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Abstract
High-quality climate information at appropriate spatial and temporal resolution is essential to develop and provide tailored 
climate services for Africa. A common method to produce regional climate change data is to dynamically downscale global 
climate projections by means of regional climate models (RCMs). Deficiencies in the representation of the sea surface 
temperatures (SSTs) in earth system models (ESMs) and missing atmosphere–ocean interactions in RCMs contribute to 
the precipitation bias. This study analyzes the influence of the regional atmosphere–ocean coupling on simulated precipita-
tion and its characteristics over Africa, and identifies those regions providing an added value using the regionally coupled 
atmosphere–ocean model ROM. For the analysis, the MPI-ESM-LR historical simulation and emission scenario RCP8.5 
were dynamically downscaled with ROM at a spatial resolution of 0.22° × 0.22° for the whole African continent, including 
the tropical Atlantic and the Southwest Indian Ocean. The results show that reduced SST warm biases in both oceans lead to 
more realistic simulated precipitation over most coastal regions of Sub-Saharan Africa and over southern Africa to varying 
degrees depending on the season. In particular, the annual precipitation cycles over the coastal regions of the Atlantic Ocean 
are closer to observations. Moreover, total precipitation and extreme precipitation indices in the coupled historical simulation 
are significantly lower and more realistic compared to observations over the majority of the analyzed sub-regions. Finally, 
atmosphere–ocean coupling can amplify or attenuate climate change signals from precipitation indices or even change their 
sign in a regional climate projection.

Keywords Regional climate modelling · Atmosphere–ocean coupling · Sea surface temperature bias · Regional climate 
change · Precipitation characteristics · Africa

1 Introduction

Realistically simulated precipitation and derived precipita-
tion indices are key elements for tailored climate change 
information. Based on this knowledge, climate adaptation 
strategies and measures can be developed to prevent or 
decrease potential negative impacts of climate change. This 

kind of information and actions are particularly needed for 
Africa, as it is one of the continents most affected by climate 
change (Niang et al. 2014).

Several investigations were conducted to analyze possible 
future precipitation changes over Africa using ensembles 
of regional climate projections (Nikulin et al. 2018; Weber 
et al. 2018b; Dosio et al. 2019). To generate such projec-
tions, regional climate models (RCMs) have been applied 
to dynamically downscale global climate projections from 
earth system models (ESMs) using their simulated sea sur-
face temperatures (SSTs) and their atmospheric fields as 
boundary conditions. However, it has already been shown 
that most ESMs have deficiencies in simulating the SST of 
the Benguela upwelling area offshore the African coast in 
the Southeast Atlantic Ocean, which lead to a warm SST 
bias (e.g. Toniazzo and Woolnough 2014; Xu et al. 2014; 
Găinuşă-Bogdan et al. 2018). The processes responsible for 
the warm SST bias in the Southeast Atlantic in ESMs vary 

 * Torsten Weber 
 torsten.weber@hereon.de

1 Climate Service Center Germany (GERICS), 
Helmholtz-Zentrum Hereon, Hamburg, Germany

2 Departamento de Físca Y Matemáticas, Universidad de 
Alcalá, Alcalá de Henares, Madrid, Spain

3 Alfred Wegener Institute for Polar and Marine Research, 
Bremerhaven, Germany

4 Shirshov Institute of Oceanology, Russian Academy 
of Science, Moscow, Russia

http://orcid.org/0000-0002-8133-8622
http://orcid.org/0000-0002-1190-3622
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-022-06329-7&domain=pdf


 T. Weber et al.

1 3

from model to model. For instance, Exarchou et al. (2018) 
found that there is a too strong absorption in the ocean mixed 
layer, which can be associated with a too excessive insu-
lation caused by unrealistically low clouds, and a missing 
spatial and temporal variability of the biological productiv-
ity in the ocean. They also showed that the warm SST bias 
is related to insufficient turbulent vertical mixing of cold 
water in the mixed layer. Furthermore, the equatorial SST 
bias remotely contributes to the SST bias in the southeast-
ern tropical Atlantic as well as a southward-shifted Angola-
Benguela Front (Xu et al. 2014). The usage of unrealistic 
SSTs from ESMs in RCMs introduces biases in simulated 
precipitation over the African continent due to the sensitivity 
of RCMs to SST changes (e.g. Haensler et al. 2011; Weber 
et al. 2018a).

Two methods can be applied to reduce the SST bias in 
RCMs: (1) The SST can be adjusted by an empirical bias 
correction before its use as boundary condition in RCMs 
(e.g. Haensler et al. 2011; Hoffmann et al. 2016; Hernández-
Díaz et al. 2017). This method works for reanalysis and his-
torical simulations, but becomes difficult for climate change 
projections and leads to inconsistencies of the SST and the 
lower atmospheric fields over the ocean. (2) By regionally 
coupling the RCM with an ocean model that directly simu-
lates the SST and allows for atmosphere–ocean interactions 
(e.g. Ratnam et al. 2015; Sein et al. 2015; Paxian et al. 2016; 
Cabos et al. 2017). However, this method requires high com-
putational capacities because of the application of an atmos-
phere climate model and an ocean model that exchange cer-
tain variables in each time step via a coupler software.

Regional atmosphere–ocean coupling in RCMs has been 
applied and analyzed in various studies showing the ben-
efits in different applications. The South Atlantic Anticy-
clone was identified as an important factor affecting the 
climate in southwestern Africa using the coupled model 
ROM (Cabos et al. 2017). Lengaigne et al. (2019) was able 
to reproduce the observed spatial–temporal distribution of 
tropical cyclones in the Indian Ocean with a regional cou-
pled model. Furthermore, mesoscale wind systems over the 
coastal regions of southwestern Africa are well captured in 
coupled simulations, which also causes a reduction in the 
SST warm bias of the Benguela Current (Lima et al. 2019). 
Similarly, near-surface wind speed over the Canary Islands 
of the coast of Northwest Africa are better reproduced in 
coupled than in uncoupled simulations (Soares et al. 2019).

The application of regionally coupled atmosphere–ocean 
models also offers potential improvements in terms of simu-
lated precipitation due to the given correlation between SST 
and precipitation over Africa (Washington and Preston 2006; 
van der Ent and Savenije 2013; Lutz et al. 2015). Spatial 
distributions of precipitation over southern Africa can be 
improved by coupling a simple mixed layer ocean model 
to the Advanced Research Weather Research and Forecast 

Model (WRF) on the seasonal time scale (Ratnam et al. 
2013). Paxian et al. (2016) reported that coupled regional 
models reduce the precipitation bias over the Guinea coast 
and central Sahel in decadal predictions. In addition, by 
comparing coupled and uncoupled models, Ratnam et al. 
(2015) showed that air-sea interactions are relevant pro-
cesses in simulated precipitation during the peak season 
over southern Africa.

The above-mentioned studies with coupled RCMs already 
demonstrate the added value of atmosphere–ocean cou-
pling in RCMs over the African continent, its coasts and 
offshore islands. However, there is still a lack of knowledge 
on the benefits of atmosphere–ocean coupling on precipita-
tion over Africa in long-term regional climate projections. 
The objective of this work is to remedy this deficiency by 
analyzing the influence of atmosphere–ocean coupling on 
precipitation and its characteristics over Africa using the 
coupled model ROM, and answering the following ques-
tions: Which simulated precipitation characteristics, such 
as the annual cycle and selected precipitation indices, are 
improved by the coupling? Which coastal and continental 
regions of Africa will benefit? Finally, how does coupling 
affect climate change signals from precipitation indices in a 
regional climate projection? Answering these questions may 
help determine whether it is worth using a regional coupled 
atmosphere–ocean model to improve information on pre-
cipitation and its characteristics for certain African regions.

This study is structured as follows: Initially, the model 
experiments and the applied data sets are described in 
Sect. 2. The results of the analysis are presented and dis-
cussed in Sect. 3, and a conclusion will close this investiga-
tion in Sect. 4.

2  Models and data

2.1  Experiment setup

The simulations analyzed in this work were carried out 
using the regionally-coupled model ROM (Sein et al. 2015) 
and the atmospheric regional climate model REMO (Jacob 
2001). As REMO is the atmospheric component of ROM, 
we can infer the benefits of atmosphere–ocean coupling by 
comparing their performance. The oceanic component of 
ROM is the Max Planck Institute Ocean Model (MPIOM; 
Marsland et al. 2003; Jungclaus et al. 2013). Both REMO 
(Déqué et al. 2012; Jacob et al. 2012; Kotlarski et al. 2014; 
Remedio et al. 2019; Teichmann et al. 2021) and ROM (Sein 
et al. 2014; Cabos et al. 2020; Soto-Navarro et al. 2020) 
have been used in different configurations to investigate the 
mechanism that govern the regional climate and the climate 
change signal around the world.
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In MPIOM, the primitive equations are calculated on 
fixed z-levels in the vertical and on an orthogonal curvilin-
ear Arakawa-C grid that can be stretched placing at least one 
of the model poles near/inside the area of coupling. These 
equations are solved using the Boussinesq and incompress-
ibility approximations and a free-surface formulation. The 
possibility of stretching the grid allows us to achieve a spa-
tial high resolution in the region of interest while maintain-
ing a global domain at an acceptable computational cost, 
avoiding the problems associated with either open or closed 
boundaries typical of limited-area regional ocean models. 
In these simulations, we use the MPIOM grid TR04, which 
has a horizontal resolution that reaches up to 10 km (eddy 
permitting) near the coasts of Western Africa and decreases 
gradually, down to 30 km near the southern tip of the Afri-
can continent and 100 km in the southern seas. In the verti-
cal, MPIOM has 40 unevenly spaced z-levels, the thickness 
of which increases gradually from 16 m near the surface to 
650 m for the deeper layer.

