold,

T) � eight regularization multiplier values (from 0.5 to 4, with an 0.5 increment). For each model type, the combina-

tion with the highest cross-validated testing AUC was used to run the final models. In addition to cross-validated

models, we also ran models with all respective sightings (referred to as “full models”). Predicted habitat suitability

was made using the predict function of dismo R-package (“cloglog” output format, as recommended by Phillips

et al., 2017). For cross-validated models, we calculated the mean habitat suitability and the coefficient of variation

(a ratio between standard deviation and mean prediction) to represent predictive uncertainty. Variable importance

was estimated using Jackknifing and MaxEnt's permutation importance. We show how habitat suitability changes as

each environmental variable is varied using marginal response curves.

3 | RESULTS

All models showed good performance, with mean testing AUC ranging from 0.75 to 0.81 (training AUC from 0.87 to

0.9). Table S3 shows values of training AUC, the mean and standard deviation of cross-validated testing AUC, and
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the best combination for feature classes and regularization multiplier for each model. Important variables and mar-

ginal response curves show reasonably consistent patterns for the different bias correction methods.

3.1 | Important variables

The most important variables, as estimated with permutation importance, were distance to shore and distance to the

sea ice edge, followed by the variability of temperature and salinity of the sea surface and depth (Figure 2). This is

also supported by the jackknifing test (Figures 3 and S5). When used in isolation, the most important variables were

distance to the sea ice edge and distance to shore (particularly for modeleffortFW), followed by the variability of sea

surface temperature. Depending on the model type, model performance was lowest when depth, distance to shore,

or distance to the sea ice edge was excluded (see Figures 3 and S5).

3.2 | Fin whale suitable habitats in the Nordic and Barents Seas

The highest habitat suitability was predicted along the western coast of Svalbard and between Svalbard and the east-

ern Norwegian Sea, including southwestern parts of the Barents Sea. Comparably high habitat suitability areas

include the area between the Knipovich Ridge and Jan Mayen (through Mohns Ridge) and Greenland's southeastern

coast up to around Iceland (including parts of the Denmark Strait) (Figures 4 and 5). Generally, bias-corrected predic-

tions show expected broader habitat suitability compared to models that did not consider sampling bias correction

F IGURE 2 Permutation importance (%) of environmental variables. Solid dots and their error bars represent the
mean and standard deviation of importance on cross-validation, respectively. Asterisks represent the permutation
importance of the full models (without cross-validation). Colors represent the four model types implemented
(blue = modelbiased/accessibility, green = modelrarefaction, red = modeleffortTracks, orange = modeleffortFW). Environmental
variables are sorted in all figures in descending order according to their overall mean permutation importance. For
more information on variable names, see Table 1.
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(modelbiased; Figures 4 and 5). This is particularly evident for methods that implemented model-based bias correction

(modelaccessibility and modeleffortTracks; Figure 5). The two other correction methods (modelrarefaction and modeleffortFW)

show comparably less broad suitable habitats, more confined along the western coast of Svalbard and in the Barents

Sea (Figure 5). The predictive uncertainty of cross-validated models (coefficient of variation) was generally low

(Figure S6). Areas with relatively high cross-validated uncertainty include the northeastern coast of Greenland (70�–

81�N), southeast of the Barents Sea (35�–45�E, 64�–70�N), southwest coast of Norway, and east of Iceland; areas

not overlapping much with core suitable habitats (Figures 5 and S6).

F IGURE 3 Variable importance as measured by Jackknifing test for modelbiased. The bars indicate mean
regularized training gain for cross-validated models, with error bars for standard deviation. Results for the full model
(without cross-validation) are shown as gray points. Blue bars represent the model gain when each variable was used
in isolation, while red bars show model gain when models were run without the variable. For more information on
variable names, see Table 1. Results for other model types are shown in Figure S5.

F IGURE 4 Fin whale habitat suitability in the Nordic and Barents Seas. The map to the left shows the mean
predicted habitat suitability without correction for sampling bias (modelbiased). The other two maps show the mean
and standard deviations (SD) of the four sampling bias correction methods, respectively. The mean predicted habitat

suitability for each bias correction method is shown in Figure 5. Colors range from blue (low suitability mean/SD) to
red (high suitability mean/SD).
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F IGURE 5 Mean fin whale habitat suitability for each sampling bias correction method. The mean of the four
maps (bias-free prediction) is shown in Figure 4. Similar maps representing model-specific coefficient of variation are
shown in Figure S6.

