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[1] Ice cover data simulated by a coupled sea ice-ocean model of the North Atlantic and
the Arctic Ocean are compared with satellite observations for the period 1978–2001. The
capability of the model in reproducing the long-term mean state and the interseasonal
variability is demonstrated. The main modes of variability of the satellite data and the
simulation in the summer and winter half years are highly similar. Using NCEP/NCAR
reanalysis data and the results from the sea ice-ocean model, we describe the relationship
with atmospheric and oceanic variables for the first two modes of sea ice concentration
variability in winter and in summer. The first winter mode shows a time-delayed response
to the Arctic Oscillation due to advection of heat anomalies in the ocean. The second
winter mode is dominated by an event in the late 1990s that is characterized by
anomalously high pressure over the eastern Arctic. The first summer mode is strongly
influenced by the Arctic Oscillation of the previous winter. The second summer mode is
caused by anomalous air temperature in the Arctic. This mode shows a distinctive trend
and is related to an ice extent reduction of about 4 � 105 km2 over the 23 years of
analysis. INDEX TERMS: 4207 Oceanography: General: Arctic and Antarctic oceanography; 4215

Oceanography: General: Climate and interannual variability (3309); 4540 Oceanography: Physical: Ice

mechanics and air/sea/ice exchange processes; KEYWORDS: sea ice, modeling, satellite, NAOSIM, SSM/R and

SSM/I, statistical modes
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1. Introduction

[2] Sea ice influences the radiation balance and ocean-
atmosphere heat and momentum exchange in high latitudes
[Manabe et al., 1992; Randall et al., 1998]. Large changes
in the Arctic and especially its sea ice cover have been
observed in the late 20th century and interpreted in the light
of global warming [e.g., Vinnikov et al., 1999]. Sea ice
variability also affects the oceanic meridional overturning
circulation (MOC) through the effect of melt water and heat
flux changes in sensitive regions like the Greenland Sea and
the deep water formation sites of the subpolar North
Atlantic [Dickson et al., 1996].
[3] The dominant mode of atmospheric variability of the

Northern Hemisphere over the past decades is the Arctic
Oscillation (AO). (The North Atlantic Oscillation (NAO) is
regarded in this study as a subset of the AO according to
Thompson and Wallace [1998].) During years with a strong
AO the sea ice area increases in the Labrador Sea and
decreases in the Greenland and Barents seas [Slonosky et
al., 1997; Deser et al., 2000]. This is accompanied by lower
temperatures in the Labrador Sea and higher temperatures in
the Nordic Seas and enhanced inflow of Atlantic water into
the Arctic [Zhang et al., 1998; Karcher et al., 2002].

According to model simulations, a strong AO is connected
with a redistribution of sea ice in the Arctic, resulting in
lower than normal sea ice thickness in the East Siberian Sea
and higher values in the Beaufort Sea and the Canadian
Archipelago [Zhang et al., 2000].
[4] Here, we perform a combined analysis of simulated

and observed sea ice concentration data. Sea ice concen-
tration is the variable of choice for the estimation of long
term developments because it is the sole climate parameter
operationally monitored for a longer time range and the
whole Arctic Ocean. The goal of this study is twofold: First,
we validate the model using a large-scale, homogeneous
data set (Section 3). Second, we use the model results to
establish statistical relationships between sea ice concen-
tration and oceanic variables (Section 4). Furthermore, we
use data from the NCEP/NCAR reanalysis project [Kalnay
et al., 1996] to extend this analysis to the atmosphere. This
synthesis yields a dynamically consistent picture of the
leading modes of variability of sea ice concentration in
the Northern Hemispheric climate system.