REMO has a dynamical core based on the Europa-Model 
of the German Meteorological Service (DWD; Majewski 
1991) with physical parameterizations taken from versions 
4 and 5 of the global climate model ECHAM (Roeckner 
et al. 1996, 2003). It uses a regular rotated grid with the 
equator positioned in the center of the model domain. Most 
of the prognostic variables of REMO are relaxed towards 
forcing data in the outer eight rows of the model area follow-
ing Davies (1976). A radiative upper boundary condition is 
applied following Bougeault (1983) and Klemp and Durran 
(1983). In this work, we use a configuration of REMO that 
has a horizontal grid of 0.22° (25 km), with 31 vertical levels 
and a 120 s time step. The atmospheric domain chosen in 
this study covers most of the tropical Atlantic (see Fig. 1), as 

well as parts of the Mediterranean and Indian Ocean, and is 
therefore larger than the CORDEX-Africa domain.

The global Hydrological Discharge model (HD, Hage-
mann and Dümenil Gates 2001) calculates river runoff 
globally and is coupled to both the atmosphere and ocean. 
REMO and MPIOM are coupled via the OASIS coupler 
(Valcke et al. 2003), which provides exchange between the 
ocean and atmosphere models with a 3-h coupling time step. 
More details about the coupling procedure can be found in 
Sein et al. (2015). Lateral atmospheric boundary conditions 
and upper oceanic forcing outside the coupled domain were 
prescribed using a historical simulation and a future pro-
jection with the low resolution configuration of the MPI-
ESM earth system model (MPI-ESM-LR) under the CMIP5 
Representative Concentration Pathway 8.5 (RCP8.5) sce-
nario (Stevens et al. 2013). The RCP8.5 emission scenario 
assumes the worst case evolution of the emissions in the 
CMIP5 framework. This scenario leads in the long term 
to high energy demand and greenhouse gas emissions in 
absence of climate change policies (Riahi et al. 2011). In 
addition, REMO was driven with the ERA-INTERIM rea-
nalysis data for evaluation purposes (Dee et al. 2011). This 
strategy allows us to analyse the influence of the coupling 
on the African precipitation in regional climate projections. 
A complete list of all experiments analyzed can be found 
in Table 1.

2.2  Observational and reanalysis data

Five different data sets are selected to assess the potential 
improvements in simulated SST, precipitation and derived 
precipitation indices. The diversity of the data product is 
intended to account for differences in the observational 

Fig. 1  Model domain and orog-
raphy [m] for REMO and ROM 
at a spatial resolution of 0.22° 
(red rectangle), and for MPIOM 
at a TR04 grid (black grid)
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data sets for Africa (e.g. Sylla et al. 2013; Akinsanola et al. 
2017). The NOAA OISST V2 data, which is available from 
September 1981 to present, with a spatial resolution of 0.25° 
(Reynolds et al. 2007; Huang et al. 2021) and the SST from 
the ERA5 reanalysis data set from the Copernicus Climate 
Change Service (C3S) Climate Data Store (CDS) for the 
period 1979 to present with a spatial resolution of 0.25° 
(Hersbach et al  2018, 2020) are used to assess the simulated 
SSTs by ESM and ROM. The University of East Anglia Cli-
matic Research Unit (CRU) data set version TS 4.05 (Harris 
et al. 2020), covering the period 1901–2020 with a spatial 
resolution of 0.5°, and the Global Precipitation Climatology 
Centre (GPCC) V2020 starting from the period 1891–2019 
with a spatial resolution of 0.25° (Schneider et al. 2020), 
are applied to evaluate the simulated precipitation. Moreo-
ver, the precipitation data from the Climate Hazards group 
Infrared Precipitation with Stations (CHIRPS) V2.0 starting 
from 1981 to present with a spatial resolution of 0.25° (Funk 
et al. 2014, 2015) and from the ERA5 reanalysis data set 
(Hersbach et al 2018, 2020) are also used.

3  Results and discussion

For a comprehensive overview of the influence of the 
regional atmosphere–ocean coupling on precipitation 
and its characteristics over Africa, we analyze the sea-
sonal mean sea surface temperature (SST) bias, seasonal 
mean vertical integrated moisture transport and seasonal 
mean daily precipitation using the MPI-ESM-LR driven 
simulations. Furthermore, we assess the improvements in 
simulating precipitation by measuring the added value of 
seasonal mean daily precipitation related to the data sets 

CRU, GPCC, CHIRPS and ERA5, and the annual precipi-
tation cycle compared to the data sets CRU, GPCC and 
CHIRPS for different African sub-regions. Moreover, nor-
malized daily precipitation distributions of REMO forced 
by ERA-INT and MPI-ESM-LR, and ROM forced by MPI-
ESM-LR are also analyzed and compared to CHIRPS and 
ERA5. In addition, precipitation indices (see Table 2) 
derived from model simulations are evaluated using 
CHIRPS from 1981 to 2005, and modifications of these 
indices are examined under a high emissions scenario by 
the end of the century (2070–2099).

Daily precipitation is analysed using normalized pre-
cipitation distributions, as applied by Soares and Cardoso 
(2018), which only consider precipitation on wet days 
(days with >  = 1 mm). They argued that using normalised 
precipitation is a more consistent way to show precipita-
tion differences, as each bin containing normalised pre-
cipitation amounts represents a fraction of the total pre-
cipitation. To calculate the distributions, bins with a width 
of 1 mm/day are defined and the frequency of each bin is 
multiplied by the mean bin width to obtain the amount of 
precipitation. Subsequently, the precipitation amount of 
each bin is normalized by dividing each bin by the total 
precipitation sum calculated over all bins.

In order to measure the added value of the regional 
atmosphere–ocean coupling on simulated precipitation 
using CRU, GPCC, CHIRPS and ERA5, we apply the 
adapted formula of Dosio et al. (2015) as follows:

(1)AV =
(REMO − REF)

2 − (ROM − REF)
2

MAX
[

(REMO − REF)
2
, (ROM − REF)

2
]
,

Table 1  Overview of the 
performed model simulations

Experiment Model Forcing data Period Ocean–atmosphere

REMO/ERA-INT REMO ERA-Interim reanalysis 1980–2014 Uncoupled
REMO/MPI-ESM-LR REMO MPI-ESM-LR, historical 1950–2005 Uncoupled
ROM/MPI-ESM-LR ROM MPI-ESM-LR, historical 1950–2005 Coupled
REMO/MPI-ESM-LR REMO MPI-ESM-LR, RCP8.5 2050–2099 Uncoupled
ROM/MPI-ESM-LR ROM MPI-ESM-LR, RCP8.5 2050–2099 Coupled

Table 2  Overview of analyzed precipitation indices

Index ID Definition Unit

Maximum number of consecutive dry days CDD Maximum number of consecutive days with < 1 mm precipitation days
Maximum number of consecutive wet days CWD Maximum number of consecutive days with ≥ 1 mm precipitation days
Number of annual dry days DD Annual sum of days with < 1 mm precipitation days
Annual total wet day precipitation PRCPTOT Annual total precipitation on days ≥ 1 mm precipitation mm
Annual total precipitation on wet days > 95th percentile R95p Annual total precipitation when > 95th percentile on days ≥ 1 mm mm
Annual total precipitation on wet days > 99th percentile R99p Annual total precipitation when > 99th percentile on days ≥ 1 mm mm
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where AV is the added value, REMO and ROM are the simu-
lated precipitation of the models, and REF is the respective 
precipitation reference data set at each grid box.

3.1  Seasonal warm and cold sea surface 
temperature bias

A comparison of the sea surface temperatures (SSTs) in 
the MPI-ESM and ROM historical simulations with the 

c) d)b)

e) f) g) h)

i) j) k) l)

m) n) o) p)

SO
N

MPI-ESM-LR
minus
ERA5

ROM
minus
ERA5a)

MPI-ESM-LR
minus
OISST

ROM
minus
OISST

JJ
A

M
AM

D
JF

Fig. 2  Seasonal mean sea surface temperature (SST) bias [K] simu-
lated by MPI-ESM-LR (first two columns), which is used as forc-
ing for REMO, and by ROM (third and fourth column) compared to 

ERA5 from 1981 to 2005 and OISST V2 from 1982 to 2005 for a–d 
December to February (DJF), e–h March to May (MAM), i–l July to 
August (JJA) and m–p September to November (SON)
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SSTs from ERA5 and OISST shows that, regardless of 
the reference datasets used, the SST patterns of warm and 
cold biases are almost similar in terms of strength and 
location (Fig. 2a–p). The highest warm bias occurs along 
the upwelling areas of the Benguela current offshore the 
Namibian and Angolan coasts with more than + 8 K in 
DJF, MAM and JJA (Fig. 2a, b, e, f, i, j) and a bias with 
up to + 6 K in SON (Fig. 2m, n). In all seasons, there is a 
west–east gradient in the SST bias recognizable. A warm 
SST bias is also observed, but to a lesser extent, offshore 
along the Agulhas current up the Mozambique Channel 
in the Indian Ocean with up to + 3 K in DJF and MAM 
(Fig. 2a, b, e, f). A cold SST bias is found in the Indian 
Ocean south of 30°S with more than + 3 K (Fig. 2a, b, e, 
f, i, j, m, n). The warm SST bias in the Southeast Atlantic 
in the MPI-ESM model has already been reported by other 
studies (Haensler et al. 2011; Paxian et al. 2016; Eichhorn 
and Bader 2017; Weber et al. 2018a) and which is a com-
mon problem in coupled CMIP5 models (e.g. Toniazzo 
and Woolnough 2014; Xu et al. 2014; Găinuşă-Bogdan 
et al. 2018).