F IGURE 6 Marginal response curves of environmental variables. Solid lines represent the mean response curve
of cross-validated models; dashed lines for full models (without cross-validation). Line colors represent the model
type used. The upper gray ticks show values of environmental conditions at species occurrences, while lower gray
ticks are for values at the whole study area (background information). Environmental variables are sorted in
descending order according to their overall mean permutation importance (Figure 2). Response curves for each

model type, including cross-validation uncertainty, are shown in Figure S7.
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Marginal response curves for all environmental variables are shown in Figures 6 and S7. Here, only the environ-

mental variables that were identified to be most important in the models (Figure 2) are described in detail. The

highest habitat suitability was predicted at a distance <80 km to shore, then sharply declined. Models showed a

unimodal relationship between fin whale habitat suitability and distance to the sea ice edge, peaked at �100–

200 km from the sea ice edge in ice-free areas, and then decreased sharply at higher distances. Habitat suitability

was particularly low in ice-covered regions north of the sea ice edge. The response curves for sea ice concentration

support these results, with the highest habitat suitability at low values (<20%, Figure 6). Models showed a peak habi-

tat suitability at around 200–300 m depth, with much lower suitability in very shallow or deep areas (Figure 6). There

was no effect of mean salinity at 100 m up to a value of �33.5 (although with high variability between models),

above which habitat suitability increased (peaked at �35) and then sharply decreased again (Figure 6). The highest

fin whale habitat suitability was predicted at locations with low variability of temperature (SD <1.4�) or salinity (0.1–

0.4) on the sea surface. Habitat suitability increased with slope values between 1� and 3� and stabilized at high slope

values (Figure 6).

4 | DISCUSSION

Information on the spatiotemporal distribution and habitat preference of marine species is decisive for conservation

planning and management. However, such data remains underrepresented, particularly from polar regions

(Hammond et al., 2013; Redfern et al., 2006; Williams et al., 2006). Recent studies demonstrated the promising appli-

cation of SDMs for conservation, decision-making, and dynamic management in the marine realm (e.g., Hazen

et al., 2018), with a particular interest in using presence-only SDMs (El-Gabbas et al., 2021a; Smith et al., 2021). This

study employed presence-only static SDMs (MaxEnt) to predict fin whales' habitat suitability and niche preferences

on their feeding grounds in the Nordic and Barents Seas. MaxEnt parameters and spatially independent model evalu-

ation were estimated using spatial-block cross-validation. Recent studies have shown that the application of spatially

independent model evaluation and correction for sampling bias is necessary to maximize the robustness of

presence-only SDMs for conservation planning (Smith et al., 2021). To account for this, we implemented four

methods to correct for spatial sampling bias. Our models showed high performance: high mean and little variability

(low standard deviation) of testing AUC (Table S3) and low predictive uncertainty (Figure S6).

4.1 | Fin whale potential distribution in the Nordic and Barents Seas

Few studies have modeled the distribution of fin whales in the Nordic and Barents Seas. Recently, Storrie et al. (2018)

modeled fin whale distribution around the Svalbard Archipelago, and the pattern of habitat suitability in their study

largely agrees with our results. This area was predicted as highly suitable in all of our models (Figures 4 and 5).

Skern-Mauritzen et al. (2011) revealed that fin whales occupy a narrow area along and north of the Polar Front in

the Barents Sea. Our predictions agree with this to some extent: high habitat suitability is predicted in the proximity

of the Polar Front in western parts of the Barents Sea and the western coast of Svalbard (Figures 1 and 4). This may

point out potential feeding hotspots in this area, as fin whales and their prey have been observed previously within

these areas (Kovacs et al., 2009; Skern-Mauritzen et al., 2011; Storrie et al., 2018).

Our models predict high habitat suitability in the southwestern Barents Sea and along the Knipovich Ridge

towards Jan Mayen (through the Mohns Ridge; Figure 4). The Knipovich Ridge is a biologically highly productive area

featuring various prey species, including those of fin whales (Bonecker et al., 2014; Fock et al., 2004). Former studies

suggested that the Knipovich Ridge is a seasonally important habitat for cetaceans, in which fin whales have been

observed feeding (Nieukirk et al., 2004; Waring et al., 2008). Unsurprisingly, Storrie et al. (2018) reported many fin

whale observations along the Knipovich Ridge, which is also depicted in the sighting data available to us (Figure 1).
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Likewise, high concentrations of fin whales around Jan Mayen (Moore et al., 2019; Nøttestad et al., 2014). Areas off

Jan Mayen are known for their high densities of capelin (Mallotus villosus), krill, amphipods, and other fin whales'

planktonic prey species (Nøttestad et al., 2014; Vilhjálmsson, 2002), which can explain the high suitability of fin

whales in this area (Nøttestad et al., 2014).

