Seaweed-based Packaging Solutions


Contact
laurie.c.hofmann [ at ] awi.de

Abstract

Introduction The use of single-use packaging materials has increased dramatically in recent decades in parallel with increasing trends in convenience and fast-food. Most of these packaging materials are made of non-biodegradable, petroleum-based polymers that have degradative impacts on the environment and contribute to the global plastic pollution crisis. Finding alternative packaging materials is an important step towards building a bio-based circular economy. Sustainable land-based macroalgae cultivation can provide a solution, as it eliminates land-use pressure on coastal areas, doesn’t interfere with recreational activities or agriculture, reduces seasonal limitations, allows for complete control over product quality, and ensures consistent quality and traceability. Here, we present the success story of land-based macroalgae production for sustainable packaging solutions in the food industry via the Mak-Pak and Mak-Pak Scale-Up projects. Materials and Methods An initial screening of local macroalgae species was conducted based on detailed knowledge of growth rates, seasonality, geographic range, edibility, iodine content, biochemical properties, bioactivity, robustness and ease of cultivation. Different combinations of selected macroalgae were tested to develop a biodegradable, edible packaging prototype that was rated by consumer tests. In a follow-up project, we are focusing on eliminating the biggest bottleneck: scaling-up biomass production. We have partnered with a local, innovative farmer to sustainably scale-up and optimize biomass production for our sustainable, biodegradable macroalgae-based packaging material for the food industry. Results Several species of suitable macroalgae were selected based on the screening protocol and a method for using different combinations of selected species is described in a patent application for the packaging prototype. The packaging prototype was positively reviewed in consumer tests, where the consumers were pleasantly surprised by the neutral taste and smell. We could also show that certain components of the macroalgae that are important for packaging functionality (e.g. antioxidant activity) could be optimized during land-based production in artificial seawater. Currently we are in the early stages of scaling-up production and selecting strains to optimize growth rates and robustness, where we can complete the life cycle of one selected species from single cells to mature gametophytes within 6 weeks. With controlled induction of reproduction, we can continually provide material for transplantation to large-scale systems. Discussion The Mak-Pak and Mak-Pak Scale-Up projects have been featured in numerous news articles, exhibitions, and podcasts throughout Germany, Europe and even New Zealand. Our experience has shown that there is a lot of public interest in macroalgae-based packaging solutions. Consumers have become aware of the plastic pollution crisis and are open to alternatives to plastic packaging. Consequently, we have recently seen rapid changes in packaging trends in the cosmetic and food industries. Here we show that it is possible to produce a biodegradable, edible packaging from macroalgae biomass for the food-industry. Not only is this a success story for sustainable aquaculture, but also for macroalgae cultivation in general. This project has increased public awareness of macroalgae and contributed to a dialogue about the diversity of products and services that macroalgae can provide as we strive towards a sustainable, circular economy. However, optimization of the raw material production as well as the packaging itself is still underway. Furthermore, limitations in the food-industry require that our raw material meets high quality standards. In other industries where the quality of the raw material is not a limiting factor, there is enormous potential for macroalgae-based packaging solutions.



Item Type
Conference (Conference paper)
Authors
Divisions
Primary Division
Programs
Primary Topic
Helmholtz Cross Cutting Activity (2021-2027)
N/A
Publication Status
Published
Event Details
European Aquaculture Society 2021 Conference, 05 Oct 2021 - 08 Oct 2021.
Eprint ID
56385
Cite as
Hofmann, L. C. , Cardoso, I. L. d. A. C. , Henjes, J. , Bartsch, I. , Heins, M. , Bosse, R. , Lkusmann, L. , Reimold, F. , Enders, I. , Hoffmann, D. and Buck, B. H. (2021): Seaweed-based Packaging Solutions , European Aquaculture Society 2021 Conference, 5 October 2021 - 8 October 2021 .


Download
[thumbnail of Packaging_Solutions_from_Seaweed.pdf]
Preview
PDF
Packaging_Solutions_from_Seaweed.pdf

Download (25MB) | Preview

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item