By applying the regional coupled atmosphere–ocean 
model ROM, the warm SST biases in the Southeast Atlan-
tic Ocean and in the Southwest Indian Ocean are reduced 
both in its absolute values and in its spatial extent in all 
seasons (Fig. 2c, d, g, h, k, l, o, p). The highest warm SST 
bias is observed with up to + 7 K in DJF (Fig. 2c, d) and a 
reduced bias with up to + 5 K in JJA and SON (Fig. 2k, l, o, 
p) offshore the Namibian and Angolan coasts in the South-
east Atlantic. The Agulhas current in the Southwest Indian 
Ocean exhibits the highest warm SST bias with up to + 2 K 
(Fig. 2c, d, g, h, k, l, o, p). In all seasons, the cold SST bias 
in the South Atlantic and Indian Ocean becomes somewhat 
larger with more than -3 K. Cold biases can also be seen 
along the West African coast, Northern Madagascar and the 
Mediterranean Sea in single seasons.

The reduction in the warm bias in the Southeast Atlan-
tic Ocean is most likely a result of the improved represen-
tation of the Benguela upwelling region and the inclusion 
of atmosphere–ocean interactions in the coupled model 
ROM. De la Vara et al. (2020) showed that refinements 
of both atmospheric and oceanic model grids achieves the 
best results in simulating the SST of the Benguela and 
Agulhas currents. They also explained that the remaining 
warm bias is more likely caused by an incorrect vertical 
temperature profile in the ocean than an insufficiently 
modelled upwelling in these regions. In addition, the 
cold SST bias in the Canary upwelling system in ROM 
was also reduced compared to the MPI-ESM simulation. 
The improvement in simulated SST in both the Benguela 
and Canary upwelling systems can be considered as a 
direct effect of the higher oceanic resolution in the ROM 
(Fig. 1).

3.2  Moisture transport and seasonal precipitation

Reduced warm SST biases simulated by ROM in the South-
east Atlantic and Southwest Indian Oceans affect the large-
scale circulation, and the vertically integrated moisture 
transport (VIMT) across West Africa in JJA and in south-
ern Africa in DJF (Fig. 3a–f). In the historical simulation 
of the coupled model ROM, the VIMT moving from the 
Atlantic Ocean onshore the West African coast is attenuated 
and more directed towards Northeast compared to uncoupled 
model REMO (Fig. 3b, d, f). The VIMT from east to west 
over the Sahel is also lower, indicating a weakening of the 
African Easterly Jet (AEJ).

This leads to changes in precipitation in terms of abso-
lute and relative values over West Africa (Figs. 4a–d, 5a–d). 
In the ROM simulation, precipitation decreases between 
− 15 to − 5 mm/day over the Gulf of Guinea and less than 
− 15 mm/day offshore the coasts of Cameroon and Equa-
torial Guinea in JJA (Fig. 4c). Furthermore, precipitation 
decreases in JJA and SON between − 15 to − 0.5 mm/day 
over the countries along the Gulf of Guinea from Guinea 
to Gabon and further to Angola with a strong gradient of 
precipitation reduction towards the coast (Fig. 4c, d). The 
relative change in precipitation is up to − 100% less precipi-
tation over coastal regions of North Africa, in all seasons 
(Fig. 5a–d), and over coastal regions of West Africa from 
Guinea to Cameroon in JJA and SON (Fig. 5c, d). In con-
trast, an increase in precipitation is simulated between + 0.5 
and + 5 mm/day along 15°N over the African continent with 
the highest amount over West Africa (Fig. 4c).

The described meridional precipitation pattern over West 
Africa in JJA, which shows a decrease in the South and an 
increase in the North, suggests that the Inter Tropical Con-
vergence Zone (ITCZ) moves further northward in the simu-
lation with the regional coupled atmosphere–ocean model 
ROM than in uncoupled model REMO. The northward shift 
of the ITCZ could be caused by a colder SST (Fig. 2k, l), 
which coincides with higher sea-level pressure and less 
evaporation of moisture in the Gulf of Guinea (not shown), 
and by the change in VIMT over West Africa.

Over the Southeast Atlantic in DJF, the VIMT has weak-
ened onshore along the Angolan coast due to an intensified 
high-pressure system over the South Atlantic and to a colder 
SST in ROM (Fig. 3a, c, e). Weber et al. (2018a) found simi-
lar results in sensitivity experiments with REMO using bias-
corrected SSTs, and showed that colder SSTs reduce ascend-
ing air offshore the Angolan coast. Cabos et al. (2017) have 
already demonstrated that the strength of the South Atlantic 
Anticyclone and SST changes due to atmosphere–ocean 
interactions are correlated in this region. Over the West 
Indian Ocean in DJF, the VIMT, which moves along offshore 
the African coast from the Horn of Africa to Tanzania and 
points to Northern Madagascar, is weaker in ROM compared 
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Fig. 3  Seasonal mean vertical integrated moisture transport [kg m/
m2  s] for December to February (DJF) (first column) and July to 
August (JJA) (second column) from 1971 to 2000. a, b REMO forced 

with MPI-ESM-LR and c, d ROM forced with MPI-ESM-LR and 
e, f vector differences ROM minus REMO. The red circles are the 
regions of interest that show larger vector differences
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to REMO (Fig. 3a, c, e). Weber et al. (2018a) obtained an 
opposite result, showing an increase in VIMT in this region 
by correcting only the SST in REMO. The weaker VIMT 
over the West Indian Ocean in ROM appears to be a result of 
atmosphere–ocean interactions, which are possible in ROM 
and not in REMO.

The reduced VIMT onshore along the Angolan coast and 
along the east African coast leads to a lower moisture sup-
ply and to less precipitation over the continent south of the 
equator. In the ROM simulation, there is up to -100% less 
precipitation over coastal regions of southern Africa, espe-
cially Southwest Africa, and Madagascar in all seasons, with 
the exceptions of Eastern Madagascar in JJA and SON show-
ing an increase up to 50% (Fig. 5c, d). The strong relative 

changes in precipitation over the whole of southern Africa in 
the JJA are a result of the low absolute precipitation values 
in these regions (Fig. 5a–d). On the contrary, ROM simu-
lates up to 100% more precipitation over Central Africa and 
up to 50% more precipitation in the inner parts of southern 
Africa in DJF and MAM (Fig. 5a, b).

Of particular interest are the islands offshore the African 
continent, since the SST of the surrounding oceans strongly 
affects the precipitation over the islands. Due to the grid 
spacing of about 25 km in the atmospheric model, small 
islands are only represented by a few grid boxes. How-
ever, it is worth considering them in this analysis in order 
to estimate the possible changes in precipitation over the 
islands. There are distinct differences between ROM and 

a) DJF MAM

c) JJA SONd)

b)

Fig. 4  Absolute differences in seasonal mean precipitation [mm/day] of ROM minus REMO, both forced with MPI-ESM-LR for a December to 
February (DJF), b March to May (MAM), c July to August (JJA) and d September to November (SON) from 1971 to 2000
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REMO in the simulation of precipitation over the islands 
located close to the African continent. Over the Atlantic 
Ocean, ROM simulates precipitation changes compared to 
REMO between − 100 and + 100% over the Canary Islands 
and between − 100 and − 25% over São Tomé and Príncipe 
during the year (Fig. 5a–d). Over the Indian Ocean, precipi-
tation in ROM decreases up to − 100% over the Comoros 
and over Mayotte in the different seasons (Fig. 5a–d). The 
decrease (increase) in precipitation over the islands coin-
cides with lower (higher) SST values, resulting in lower 
(higher) evaporation of moisture over the surrounding sea 
surfaces (not shown). Therefore, it is urgent that model simu-
lations of precipitation over islands either use bias-corrected 
SSTs of the surrounding oceans or use a regionally coupled 

atmosphere–ocean model that provides SSTs directly from 
the ocean model with higher resolution.

3.3  Added value of seasonal mean daily 
precipitation

To assess the potential improvements in reducing the precip-
itation bias over Africa and the islands near the African con-
tinent by applying a regionally coupled atmosphere–ocean 
model, the added value AV was determined for each grid box 
using (Eq. 1). Simulated precipitation by REMO and ROM 
is compared to the observational data sets CRU, GPCC, 
CHIRPS and the ERA5 reanalysis data set to account for the 
lack of observational stations over Africa and the resulting 

a) DJF MAM

c) JJA SONd)

b)

Fig. 5  Relative differences in seasonal mean daily precipitation [%] of ROM minus REMO, both forced with MPI-ESM-LR for a December to 
February (DJF), b March to May (MAM), c July to August (JJA) and d September to November (SON) from 1971 to 2000
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inadequacies in the observational data sets (Figs. 6a–p, 7a–h, 
8a–h, 9a–h). Positive (negative) values indicate a lower 
(higher) precipitation bias of ROM compared to REMO. In 
detail, an AV of + 1 indicates that the precipitation bias of 
ROM is zero, while an AV of -1 indicates that the precipita-
tion bias of REMO is zero.