Previous studies reported fin whale occurrences in East Greenland waters (Hansen et al., 2019; Heide-Jørgensen

et al., 2007; Víkingsson, Pike, et al., 2013, 2015). Nevertheless, our models predicted relatively low habitat suitability

along the East Greenland coast compared to the Svalbard area, except in the southern part of the East Greenland

coast (including parts of the Irminger Sea and south of the Denmark Strait; 60�–65�N; Figures 4 and 5). This is con-

sistent with the predictions of Víkingsson et al. (2015) and and available sightings used in this study (Figures 1 and

S8). Without dedicated surveys, it is difficult to ensure if the low habitat suitability along the eastern coast of Green-

land is due to a real low habitat preference or low sampling effort in this area. In future SDM studies, additional data

(e.g., from the NAMMCO “North Atlantic Marine Mammal Commission” surveys, unavailable to us) is necessary to

improve habitat suitability predictions in the East Greenland area.

4.2 | Fin whale habitat preferences

4.2.1 | Distance to shore

Distance to shore was among the two most important environmental variables in our models, with a clear habitat

preference of fin whales for locations closer to shore (up to approximately 80 km) than farther away (Figures 2, 6,

S7, and S9). Distance to shore was the most important variable in Storrie et al. (2018)’s modeling study around Sval-

bard, with deep areas beyond the continental slope predicted as highly unsuitable. Although our data may show spa-

tial sampling bias towards more accessible areas, we should not neglect that the high importance of distance to

shore may be related to ecological factors, such as high prey densities along the shelf off Norway and in the Barents

Sea (for details, see Loeng & Drinkwater, 2007).

4.2.2 | Sea ice

Fin whales are mostly absent in densely ice-covered areas in the Arctic, and a negative correlation between fin whale

calls and sea ice concentrations has been noted at both poles (Simon et al., 2010; Širovi�c et al., 2004). In concor-

dance, our results show high habitat suitability at 100–200 km distance from the sea ice edge in ice-free water and

at locations with low (<20%) sea ice concentration (Figure 6). At low sea ice concentration values (up to 20%),

modelrarefaction and modeleffortFW show a positive relationship, indicating some sea ice tolerance. This agrees with

previous observations of fin whales in areas with loose drift ice and the modeled unsuitability in dense ice-covered

areas in the Svalbard Archipelago (Storrie et al., 2018). Tsujii et al. (2016) suggested that fin whales arrive in the

Pacific sector of the Arctic after sea ice melting and elevated water temperature. This supports our results,

suggesting a temporal matching between fin whale migration into and from the Arctic and sea ice melting and forma-

tion. However, Edwards et al. (2015) indicated some fin whales remaining at higher latitudes throughout colder

months, possibly further suggesting some sea ice tolerance to a certain extent.

Sea ice has substantially decreased in the Arctic during recent decades (Overland & Wang, 2013). Future sea ice

changes, and corresponding changes in the location of the sea ice edge, will likely affect fin whale habitat suitability

in the Arctic, potentially leading to more open water areas accessible for the species. Climate change is expected to

cause a shift in the abundance and availability of fin whales' prey (Ahonen et al., 2021), and fin whales may respond

to future climate change by extending their stay on polar feeding grounds, either spatially by occupying areas cur-

rently unavailable or temporally by prolonging their stay (Ahonen et al., 2021; Moore et al., 2019; Woodgate
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et al., 2015). Recently, fin whales have been increasingly sighted at novel places in the Arctic, particularly inside

fjords of the Svalbard Archipelago (Vacquié-Garcia et al., 2017).

4.2.3 | Water temperature

High fin whale habitat suitability was predicted at locations with low variability in water temperature (<1.4�C), then

sharply declined at higher temperature variability, particularly on the surface (Figures 6 and S7). This suggests fin

whale habitat preference to areas with homogenous temperatures during the summer months, which can also be

linked to high habitat suitability at low sea ice concentrations in summer, as shown above.

Víkingsson et al. (2015) found that sea surface temperature is one of the important variables for fin whale

encounters in Icelandic waters, with high probability at a sea surface temperature range of 5�C–11�C, peaking at

6�C-7�C and similarly Skern-Mauritzen et al. (2011) found highest fin whale densities in sea surface temperature of

about 6�C in the Barents Sea. Two recent modeling studies using satellite tracking data revealed that fin whales

migrating from and to our study area prefer areas with low sea surface temperatures (<10�C; Lydersen et al., 2020;

Pérez-Jorge et al., 2020). In this study, variables presented mean water temperature (surface and 100 m depth) were

excluded from model calibration due to a high correlation with other predictors. Particularly, they are positively cor-

related with distance to the sea ice edge and negatively correlated with mean sea ice concentration and the variabil-

ity of sea surface salinity (Figure S9). However, most fin whale sightings were collected at mean sea temperature

values between 4�C and 7�C, peaking at around 6�C (Figure S10).

Our models support that fin whales may prefer a narrow range of sea surface temperature (Lydersen

et al., 2020; Víkingsson et al., 2015) and low seasonal temperature variability. This is especially interesting in the light

of rapidly rising water temperatures in the Arctic Ocean (Alexander et al., 2018). Rising water temperatures (�sea ice

loss) and the concomitant shift in prey species may explain the recent northward range expansion of seasonally resi-

dent cetaceans, including fin whales, in the Nordic Seas and around the Svalbard Archipelago (Kovacs et al., 2010;

Storrie et al., 2018). The northward shift of fin whales might be facilitated due to certain flexibility in prey choice

(Storrie et al., 2018) and the increased prey abundance, such as krill (Buchholz et al., 2012) and boreal fish species,

through a northward expansion of their distribution (Berge et al., 2015; Fossheim et al., 2015; Kortsch et al., 2015).

Such a change has already been reported for common minke whales (Balaenoptera acutorostrata) in Icelandic waters

(Víkingsson, Elvarsson, et al., 2013).

It is important to highlight that our estimation of seasonal variability of water temperature was derived from

monthly climatological data. In contrast to other dynamic predictors which are available at high temporal resolution

(1–8 days), the original data on temperature (Locarnini et al., 2018) and salinity (Zweng et al., 2018) were obtained

from the World Ocean Atlas 2018 at low spatiotemporal resolution (Table 1): a single map for each month at a reso-

lution of 0.25� representing the mean value in the respective month over the period from 2005 to 2017. We calcu-

lated the variability (standard deviation) from monthly mean climatological maps for May to September (i.e., only five

maps), which may indicate that much of the underlying seasonal variability is not captured in our calculations. Our

estimated water temperature variability can be interpreted as the variability between monthly climatological mean

temperatures, ignoring variability between years and within months. This may lead to an under- or overestimation of

the importance and effect of these variables. Future data on water temperature at higher spatiotemporal resolution

is necessary to further evaluate the validity of our results.

4.2.4 | Salinity

Interestingly, models show higher importance of the variation in sea surface salinity on fin whale habitat suitability

than the mean salinity at 100 m depth (Figure 2). High habitat suitability is predicted at low variability of sea surface
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salinity (ca. 0.2–1.5), which was also reflected in available observations (Figures 6, S7, and S10). Fin whale habitat

suitability peaked at high mean salinity at 100 m and low variability of sea surface salinity (Figures 6 and S7). At

mean salinity values <33.5, models suggest no relationship between fin whale habitat suitability and salinity,

although with different values of predicted habitat suitability for different models. The areas near the coast at the

northwestern Greenland Sea and southern Barents Sea show low mean and high variability of salinity (Figure S2),

which may explain the low fin whales' habitat suitability at these areas (Figures 4, 5, and S2). The exact role of salinity

on fin whale habitat preference remains unclear, though salinity is suggested to act as an indicator for upwelling and

a proxy for associated high productivity (Falk-Petersen et al., 2015; Moore et al., 1995; Redfern et al., 2017; Tsujii

et al., 2016). Further studies are needed to clarify the role of salinity on the distribution of fin whales in the Nordic

and Barents Seas, particularly in light of the low spatiotemporal resolution of the original salinity data.