It can be seen that the patterns of precipitation bias in 
the different reference datasets are almost identical and are 

therefore independent of the reference data used for the 
African continent (Fig. 6a–p). The bias in ROM is reduced 
mainly over North Sahara in SON, over most coastal regions 
of Sub-Saharan Africa in all seasons, over Central Africa 
in DJF, over southern Africa in JJA and SON, and over the 
entire Greater Horn of Africa in MAM. In particular, the 
inner parts of southern Africa show less precipitation in JJA 
with a distinct bias reduction (Figs. 5c, 6i–l). However, it 

CRU GPCC c) CHIRPS ERA5d)b)

e) f) g) h)

i) j) k) l)

m) n) o) p)

D
JF

M
AM

SO
N

JJ
A

a)

Fig. 6  Added value AV of seasonal mean daily precipitation for entire 
Africa in ROM compared to REMO forced with MPI-ESM-LR. Ref-
erence data sets are CRU TS 4.05 and GPCC V2020 from 1971 to 
2000, CHIRPS V2.0 and ERA5 from 1981 to 2005 for a–d Decem-

ber to February (DJF), e–h March to May (MAM), i–l July to August 
(JJA) and m–p September to November (SON). Positive (negative) 
values indicate a lower (higher) precipitation bias of ROM compared 
to REMO
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has to be kept in mind that there is generally little precipi-
tation during this time of year due to the dry season. Fur-
thermore, ROM decreases the precipitation bias over most 
parts of Madagascar from SON to MAM. In contrast, the 
precipitation bias increases in ROM over most regions north 
of 10° N and over the interior of southern Africa in DJF 
and MAM, over Central Africa in MAM, and along 15° N 
in SON. The reduction in precipitation bias in the coastal 
regions of West Africa is confirmed by Paxian et al. (2016), 

who found a reduced precipitation bias in decadal climate 
predictions for the Guinea Coast with a regionally coupled 
atmosphere–ocean model. Furthermore, it has been shown 
by Haensler et al. (2011) and Weber et al. (2018a) that the 
application of a bias-corrected SST leads to improved pre-
cipitation results in regional climate models over southern 
Africa.

Assessing the utility of a regionally coupled atmos-
phere–ocean model over small islands is difficult due to 

Fig. 7  Added value AV of sea-
sonal mean daily precipitation 
for the Canary Islands in ROM 
compared to REMO forced with 
MPI-ESM-LR. Reference data 
sets are GPCC V2020 from 
1971 to 2000 and ERA5 from 
1981 o 2005 for a, b December 
to February (DJF), c, d March 
to May (MAM), e, f July to 
August (JJA) and g, h Septem-
ber to November (SON). Posi-
tive (negative) values indicate a 
lower (higher) precipitation bias 
of ROM compared to REMO
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Fig. 8  Added value AV of 
seasonal mean daily precipita-
tion for Comoros and Mayotte 
in ROM compared to REMO 
forced with MPI-ESM-LR. 
Reference data sets are GPCC 
V2020 from 1971 to 2000 and 
ERA5 from 1981 to 2005 for a, 
b December to February (DJF), 
c, d March to May (MAM), e, 
f July to August (JJA) and g, h 
September to November (SON). 
Positive (negative) values indi-
cate a lower (higher) precipita-
tion bias of ROM compared to 
REMO
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Fig. 9  Added value AV of 
seasonal mean daily precipita-
tion for São Tomé and Principe 
in ROM compared to REMO 
forced with MPI-ESM-LR. 
Reference data sets are GPCC 
V2020 from 1971 to 2000 and 
ERA5 from 1981 to 2005 for a, 
b December to February (DJF), 
c, d March to May (MAM), e, 
f July to August (JJA) and g, h 
September to November (SON). 
Positive (negative) values indi-
cate a lower (higher) precipita-
tion bias of ROM compared to 
REMO
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the scarcity of reference data. Only the GPCC precipitation 
dataset and the ERA5 reanalysis data set provide some grid-
ded information on precipitation over the Canary Islands, 
São Tomé and Príncipe, Comoros and Mayotte with a spa-
tial resolution of 0.25° (about 28 km). Over the Canary 
Islands, GPCC shows some minor precipitation biases in 
ROM, mainly for the western islands in all seasons, while 
ERA5 shows mainly a reduction in biases for JJA and SON 
(Fig. 7a–h). In contrast, ERA5 indicates a reduction in pre-
cipitation biases in ROM over Comoros and Mayotte for 
all seasons, while GPCC indicates only an improvement 
of simulated precipitation over Mayotte in all seasons and 
only some improvements over Comoros from DJF to JJA 
(Fig. 8a–h). Over São Tomé and Príncipe, both ERA5 and 
GPCC show reduced precipitation biases in ROM only from 
MAM to SON (Fig. 9c–h). Despite some inconsistencies in 
the reference data GPCC and ERA5, the results show that 
the regionally coupled atmosphere–ocean model ROM can 
reduce the precipitation bias over these island groups com-
pared to the atmosphere-only model REMO.

3.4  Regional precipitation characteristics

A main aspect of this work is to investigate to what extent 
the precipitation characteristics in certain regions of the 
African continent are influenced by the regional atmos-
phere–ocean coupling. For this purpose, eight different 
sub-regions were defined, located along the coast and in 

the interior of the continent (Fig. 10). The sub-regions are 
labeled as follows: West Africa North (WAN), West Africa 
South (WAS), Equatorial Africa (EQA), East African Coast 
(EAC), Southwest Africa North (SWN), Southwest Africa 
South (SWS), Botswana (BOT), and Western Cape Region 
(WCR). For each of these sub-regions, the annual precipita-
tion cycle, the normalized daily precipitation distribution 
and the following precipitation indices were calculated and 
analyzed as region averages: the maximum number of con-
secutive dry days (CCD), the maximum number of consecu-
tive wet days (CWD), the number of annual dry days (DD), 
total annual precipitation on wet days (PRCPTOT), annual 
precipitation > 95th percentile (R95p), and annual precipita-
tion > 99th percentile (R99p) (Table 1).

3.4.1  Evaluation of the annual precipitation cycle

Simulated annual precipitation cycles in the historical 
simulations of ROM and REMO, and in the ERA-INT 
driven simulation of REMO are compared with the cycles 
derived from CRU, CHIRPS and GPCC. The analysis 
shows that the annual precipitation cycles simulated with 
ROM are mainly closer to observations in coastal regions 
than in the interior of the continent (Fig. 11a–h). Over 
regions along the Guinea Coast of West Africa (WAS), 
ROM is able to reproduce a bimodal annual precipita-
tion cycle in the historical simulation, which cannot be 
achieved with REMO (Fig. 11b). Furthermore, the sim-
ulated bimodal precipitation cycle in ROM is closer to 
observations from June to November. Interestingly, the 
ERA-INT-driven simulation of REMO also shows a 
bimodal precipitation cycle, but with higher peaks com-
pared to ROM and which deviate significantly from the 
observed data. This suggests that the enabled process of 
atmosphere–ocean interaction in ROM has a dampening 
effect on the two precipitation peaks.

The coastal regions of Southwest Africa North (SWN) 
except March, Southwest Africa South (SWS) and Western 
Cape Region (WCR) experience less precipitation in the 
historical simulation of ROM being closer to observations 
than in REMO (Fig. 11e, f, h). In these regions, the pre-
cipitation cycles in the ERA-INT-driven REMO simulation 
show the best agreement with the observations. The differ-
ence between the precipitation cycles in the ROM and in 
the ERA-INT driven REMO simulation is due to the persis-
tent warm SST bias in the ROM, which favours evaporation 
over the ocean and moisture transport along the Angolan 
coast (e.g. Weber et al. 2018a). Over the East African Coast 
(EAC), ROM simulates significantly less precipitation in the 
historical run compared to REMO, but with better agreement 
with observations from May to December and slightly worse 
agreement from January to March (Fig. 11d). From October 

WAS

WAN

EQA

EAC
SWN
SWS

WCR

BOT

Fig. 10  African sub-regions: West Africa North (WAN), West Africa 
South (WAS), Equatorial Africa (EQA), East African Coast (EAC), 
Southwest Africa North (SWN), Southwest Africa South (SWS), Bot-
swana (BOT), Western Cape Region (WCR)
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to April, the ERA-INT driven REMO simulation shows less 
precipitation than ROM, although ROM has a small cold 
SST bias. This could indicate that the SST has a smaller 

impact on precipitation in this region and that the differ-
ence in precipitation between ROM and the ERA-INT driven 

Fig. 11  Annual precipitation 
cycles simulated by REMO 
forced with ERA-INT (cyan), 
and by REMO (blue) and ROM 
(red) both forced with MPI-
ESM-LR for different African 
sub-regions from 1981 to 2005 
compared to CRU TS 4.05 
(green), CHIRPS V2.0 (orange) 
and GPCC V2020 (purple)
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REMO simulation is the result of the changes in moisture 
transport.

Over the interior regions of the continent, Equatorial 
Africa (EQA) and Botswana (BOT), annual precipitation 
cycles in the historical simulations of ROM and REMO are 
essentially similar, except that ROM shows more precipita-
tion in EQA from December to April and slightly less pre-
cipitation from April to November in BOT (Fig. 11c, g). The 
same applies to the northern parts of West Africa (WAN), 
where ROM shows slightly more precipitation from March 
to June compared to REMO in the historical simulation, but 
less from July to October (Fig. 11a). These results suggest 
a smaller influence of the reduced warm SST biases in the 
surrounding oceans on precipitation over the northern parts 
of West Africa (WAN), Equatorial Africa (EQA) and Bot-
swana (BOT).

3.4.2  Evaluation of daily precipitation

To analyse the influence of atmosphere–ocean coupling on 
daily precipitation, the normalized daily precipitation dis-
tributions calculated from historical simulations of ROM 
and REMO, and from the ERA-INT-driven simulation of 
REMO are compared with the distributions derived from 
CHIRPS and ERA5 (Fig. 12a–h). In most sub-regions, the 
precipitation frequency maxima of ROM and REMO are 
lower than those of CHIRPS and ERA5 in the historical 
simulations, which are in the range of small precipitation 
amounts. However, ROM simulates small daily precipitation 
amounts more frequently and larger amounts less frequently 
compared to REMO in the coastal regions of West Africa 
(WAS), Southwest Africa (SWN and SWS), and Western 
Cape Region (WCR), and in the inner parts of West Africa 
(WAN) and Botswana (BOT) (Fig. 12a, b, e–h). In particu-
lar, the differences in the precipitation distributions of the 
historical simulations between ROM and REMO are most 
pronounced in the coastal regions of WAS, SWN and SWS, 
indicating a direct impact of the lower warm SST bias in 
the Southeast Atlantic on daily precipitation (Fig. 12b, e, f). 
Distinct effects of the fully removed warm SST bias can be 
seen in the ERA-INT driven simulation of REMO in SWN 
and SWS, where the precipitation distributions are closest 
to those of CHIRPS and ERA5 (Fig. 12e, f).

SST biases in the oceans appear to have less influence on 
daily precipitation in the regional climate model simulations 
over equatorial Africa (EQA), as the distributions in this 
region are close to each other (Fig. 12c). A striking feature 
of the results is the significant difference in daily precipita-
tion between ERA5 and CHIRPS, especially in WAS and 
EAC (Fig. 12b, d). In these regions, the precipitation fre-
quency maxima of ERA5 are significantly higher than the 
ones of CHIRPS, with CHIRPS having more frequent higher 
daily precipitation amounts than ERA5. The differences in 

daily precipitation between the ERA5 reanalysis data set and 
CHIRPS should be further investigated, but this is beyond 
the scope of this work.

3.4.3  Evaluation of precipitation indices

By analyzing selected precipitation indices derived from 
historical simulations of ROM and REMO, from the ERA-
INT driven REMO simulation, and from the observational 
data set CHIRPS, more detailed information on the influ-
ence of regional atmosphere–ocean coupling on precipita-
tion characteristics can be obtained. The number of annual 
dry days (DD) shows a change of − 4 and + 4% over West 
Africa (WAN, WAS), and a decrease of − 7% over equa-
torial Africa (EQA) in the historical simulation of ROM 
compared to REMO (Fig. 13a). For the East African Coast 
(EAC) and southern Africa (SWN, SWS, WCR), the coupled 
model simulates an increase in DD between + 3 and + 9% 
compared to the uncoupled model, with the coupled model 
results being closer to both observations and the ERA-INT 
driven simulation of REMO.

Similar regional differences between the coupled and 
uncoupled model arise in the simulation of the maximum 
number of consecutive dry days (CDD). ROM simulates 
a decrease in CDD of − 7 and − 13% over West Africa 
(WAN, WAS), an increase between + 10 and + 38% over 
the East African Coast (EAC) and southern Africa (BOT, 
SWN, SWS, WCR) compared to REMO (Fig. 13b). In most 
regions, the results of the coupled model are more shifted 
towards observations and the ERA-INT driven simulation 
of REMO. Only a few improvements have been achieved in 
the simulation of the maximum number of consecutive wet 
days (CWD) with the coupled model. In ROM, the CWD 
decreases by − 17% over the coastal regions of West Africa 
(WAS) and by − 7 and − 14% over southern Africa (SWS, 
WCR) compared to REMO (Fig. 13c). In these regions, the 
results of the coupled model are closer to observations and 
partly also to the ERA-INT driven simulation of REMO.

Major differences and advantages in the use of a coupled 
model can be seen in the simulation of total annual precipi-
tation on wet days (PRCPTOT). ROM shows a decrease by 
− 27% in total precipitation over the coastal regions of West 
Africa (WAS), a decrease by − 23% over the East African 
coast (EAC), and over southern Africa (SWN, SWS, WCR) 
between − 15 and − 33% (Fig. 13d). The results in ROM are 
closer to observations in all aforementioned regions, except 
for EAC, and also closer to the ERA-INT driven simulation 
of REMO over southern Africa (SWN, SWS, WCR).

The coupled model achieves distinct improvements in 
simulated extreme precipitation for both R95p and R99p. 
Compared to REMO, extreme precipitation (R95p, R99p) 
simulated by ROM decreases by − 32 and − 30% over the 
coastal regions of West Africa (WAS) and by − 23 and 
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Fig. 12  Normalized daily pre-
cipitation distributions derived 
from REMO forced with ERA-
INT (green), and from REMO 
(blue) and ROM (red) both 
forced with MPI-ESM-LR for 
different African sub-regions 
from 1981 to 2005 compared to 
CHIRPS V2.0 (cyan) and ERA5 
(purple)

a) WAN b) WAS

c) EQA d) EAC

g) BOT h) WCR

e) SWN f) SWS
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a) b) CDDDD

c) d)CWD PRCPTOT

e) f)R95p R99p

Fig. 13  Evaluation of selected precipitation indices calculated from 
REMO (blue dots) and ROM (red dots) both forced with MPI-ESM-
LR from 1981 to 2005, REMO forced with ERA-INT (green plus) 

and CHIRPS V2.0 (green cross) for different African sub-regions. 
Delta numbers show the relative difference in [%] of ROM minus 
REMO with respect to REMO
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− 14% over the East African coast (EAC), respectively 
(Fig.  13e, f). Similarly, extreme precipitation in ROM 
decreases between -8 and -30% over southern Africa (BOT, 
SWN, SWS, WCR). In all these regions, the results of the 
coupled model are closer to both observations and the ERA-
INT driven simulation of REMO, with the exception of 
WAS, which is only closer to observations.

Significant effects of atmosphere–ocean coupling are 
measured over coastal West Africa, where PRCPTOT, R95p 
and R99p have sharply decreased in ROM. The reason for 
this is that the ROM model allows the Inter Tropical Con-
vergence Zone (ITCZ) to move further north than the REMO 
model does. Thus, two lower precipitation maxima in the 
annual precipitation cycle occur in the coastal regions instead 
of one large precipitation maximum (Fig. 11b). The increase 
in DD and CDD over southern Africa in the coupled model 
can be attributed to a reduced warm SST bias in the South-
east Atlantic. The same is true for the significant decrease in 
PRCPTOT, R95p and R99p in these regions. Lower simu-
lated SSTs in the Southeast Atlantic lead to a decrease in 
evaporation over the ocean and, consequently, to a modified 
vertically integrated moisture transport over southern Africa. 
In addition, it can be assumed that a complete removal of 
the SST warm bias in the historical simulation would lead 
to a further increase of DD and CWD as well as a further 
reduction of PRCPTOT, R95p and R99p in these regions, as 
already seen in the reanalysis driven simulation of REMO.

3.4.4  Modification of climate change signals

To investigate the potential changes in precipitation char-
acteristics due to the influence of the regional atmos-
phere–ocean coupling in a future climate projection, pre-
cipitation indices are analyzed in a high emission scenario 
(RCP8.5) at the end of the century (2070–2099). The deci-
sion to use a high emission scenario was made because a 
high emissions scenario is expected to provide a more 
significant climate change signal (CCS) than a low emis-
sions scenario. In this way, the maximum impact of atmos-
phere–ocean coupling on the climate change signals of the 
indices can be estimated.

ROM and REMO project an increase in the number 
of annual dry days (DD) with model differences in CCSs 
between − 6 and + 2 days for all sub-regions (Fig. 14a). The 
largest model difference in CCSs of DD occurs with -6 days 
in EQA, where the CCS is weaker in ROM than in REMO. 
Similar to DD, ROM and REMO simulate an increase in the 
maximum number of consecutive dry days (CDD) for all 
sub-regions, but with a wider range of model differences in 
CCSs between − 15 and + 49 days (Fig. 14b). Large model 
differences in CCSs of CDD are simulated with − 15 days 
for EQA, with + 21 days for WCR and with + 49 days for 
SWS. The CCSs of maximum number of consecutive wet 

days (CWD) in ROM and REMO decrease for all sub-
regions, with model differences in CCSs ranging from − 2 
to + 1 day (Fig. 14c). In EQA, the CCSs of ROM and REMO 
are almost the same for EQA and SWS.

For all sub-regions, except EQA, ROM and REMO pro-
ject a decrease in total annual precipitation on wet days 
(PRCPTOT) with model differences in CCSs between − 45 
and + 85 mm (Fig. 14d). In EQA, the CCS of PRCPTOT 
switches from a slight decrease in REMO to an increase in 
ROM with a model difference of 80 mm. The largest model 
differences in CCSs of PRCPTOT occur with + 85 mm in 
WAN and WAS, where the CCSs in ROM are weaker than 
in REMO.

The CCSs of extreme precipitation (R95p) simulated 
by ROM and REMO show an increase for the sub-regions 
WAN, WAS, EQA, EAC and SWN with model differ-
ences in CCS between − 22 and + 65 mm and a decrease 
for SWS and WCR with model differences in CCS of − 6 
and + 11 mm, respectively (Fig. 14e). Only the CCS of 
R95p in BOT switches from a slight increase in REMO to 
a decrease in ROM with a model difference of − 21 mm. 
The largest model difference in CCS of R95p is shown for 
WAN with + 65 mm, where the CCS in ROM is stronger 
than REMO. For almost all sub-regions, except WCR, 
CCSs of extreme precipitation (R99p) show an increase 
in ROM and REMO with model differences between − 36 
and + 27 mm (Fig. 14f). Only for WCR, ROM and REMO 
project a decrease in CCS of R99p with a model difference 
in CCSs of − 12 mm. Moreover, larger model differences in 
CCS of R99p occur with + 27 mm in WAN, where the CCS 
in ROM is stronger than in REMO, and with − 36 mm in 
WAS, where the CCSs in ROM is weaker than in REMO.