4.2.5 | Ocean topography

Depth and slope have been identified as important environmental variables of fin whale distribution in the North

Atlantic, with high habitat suitability in steep and deep regions (Schleimer et al., 2019; Storrie et al., 2018;

Woodley & Gaskin, 1996). Our models show low-to-moderate importance of both predictors (Figure 2). Models pre-

dict high habitat suitability in areas of >3� slope (Figure 6), revealing a preference of fin whales for relatively steeper

areas, i.e., areas with some topographic variability. Indeed, Woodley and Gaskin (1996) observed that fin whales tend

to aggregate where bottom topography is heterogeneous. Abrupt or steep depth changes are linked to local upwell-

ing and fronts in some regions, which may enhance prey availability (Ingram et al., 2007; Woodley & Gaskin, 1996

and references therein). As marine mammal distribution on feeding grounds is directly linked to feeding resources,

high habitat suitability in these areas is a reasonable consequence (Breen et al., 2016). It was found that fin whales

utilize currents modulated by sea bottom topography (Panigada et al., 2005; Woodley & Gaskin, 1996), which may

provide another explanation for fin whale distribution in steeper regions of the study area.

For depth, we found a preference of fin whales towards comparably shallow areas: our models predicted peak

habitat suitability at a depth of ca. 200 m, with a decreasing, yet comparably high, habitat suitability at depths up to

1,000 m (see Figures S7 and S10). Our results reflect those of Storrie et al. (2018), who found that fin whales in the

study area ranged a broad array of depths, with a median depth of 250 m, and a maximum of 2,000 m. Fittingly,

Lydersen et al. (2020) and Pérez-Jorge et al. (2020) reported that fin whales favored habitats <3,000 m deep around

Svalbard and in the mid-North Atlantic Ocean, respectively. However, varying time spans, seasons (ranging from

spring to autumn), and boundaries of the study area in different studies also may have an effect on the estimated

preferred depth ranges.

4.3 | Spatial sampling bias correction

Sampling bias has been shown to affect model performance and interpretation and should be carefully considered

when signs of spatial bias exist (El-Gabbas & Dormann, 2018a; Fithian et al., 2015; Fourcade et al., 2014; Phillips

et al., 2009; Warton et al., 2013). Failure to eliminate sampling bias, particularly in environmental space, can lead to

the suboptimal use of SDMs for conservation prioritization and inefficient use of limited conservation resources

(El-Gabbas et al., 2020; Grand et al., 2007). In this study, we considered four methods for spatial sampling bias cor-

rection. The four methods show consistent variables' importance and species responses to environmental changes

(Table 2; Figures 2, 3, S5, and S7), demonstrating stable results.

Sampling bias corrections led to broader areas of suitable habitats compared to models without bias correction

(modelbiased; Figures 4 and 5). This is expected after bias correction, as bias correction leads to higher habitat suitabil-

ity in undersampled areas (El-Gabbas & Dormann, 2018a; Warton et al., 2013). However, methods implemented

DUENGEN ET AL. 15



model-based bias correction (Warton et al., 2013; modelaccessibility and modeleffortTracks) show much broader high hab-

itat suitability areas than modelrarefaction and modeleffortFW (Figures 4 and 5). Our use of ship tracks as bias predictor

(modeleffortTracks) assumes that the pattern of ship tracks (Figure S3) reflects the spatial sampling bias in fin whale

sightings, which may not necessarily be correct; i.e., they may reflect activities in the study area not directly related

to fin whale sampling.

Distance to shore was the most important variable in all models, irrespective of the bias correction method

implemented (Figure 2). This supports our assumption of using accessibility as a driver of spatial bias in the highly

remote Nordic and Barents Seas (modelaccessibility). Available sightings are spatially nonindependent and opportunistic

(Figures 1 and S8), observed mainly from touristic and small research vessels. These vessels are often limited to

nearshore rather than offshore routes in the Arctic for safety, logistic, and financial reasons (Storrie et al., 2018;

Vacquié-Garcia et al., 2017). However, distance to shore may also be correlated with (a proxy for) other (unknown)

ecologically significant predictors not used in the model. In such a case, it is challenging to correct for sampling bias

using opportunistic presence-only data alone (Fithian et al., 2015). In other words, we cannot be sure if the

importance of distance to shore in our models was due to sampling bias towards the shore or an ecological signal

confounded with spatial bias.