This experiment shows that the distinct effects of 
atmospheric-ocean coupling on CCSs are limited to spe-
cific regions and indices. The affected regions are West 
Africa, where the CCS of PRCPTOT (WAN, WAS) and of 
R95p and R99p (WAN) are distinctly changed, Equatorial 
Africa (EQA), where the CCS of PRCPTOT is notice-
ably altered and the outmost southwest of Africa (SWS, 
WCR), where the CCS of CDD is significantly changed 
by the coupled model. Considering the observed influ-
ence of coupling on CCSs of derived precipitation indi-
ces in climate projections, which are commonly gener-
ated by uncoupled RCMs (e.g., Nikulin et al. 2018; Weber 
et al. 2018b; Dosio et al. 2019), CCSs may strengthen or 
weaken in certain African regions. For instance, an ensem-
ble of uncoupled RCMs projects an increase in extreme 
precipitation (99th percentile) over coastal regions of West 
Africa and East Africa with higher global warming levels 
(Weber et al. 2018b), but our analysis has shown that the 
CCS of R99p in a high emission scenario would be weaker 
in a coupled RCM than in a uncoupled one. Similarly, 
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a decrease in precipitation during the rainy season over 
WCR is projected with higher global warming (Weber 

et al. 2018b), but the CCS of PRCPTOT would be weaker 
in a high emission scenario simulated by a coupled RCM.

a) b) CDDDD

c) d)CWD PRCPTOT

e) f)R95p R99p

Fig. 14  Climate change signals of selected precipitation indices for 
different African sub-regions calculated from REMO (blue dots) and 
ROM (red dots) both forced with MPI-ESM-LR RCP8.5 for 2070–

2099 related to 1971–2000. Delta numbers show the absolute differ-
ence of the climate change signal of ROM minus REMO
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4  Conclusion

Realistic simulations of precipitation characteristics over 
Africa with regional climate models is a challenge, because 
precipitation formation over the continent depends on dif-
ferent factors such as sea surface temperature (SST) of the 
surrounding oceans, evaporation, and moisture transport. 
This work has analyzed the often neglected impact of the 
SST bias and the associated changes in moisture trans-
ports on precipitation in a regional climate projection over 
Africa. In detail, we could reveal which African regions 
and which of the simulated precipitation characteristics are 
improved by enabling the atmosphere–ocean interaction in 
a regional climate model.

Decreased biases of the simulated SST in the Southeast 
Atlantic and Southwest Indian Oceans reduce the precipita-
tion bias over most coastal Sub-Saharan regions and over 
southern Africa to varying degrees depending on the sea-
son. Particularly, annual precipitation cycles over the coastal 
regions of the Atlantic Ocean are closer to observations, e.g. 
the bimodal cycle along the coast of Guinea could be repro-
duced. Furthermore, compared to the uncoupled model, the 
coupled model simulates small daily precipitation amounts 
more frequently and large daily precipitation amounts less 
frequently in the coastal regions of the Atlantic and in the 
inner parts of West Africa and southern Africa. Simulated 
daily precipitation amounts in the coupled model are thus 
more realistic, as a comparison with reanalysis and observa-
tion data shows. Distinct changes in precipitation were simu-
lated not only over the African continent. A strong influence 
of coupling on precipitation was found over small islands 
located offshore the African coasts, where the precipitation 
difference between a coupled and an uncoupled model is 
up to ± 100%. The coupled model also provides better sea-
sonal precipitation results over islands than the uncoupled 
model in most cases. This outcome is of crucial importance 
since climate change analyses for small islands are almost 
exclusively based on climate projections from uncoupled 
regional climate models. Furthermore, our results show that 
precipitation indices relevant for Africa, such as maximum 
consecutive dry days, total precipitation on wet days, and 
extreme precipitation, are clearly affected by the coupling 
and are closer to the observations for the majority of the 
analyzed sub-regions.

This analysis shows that the climate change signals 
of precipitation are also influenced by the coupling of 
atmosphere and ocean in a regional climate model. The 
climate change signal in the coupled projection is more 
physically consistent due to the consideration of atmos-
phere–ocean interactions. It has also been shown that 
reduced SST biases and the enabled atmosphere–ocean 
interaction in a regional climate model can modify the 

climate change signals of precipitation indices in climate 
projections. This should be investigated using ensembles 
of coupled regional climate models to assess whether 
current climate change information for Africa needs to 
be revised. The application of model ensembles would 
also allow the robustness and uncertainty of the CCSs to 
be estimated, which will provide more confidence in the 
results. It should be kept in mind that the results obtained 
in this study also contain some limitations in terms of 
their validity. The choice of the spatial resolution and 
the model domain can affect the precipitation results 
(e.g. Browne and Sylla 2012). In addition, the underlying 
processes leading to changes in precipitation caused by 
regional atmosphere–ocean coupling should be the sub-
ject of further research, which was outside the scope of 
this work. Overall, our results suggest that the application 
of a regionally coupled atmosphere–ocean climate model 
improves the simulated precipitation characteristics in 
certain African regions, especially over coastal regions, 
and should therefore be taken into account for the next-
generation of regional climate projections.

Acknowledgements The authors would like to thank the Copernicus 
Climate Change Service (C3S) Climate Data Store (CDS) for pro-
viding the ERA5 reanalysis data set (https:// clima te. coper nicus. eu/ 
clima te- reana lysis). We acknowledge that this work contains modified 
Copernicus Climate Change Service Information and neither the Euro-
pean Commission nor ECMWF is responsible for any use that may be 
made of the Copernicus information or data it contains. In addition, we 
would like to thank the European Centre for Medium-Range Weather 
Forecasts (ECMWF) for providing the ERA-Interim reanalysis data set 
(https:// www. ecmwf. int/ en/ forec asts/ datas ets/ reana lysis- datas ets/ era- 
inter im). We acknowledge the Global Precipitation Climatology Cen-
tre (GPCC) (https:// www. dwd. de/ EN/ ourse rvices/ gpcc/ gpcc. html), the 
Climate Hazards Center of the University of California (https:// www. 
chc. ucsb. edu/ data/ chirps) and the Climatic Research Unit of the Uni-
versity of East Anglia (https:// sites. uea. ac. uk/ cru/) for the provision of 
their observational precipitation data sets. NOAA High Resolution SST 
data was provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, 
USA, from their web site at https:// downl oads. psl. noaa. gov/ Datas ets/ 
noaa. oisst. v2. highr es/. The model simulations were performed at the 
German Climate Computing Center (Deutsches Klimarechenzentrum, 
DKRZ) in Hamburg. Dmitry Sein was supported in the framework of 
the state assignment of the Ministry of Science and Higher Education 
of Russia (№ FMWE-2021-0014). Finally, the authors would like to 
thank the anonymous reviewers and the colleagues of the Climate Ser-
vice Center Germany (GERICS) for their constructive support.

Author contributions Conceptualization: TW, WC, DS, DJ. Meth-
odology: DS, WC. Formal analysis and investigation: TW, WC, DS. 
Visualization: TW, DS. Writing—original draft preparation: TW, DS. 
Writing—review and editing: WC, DJ. Resources: DJ.

Funding Open Access funding enabled and organized by Projekt 
DEAL.

Availability of data and material (data transparency) Model forcing 
data and observational data are freely available, model output data is 
not public accessible.

https://climate.copernicus.eu/climate-reanalysis
https://climate.copernicus.eu/climate-reanalysis
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.dwd.de/EN/ourservices/gpcc/gpcc.html
https://www.chc.ucsb.edu/data/chirps
https://www.chc.ucsb.edu/data/chirps
https://sites.uea.ac.uk/cru/
https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2.highres/
https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2.highres/


 T. Weber et al.

1 3

Code availability (software application or custom code) The model 
codes of ROM and REMO can be requested from the Alfred Wegener 
Institute for Polar and Marine Research and the Climate Service Center 
Germany (GERICS). Scripts for data processing are stored in an inter-
nal GitLab, software used are Bash scripts, CDO and Python.

Declarations 

Conflict of interest There are no conflicts of interest or competing in-
terests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Akinsanola AA, Ogunjobi KO, Vincent VO, Adefisan EA, Omotosho 
JA, Sanogo S (2017) Comparison of five gridded precipitation 
products at climatological scales over West Africa. Meteorol 
Atmos Phys. https:// doi. org/ 10. 1007/ s00703- 016- 0493-6

Bougeault P (1983) A non-reflective upper boundary condition for 
limited-height hydrostatic models. Mon Weather Rev 111:420–
429. https:// doi. org/ 10. 1175/ 1520- 0493(1983) 111% 3c0420: 
ANRUBC% 3e2.0. CO;2

Browne NAK, Sylla MB (2012) Regional climate model sensitivity 
to domain size for the simulation of the West African summer 
monsoon rainfall. Int J Geophys. https:// doi. org/ 10. 1155/ 2012/ 
625831

Cabos W, Sein DV, Pinto JG et al (2017) The South Atlantic Anticy-
clone as a key player for the representation of the tropical Atlan-
tic climate in coupled climate models. Clim Dyn 48:4051–4069. 
https:// doi. org/ 10. 1007/ s00382- 016- 3319-9

Cabos W, De la Vara A, Álvarez FJ et al (2020) Impact of ocean-
atmosphere coupling on regional climate: the Iberian Penin-
sula case. Clim Dyn 54:4441–4467. https:// doi. org/ 10. 1007/ 
s00382- 020- 05238-x

Davies HC (1976) A lateral boundary formulation for multi-level 
prediction models. Q J R Meteorol Soc 102:405–418