Differences in predicted habitat suitability between different bias correction methods (Figure 5) suggest that

using a single bias correction method may not be sufficient to ensure sampling bias correction. In our models, the

use of model-based bias correction (modelaccessibility and modeleffortTracks; Warton et al., 2013) led to much broader

patterns of habitat suitability as compared to the other two bias correction methods. However, it is challenging to

determine from the currently available data set which method is more successful in bias correction and whether dis-

crepancies in predicted patterns of habitat suitability are mainly due to methodological reasons. For example, in

model-based bias correction, bias predictors (here, distance to shore and the intensity of ship traffic) are assumed to

be independent from environmental drivers affecting species distribution (Fithian et al., 2015; Warton et al., 2013),

which can be challenging as discussed above. The pattern of predicted habitat suitability can also be sensitive to the

value at which the bias predictors are fixed during prediction (El-Gabbas et al., 2021b). In other words, we cannot

ensure whether the prediction maps employing the model-based bias correction method overpredict fin whale suit-

able habitats or describe a better representation of fin whale habitat suitability in the Nordic and Barents Seas. In

presence-only SDMs using opportunistic sightings, the reason for sampling bias is typically unknown, and the success

of bias correction highly depends on how reasonable is the analyst's expectation of the source of sampling bias. Eval-

uating bias correction success requires the availability of independent unbiased presence-absence testing data,

which is not available in most situations (El-Gabbas & Dormann, 2018a; Phillips et al., 2009), particularly in polar

regions. To avoid the potential sensitivity of our results on the choice of bias correction method, we used an ensem-

ble (mean) of bias-free predictions from the four methods to represent a mean bias-free predicted habitat suitability

of fin whales in the Nordic and Barents Seas.

4.4 | Limitations

Despite the high performance of the models and consistent results using four methods for correction for sampling

bias, a few methodological and data limitations must be acknowledged. Our models are static, in which fin whale

presence-only sightings were related to variables summarizing the environmental conditions during the feeding sea-

son over �15 years (Table 1). The implemented static models assume that cells occupied with any fin whale sightings

represent a suitable habitat during the entire feeding season and ignore possible changes or shifts in fin whale distri-

bution through time (Bateman et al., 2012; El-Gabbas et al., 2021a, 2021b). Further, our static models can only

describe persistent, broad-scale (macroscale) associations between fin whales and long-term characteristics of the

ocean's climate. Nevertheless, we also included variables representing environmental variability (standard deviation)

during the feeding season to account for seasonal variability, capture extreme conditions unlikely to be captured in
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mean variables, and reduce the impact of temporal mismatching between sightings and environmental conditions

(El-Gabbas et al., 2021b; Zimmermann et al., 2009).

However, in order to capture ephemeral or contemporaneous processes and implement effective dynamic ocean

management, dynamic SDMs are necessary (Becker et al., 2016; El-Gabbas et al., 2021a; Mannocci et al., 2017).

Maintaining spatiotemporal matching between sightings and contemporaneous environmental conditions, necessary

in dynamic models, requires the availability of environmental predictors at high spatiotemporal resolutions (e.g., daily

or weekly; El-Gabbas et al., 2021b; Mannocci et al., 2017) and the availability of temporally unbiased species

sightings (El-Gabbas et al., 2021b; Milanesi et al., 2020). However, some important environmental predictors are not

available at high spatiotemporal resolution (e.g., salinity) or not available at all (e.g., prey abundance) (El-Gabbas

et al., 2021b; Fernandez et al., 2017), making it challenging to spatiotemporally match sightings with contemporane-

ous environmental conditions.

A common limitation to marine SDMs is the lack of information on the distribution of prey abundance at appro-

priate spatiotemporal resolutions (Robinson et al., 2011). A recent study by Schleimer et al. (2019) found a positive

correlation between krill biomass and fin whale abundance in the North Atlantic. However, predator–prey associa-

tions are scale-dependent (Fall & Skern-Mauritzen, 2014). Therefore, the availability of prey abundance data at high

spatiotemporal resolution seems necessary in future SDMs on cetaceans in the Nordic and Barents Seas.

A related issue is that the environmental predictors we used were available at inconsistent spatiotemporal reso-

lutions, which may affect the model outputs. The spatial resolution of the predictors ranges from coarse (0.25� for

sea surface height, current speed, temperature, and salinity) to fine (e.g., depth: 30 arcseconds) spatial resolutions

(Table 1). As it is necessary to run the models using environmental variables at consistent spatial resolutions, we

compromised between available spatial resolutions and projected all variables into a 10 � 10 km grid. This interpola-

tion process can lead to uncertainties, e.g., losing important information during averaging environmental conditions

from fine to coarse resolutions (e.g., depth). Furthermore, the original predictors were available at different temporal

resolutions, ranging from daily (e.g., sea ice concentration) to climatological monthly mean (salinity and temperature;

Table 1), which makes the interpretation of variables representing environmental variability inconsistent between

predictors. The influence of using environmental variables at different spatiotemporal resolutions needs further

investigation in future studies.

4.5 | Future implications

In this study, we used MaxEnt, one of the most often applied presence-only SDM methods in terrestrial and marine

environments (Fourcade et al., 2014; Melo-Merino et al., 2020). This study supports the use of opportunistic data

and presence-only models to model highly mobile cetacean species in remote areas like the Arctic. Although our

models show good performance and consistent results, we emphasize that sampling bias correction cannot be

guaranteed (El-Gabbas & Dormann, 2018b). Therefore, obtaining more sightings from undersampled areas (such as

the Irminger and Greenland Seas) and improving data accessibility and sharing (e.g., including NAMMCO data set in

future studies) should be of priority to improve the robustness of future SDM studies in the Arctic.

Our results reinforce the valuable information provided from citizen science biodiversity repositories (e.g., GBIF

and OBIS) to study cetacean distribution (e.g., Beck, Foote, et al., 2014; Bruce et al., 2014). Thus, it is crucial to main-

tain and improve the data quality of these repositories for future modeling applications. Nevertheless, it seems out-

standing to complement open-access repository data with dedicated surveys, particularly from less-covered

locations, to reduce the sampling bias in the data and improve model fit (Beck, Boller, et al., 2014; El-Gabbas &

Dormann, 2018a). Predicted habitat suitability maps in our study could be used for planning future surveys. Improv-

ing the spatiotemporal resolution of environmental data is of mutual importance in future SDM applications.

Obtaining high-resolution data will help avoid potential uncertainty resulting from using variables at different spatio-

temporal resolutions and further enable the use of these environmental data to calibrate dynamic models.
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4.6 | Conclusions

During recent decades, species distribution models have become a powerful tool for modeling habitat suitability

of marine species, including mammals (Melo-Merino et al., 2020; Redfern et al., 2006; Robinson et al., 2011).

They can act as an adequate planning tool for conservation by revealing environmental factors affecting ceta-

ceans' distribution and improving our understanding of the influence of climate change. In practice, this can be

achieved by prioritizing areas for conservation, such as the identification of marine protected areas (MPAs)

(Bailey & Thompson, 2009), guiding future seismic surveys (Bombosch et al., 2014), and diagnosing potential

impacts before occurring (Marshall et al., 2014). This is especially valuable for the hard-to-access yet vulnerable

Arctic Ocean. Observed climate changes, such as increasing sea temperatures or declining sea ice extent

(e.g., Overland & Wang, 2013; Pistone et al., 2014; Stroeve et al., 2012), may affect cetacean distribution

in the Arctic Ocean (Moore et al., 2019). SDMs may aid in mitigating the effects of the concomitant increased

anthropogenic impact by protecting frequented areas. This could notably benefit fin whale populations that

are exposed to various impacts, such as ship strikes (Cates et al., 2017) and noise pollution (Castellote

et al., 2012).

We used presence-only SDMs to model fin whales' distribution and habitat preference in the Nordic Seas, where

whale sightings are particularly scarce and spatially biased due to safety, logistic, and financial reasons. Our models

shed light on the particular importance of distance to shore and distance to the sea ice edge on the distribution of

fin whales on their feeding grounds in the Nordic and Barents Seas. Other important variables were the variability of

sea temperature and salinity and depth. The main suitable habitats that were identified were along the western coast

of Svalbard, between Svalbard and the eastern Norwegian Sea, coastal areas off Iceland and southern East Green-

land, and along the Knipovich Ridge.

Our study supports the promising use of presence-only SDMs as a cost-effective tool to aid conservation

decision-making processes. Further, SDM outputs can support the sustainable use of fisheries, planning for future

biodiversity and seismic surveys, and avoid bycatch of species at conservation risk (Bombosch et al., 2014; Hazen

et al., 2018). We emphasized that for effective presence-only models, robust model validation using spatially inde-

pendent data sets and correction for sampling bias is necessary (El-Gabbas & Dormann, 2018a; Smith et al., 2021).

We used spatial block cross-validation for spatially independent model evaluation and four methods to correct for

sampling bias. Results of different bias correction methods were generally very similar, supporting our approach to

accounting for sampling bias.
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