De la Vara A, Cabos W, Sein DV et al (2020) On the impact of 
atmospheric vs oceanic resolutions on the representation of 
the sea surface temperature in the South Eastern Tropical 
Atlantic. Clim Dyn 54:4733–4757. https:// doi. org/ 10. 1007/ 
s00382- 020- 05256-9

Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim rea-
nalysis: configuration and performance of the data assimilation 
system. Q J R Meteorol Soc 137:553–597. https:// doi. org/ 10. 1002/ 
qj. 828

Déqué M, Somot S, Sanchez-Gomez E et  al (2012) The spread 
amongst ENSEMBLES regional scenarios: regional climate 
models, driving general circulation models and interannual 
variability. Clim Dyn 38:951–964. https:// doi. org/ 10. 1007/ 
s00382- 011- 1053-x

Dosio A, Panitz HJ, Schubert-Frisius M et al (2015) Dynamical downs-
caling of CMIP5 global circulation models over CORDEX-Africa 
with COSMO-CLM: evaluation over the present climate and anal-
ysis of the added value. Clim Dyn 44:2637–2661. https:// doi. org/ 
10. 1007/ s00382- 014- 2262-x

Dosio A, Jones RG, Jack C et al (2019) What can we know about 
future precipitation in Africa? Robustness, significance and 
added value of projections from a large ensemble of regional 
climate models. Clim Dyn 53:5833–5858. https:// doi. org/ 10. 
1007/ s00382- 019- 04900-3

Eichhorn A, Bader J (2017) Impact of tropical Atlantic sea-surface 
temperature biases on the simulated atmospheric circula-
tion and precipitation over the Atlantic region: an ECHAM6 
model study. Clim Dyn 49:2061–2075. https:// doi. org/ 10. 1007/ 
s00382- 016- 3415-x

Exarchou E, Prodhomme C, Brodeau L et  al (2018) Origin of 
the warm eastern tropical Atlantic SST bias in a climate 
model. Clim Dyn 51:1819–1840. https:// doi. org/ 10. 1007/ 
s00382- 017- 3984-3

Funk CC, Peterson PJ, Landsfeld MF, Pedreros DH, Verdin JP, Row-
land JD, Romero BE, Husak GJ, Michaelsen JC, Verdin AP (2014) 
A quasi-global precipitation time series for drought monitoring: 
U.S. Geol Surv Data Ser 832:4. https:// doi. org/ 10. 3133/ ds832

Funk C, Peterson P, Landsfeld M et al (2015) The climate hazards 
infrared precipitation with stations—a new environmental record 
for monitoring extremes. Sci Data 2:150066. https:// doi. org/ 10. 
1038/ sdata. 2015. 66

Găinuşă-Bogdan A, Hourdin F, Traore AK, Braconnot P (2018) 
Omens of coupled model biases in the CMIP5 AMIP 
simulations. Clim Dyn 51:1–15. https:// doi. org/ 10. 1007/ 
s00382- 017- 4057-3

Haensler A, Hagemann S, Jacob D (2011) The role of the simulation 
setup in a long-term high-resolution climate change projection for 
the southern African region. Theor Appl Climatol 106:153–169. 
https:// doi. org/ 10. 1007/ s00704- 011- 0420-1

Hagemann S, Dümenil Gates L (2001) Validation of the hydrological 
cycle of ECMWF and NCEP reanalyses using the MPI hydrologi-
cal discharge model. J Geophys Res 106:1503–1510

Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS 
monthly high-resolution gridded multivariate climate dataset. Sci 
Data 7:109. https:// doi. org/ 10. 1038/ s41597- 020- 0453-3

Hernández-Díaz L, Laprise R, Nikiéma O, Winger K (2017) 3-Step 
dynamical downscaling with empirical correction of sea-surface 
conditions: application to a CORDEX Africa simulation. Clim 
Dyn 48:2215–2233. https:// doi. org/ 10. 1007/ s00382- 016- 3201-9

Hersbach H, Bell B, Berrisford P et al (2018) ERA5 hourly data on 
single levels from 1979 to present. Copernicus Climate Change 
Service (C3S) Climate Data Store (CDS). https:// doi. org/ 10. 
24381/ cds. adbb2 d47. Accessed 14 May 2019

Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global rea-
nalysis. Q J R Meteorol Soc 146:1999–2049. https:// doi. org/ 10. 
1002/ qj. 3803

Hoffmann P, Katzfey JJ, McGregor JL, Thatcher M (2016) Bias and 
variance correction of sea surface temperatures used for dynami-
cal downscaling. J Geophys Res 121:12877–12890. https:// doi. 
org/ 10. 1002/ 2016J D0253 83

Huang B, Liu C, Banzon V, Freeman E, Graham G, Hankins B, Smith 
T, Zhang H-M (2021) Improvements of the Daily Optimum Inter-
polation Sea Surface Temperature (DOISST) Version 2.1. J Clim 
34:2923–2939. https:// doi. org/ 10. 1175/ JCLI-D- 20- 0166.1

Jacob D (2001) The role of water vapour in the atmosphere. A short 
overview from a climate modeller’s point of view. Phys Chem 
Earth A 26:523–527

Jacob D, Elizalde A, Haensler A et al (2012) Assessing the transfer-
ability of the regional climate model REMO to different coor-
dinated regional climate downscaling experiment (CORDEX) 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00703-016-0493-6
https://doi.org/10.1175/1520-0493(1983)111%3c0420:ANRUBC%3e2.0.CO;2
https://doi.org/10.1175/1520-0493(1983)111%3c0420:ANRUBC%3e2.0.CO;2
https://doi.org/10.1155/2012/625831
https://doi.org/10.1155/2012/625831
https://doi.org/10.1007/s00382-016-3319-9
https://doi.org/10.1007/s00382-020-05238-x
https://doi.org/10.1007/s00382-020-05238-x
https://doi.org/10.1007/s00382-020-05256-9
https://doi.org/10.1007/s00382-020-05256-9
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1007/s00382-011-1053-x
https://doi.org/10.1007/s00382-011-1053-x
https://doi.org/10.1007/s00382-014-2262-x
https://doi.org/10.1007/s00382-014-2262-x
https://doi.org/10.1007/s00382-019-04900-3
https://doi.org/10.1007/s00382-019-04900-3
https://doi.org/10.1007/s00382-016-3415-x
https://doi.org/10.1007/s00382-016-3415-x
https://doi.org/10.1007/s00382-017-3984-3
https://doi.org/10.1007/s00382-017-3984-3
https://doi.org/10.3133/ds832
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1007/s00382-017-4057-3
https://doi.org/10.1007/s00382-017-4057-3
https://doi.org/10.1007/s00704-011-0420-1
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1007/s00382-016-3201-9
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/2016JD025383
https://doi.org/10.1002/2016JD025383
https://doi.org/10.1175/JCLI-D-20-0166.1


Benefits of simulating precipitation characteristics over Africa with a regionally‑coupled…

1 3

regions. Atmosphere (basel) 3:181–199. https:// doi. org/ 10. 3390/ 
atmos 30101 81

Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, 
Mikolajewicz U, Notz D, von Storch JS (2013) Characteristics of 
the ocean simulations in MPIOM, the ocean component of the 
MPI-Earth system model. J Adv Model Earth Syst 5:422–446. 
https:// doi. org/ 10. 1002/ jame. 20023

Klemp JB, Duran DR (1983) An upper boundary condition permitting 
internal gravity wave radiation in numerical mesoscale models. 
Mon Weather Rev 11:430–444. https:// doi. org/ 10. 1175/ 1520- 
0493(1983) 111% 3c0430: AUBCPI% 3e2.0. CO;2

Kotlarski S, Keuler K, Christensen OB et al (2014) Regional climate 
modeling on European scales: a joint standard evaluation of the 
EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–
1333. https:// doi. org/ 10. 5194/ gmd-7- 1297- 2014

Lengaigne M, Neetu S, Samson G et al (2019) Influence of air–sea cou-
pling on Indian Ocean tropical cyclones. Clim Dyn 52:577–598. 
https:// doi. org/ 10. 1007/ s00382- 018- 4152-0

Lima DCA, Soares PMM, Semedo A et al (2019) How will a warming 
climate affect the Benguela Coastal low-level wind jet? J Geo-
phys Res Atmos 124:5010–5028. https:// doi. org/ 10. 1029/ 2018J 
D0295 74

Lutz K, Jacobeit J, Rathmann J (2015) Atlantic warm and cold water 
events and impact on African west coast precipitation. Int J Cli-
matol 35:128–141. https:// doi. org/ 10. 1002/ joc. 3969

Majewski D (1991) The Europa model of the Deutscher Wetterdienst. 
In: Seminar Proceedings ECMWF, vol. 2, ECMWF, Reading, U. 
K, pp 147–191

Marsland SJ, Haak H, Jungclaus JH, Latif M, Roeske F (2003) The 
Max-Planck-Institute global ocean/sea ice model with orthogonal 
curvilinear coordinates. Ocean Model 5(2):91–127. https:// doi. 
org/ 10. 1016/ S1463- 5003(02) 00015-X

Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, 
Urquhart P (2014) Africa. In: Climate Change 2014: Impacts, 
Adaptation, and Vulnerability. Part B: Regional Aspects. Contri-
bution of Working Group II to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change [Barros VR, Field 
CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee 
M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy 
AN, MacCracken S, Mastrandrea PR, White LL (eds.)]. Cam-
bridge University Press, Cambridge, United Kingdom and New 
York, NY, USA, pp 1199–1265

Nikulin G, Lennard C, Dosio A et al (2018) The effects of 1.5 and 2 
degrees of global warming on Africa in the CORDEX ensemble. 
Environ Res Lett. https:// doi. org/ 10. 1088/ 1748- 9326/ aab1b1

Paxian A, Sein D, Panitz H-J et al (2016) Bias reduction in decadal 
predictions of West African monsoon rainfall using regional cli-
mate models. J Geophys Res Atmos 121:1715–1735. https:// doi. 
org/ 10. 1002/ 2015J D0241 43

Ratnam JV, Behera SK, Ratna SB et al (2013) Dynamical Downscaling 
of Austral Summer Climate Forecasts over Southern Africa Using 
a Regional Coupled Model. J Clim 26:6015–6032. https:// doi. org/ 
10. 1175/ JCLI-D- 12- 00645.1

Ratnam JV, Morioka Y, Behera SK, Yamagata T (2015) A model study 
of regional air-sea interaction in the austral summer precipitation 
over southern Africa. J Geophys Res. https:// doi. org/ 10. 1002/ 
2014J D0221 54

Remedio AR, Teichmann C, Buntemeyer L, Sieck K, Weber T, Rechid 
D et al (2019) Evaluation of new CORDEX simulations using an 
updated Köppen-Trewartha climate classification. Atmosphere 
10(11):726. https:// doi. org/ 10. 3390/ atmos 10110 726

Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG 
(2007) Daily high-resolution-blended analyses for sea surface 
temperature. J Clim 20:5473–5496. https:// doi. org/ 10. 1175/ 2007J 
CLI18 24.1

Riahi K, Rao S, Krey V et al (2011) RCP 8.5—a scenario of com-
paratively high greenhouse gas emissions. Clim Change 109:33. 
https:// doi. org/ 10. 1007/ s10584- 011- 0149-y

Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Düme-
nil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) 
The atmospheric general circulation model ECHAM-4: Model 
description and simulation of present day climate. Report No. 
218:90. Max Planck Institute for Meteorology, Hamburg

Roeckner E, et al (2003) The atmospheric general circulation model 
ECHAM 5. PART I: Model description Rep. 349, MPI für Mete-
orol, Hamburg, Germany

Schneider U, Becker A, Finger P, Rustemeier E, Ziese M (2020) GPCC 
Full Data Monthly Product Version 2020 at 0.25°: Monthly Land-
Surface Precipitation from Rain-Gauges built on GTS-based and 
Historical Data. https:// doi. org/ 10. 5676/ DWD_ GPCC/ FD_M_ 
V2020_ 025

Sein DV, Koldunov NV, Pinto JG, Cabos W (2014) Sensitivity of 
simulated regional Arctic climate to the choice of coupled model 
domain. Tellus A 66:23966. https:// doi. org/ 10. 3402/ tellu sa. v66. 
23966

Sein DV, Mikolajewicz U, Gröger M, Fast I, Cabos W, Pinto JG, Hage-
mann S, Semmler T, Izquierdo A, Jacob D (2015) Regionally cou-
pled atmosphere–ocean–sea ice–marine biogeochemistry model 
ROM: 1. Description and validation. J Adv Model Earth Syst 
7:268–304. https:// doi. org/ 10. 1002/ 2014M S0003 57

Soares PMM, Cardoso RM (2018) A simple method to assess the added 
value using high-resolution climate distributions: application to 
the EURO-CORDEX daily precipitation. Int J Climatol 38:1484–
1498. https:// doi. org/ 10. 1002/ joc. 5261

Soares PMM, Lima DCA, Semedo A et al (2019) Assessing the cli-
mate change impact on the North African offshore surface wind 
and coastal low-level jet using coupled and uncoupled regional 
climate simulations. Clim Dyn 52:7111–7132. https:// doi. org/ 10. 
1007/ s00382- 018- 4565-9

Soto-Navarro J, Jordá G, Amores A et al (2020) Evolution of Mediter-
ranean Sea water properties under climate change scenarios in the 
Med-CORDEX ensemble. Clim Dyn 54:2135–2165. https:// doi. 
org/ 10. 1007/ s00382- 019- 05105-4

Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salz-
mann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne 
S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E 
(2013) The atmospheric component of the MPI-M earth system 
model: ECHAM6. J Adv Model Earth Syst 5:46–172. https:// doi. 
org/ 10. 1002/ jame. 20015

Sylla MB, Giorgi F, Coppola E, Mariotti L (2013) Uncertainties in 
daily rainfall over Africa: assessment of gridded observation prod-
ucts and evaluation of a regional climate model simulation. Int J 
Climatol 33:1805–1817. https:// doi. org/ 10. 1002/ joc. 3551

Teichmann C, Jacob D, Remedio AR et al (2021) Assessing mean 
climate change signals in the global CORDEX-CORE ensem-
ble. Clim Dyn 57:1269–1292. https:// doi. org/ 10. 1007/ 
s00382- 020- 05494-x

Toniazzo T, Woolnough S (2014) Development of warm SST errors in 
the southern tropical Atlantic in CMIP5 decadal hindcasts. Clim 
Dyn 43:2889. https:// doi. org/ 10. 1007/ s00382- 013- 1691-2

Valcke S, Caubel A, Declat D, Terray L (2003) OASIS3 Ocean Atmos-
phere Sea Ice Soil User’s Guide, Tech. Rep. TR/CMGC/03–69, 
CERFACS, Toulouse, France.

Van der Ent RJ, Savenije HHG (2013) Oceanic sources of continental 
precipitation and the correlation with sea surface temperature. 
Water Resour Res 49:3993–4004. https:// doi. org/ 10. 1002/ wrcr. 
20296

Washington R, Preston A (2006) Extreme wet years over southern 
Africa: role of Indian Ocean sea surface temperatures. J Geophys 
Res Atmos 111:1–15. https:// doi. org/ 10. 1029/ 2005J D0067 24

https://doi.org/10.3390/atmos3010181
https://doi.org/10.3390/atmos3010181
https://doi.org/10.1002/jame.20023
https://doi.org/10.1175/1520-0493(1983)111%3c0430:AUBCPI%3e2.0.CO;2
https://doi.org/10.1175/1520-0493(1983)111%3c0430:AUBCPI%3e2.0.CO;2
https://doi.org/10.5194/gmd-7-1297-2014
https://doi.org/10.1007/s00382-018-4152-0
https://doi.org/10.1029/2018JD029574
https://doi.org/10.1029/2018JD029574
https://doi.org/10.1002/joc.3969
https://doi.org/10.1016/S1463-5003(02)00015-X
https://doi.org/10.1016/S1463-5003(02)00015-X
https://doi.org/10.1088/1748-9326/aab1b1
https://doi.org/10.1002/2015JD024143
https://doi.org/10.1002/2015JD024143
https://doi.org/10.1175/JCLI-D-12-00645.1
https://doi.org/10.1175/JCLI-D-12-00645.1
https://doi.org/10.1002/2014JD022154
https://doi.org/10.1002/2014JD022154
https://doi.org/10.3390/atmos10110726
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1175/2007JCLI1824.1
https://doi.org/10.1007/s10584-011-0149-y
https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_025
https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_025
https://doi.org/10.3402/tellusa.v66.23966
https://doi.org/10.3402/tellusa.v66.23966
https://doi.org/10.1002/2014MS000357
https://doi.org/10.1002/joc.5261
https://doi.org/10.1007/s00382-018-4565-9
https://doi.org/10.1007/s00382-018-4565-9
https://doi.org/10.1007/s00382-019-05105-4
https://doi.org/10.1007/s00382-019-05105-4
https://doi.org/10.1002/jame.20015
https://doi.org/10.1002/jame.20015
https://doi.org/10.1002/joc.3551
https://doi.org/10.1007/s00382-020-05494-x
https://doi.org/10.1007/s00382-020-05494-x
https://doi.org/10.1007/s00382-013-1691-2
https://doi.org/10.1002/wrcr.20296
https://doi.org/10.1002/wrcr.20296
https://doi.org/10.1029/2005JD006724


 T. Weber et al.

1 3

Weber T, Haensler A, Jacob D (2018a) Sensitivity of the atmospheric 
water cycle to corrections of the sea surface temperature bias over 
southern Africa in a regional climate model. Clim Dyn 51:2841–
2855. https:// doi. org/ 10. 1007/ s00382- 017- 4052-8

Weber T, Haensler A, Rechid D et al (2018b) Analysing regional cli-
mate change in Africa in a 1.5, 2 and 3°C global warming world. 
https:// doi. org/ 10. 1002/ 2017E F0007 14

Xu Z, Chang P, Richter I et al (2014) Diagnosing southeast tropi-
cal Atlantic SST and ocean circulation biases in the CMIP5 

ensemble. Clim Dyn 43:3123–3145. https:// doi. org/ 10. 1007/ 
s00382- 014- 2247-9

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00382-017-4052-8
https://doi.org/10.1002/2017EF000714
https://doi.org/10.1007/s00382-014-2247-9
https://doi.org/10.1007/s00382-014-2247-9

	Benefits of simulating precipitation characteristics over Africa with a regionally-coupled atmosphere–ocean model
	Abstract
	1 Introduction
	2 Models and data
	2.1 Experiment setup
	2.2 Observational and reanalysis data

	3 Results and discussion
	3.1 Seasonal warm and cold sea surface temperature bias
	3.2 Moisture transport and seasonal precipitation
	3.3 Added value of seasonal mean daily precipitation
	3.4 Regional precipitation characteristics
	3.4.1 Evaluation of the annual precipitation cycle
	3.4.2 Evaluation of daily precipitation
	3.4.3 Evaluation of precipitation indices
	3.4.4 Modification of climate change signals


	4 Conclusion
	Acknowledgements 
	References