2. Data

2.1. Remote Sensing Data

[5] Monthly means of sea ice concentration from 1978
to present are employed as available from the National
Snow and Ice Data Center (NSIDC) Distributed Active
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Archive Center [Cavalieri et al., 1999]. The data are
derived from multichannel passive microwave sensors
SMM/R and SSM/I. Sea ice concentrations are calculated
with the NASA Team algorithm. Sea ice condition, sensor
characteristics, and geolocation affect the confidence level
of sea ice concentration calculated from the radiance
measurements over the Arctic. In winter a general accu-
racy of approximately five percent is reached, whereas
approximately 15 percent accuracy can be achieved in
summer, when melt ponds are present on the sea ice
[Cavalieri et al., 2002].

2.2. Simulated Data

[6] Sea ice variables were simulated with a coupled
ocean-sea ice model of the NAOSIM (North Atlantic/Arctic
Ocean-Sea Ice Model) hierarchy developed at the AWI
[Gerdes et al., 2001; Karcher et al., 2002]. The ocean
circulation model derives from the GFDL modular ocean
model (MOM-2) [Pacanowski, 1995]. The model domain
encloses the Atlantic north of approximately 50�N, the
Nordic Seas, and the Arctic Ocean. At the southern boun-
dary an open boundary condition has been implemented
following Stevens [1991] allowing the outflow of tracers
and the radiation of waves. At inflow points temperature
and salinity are restored with a time constant of 180 days
toward a yearly mean climatology [Levitus and Boyer,
1994; Levitus et al., 1994]. The baroclinic part of the
horizontal velocity is calculated from a simplified momen-
tum balance while the barotropic velocities normal to the
boundary are specified from a lower-resolution version of
the model that covers the entire North Atlantic [Köberle and
Gerdes, 2003]. The other boundaries are treated as closed
walls (i.e., Bering Strait, the Kattegat, and Hudson Strait).
[7] The model is formulated on a spherical rotated grid

with a horizontal resolution of 0.25� � 0.25� and 30
unevenly spaced levels in the vertical. The rotation of the
grid shifts the equator to the geographical 30�W meridian
and the Pole to 60�E on the geographical equator. Bottom
topography is based on the Etopo5 data set of the National
Geophysical Data Center. Modifications were made to open
two channels in the Canadian Archipelago connecting the
Arctic Ocean with Baffin Bay. The time step of the model is
900 seconds.
[8] For the advection of potential temperature, salinity,

and other tracers a FCT scheme [Zalesak, 1979; Gerdes et
al., 1991] is employed, which is characterized by a low
implicit diffusion while avoiding false extrema (‘‘overshoot-
ing’’) in advected quantities. There is no explicit diffusion
acting on the tracers. Horizontal friction is implemented as a
biharmonic diffusion of momentum with a diffusion coef-
ficient of�0.5 � 1021 cm4 s�1. Vertical viscosity is Laplacian
with a friction coefficient of 10 cm2 s�1. Quadratic bottom
friction is included with a drag coefficient of 1.2 � 10�3.
[9] A dynamic-thermodynamic sea ice model with a

viscous plastic rheology [Hibler, 1979] is coupled to the
ocean model. The prognostic variables of the sea ice model
are ice thickness, snow thickness, ice concentration, and ice
drift. Snow and ice thicknesses are mean quantities over a
grid box. The thermodynamic evolution of the ice is
described by an energy balance of the ocean mixed layer
following Parkinson and Washington [1979]. Freezing and
melting are calculated by solving the energy budget equa-

tion for a single ice layer with a snow layer. The freezing
point of sea water is salinity-dependent. The sea ice model
is formulated on the ocean model grid and uses the same
time step. Flow of ice out of the domain is allowed at the
southern boundary and at Bering Strait. The models are
coupled following the procedure devised by Hibler and
Bryan [1987]. The surface heat flux is calculated from
standard bulk formulae using prescribed atmospheric data
and sea surface temperature predicted by the ocean model.
Further details on the present implementation of the sea ice
model are given by Hilmer [2001].
[10] The initial conditions for potential temperature and

salinity were taken from the Arctic Ocean EWG climatol-
ogy for winter [National Snow and Ice Data Center
(NSIDC), 1997]. Where the model domain exceeds the
EWG climatology domain, the climatology of Levitus and
Boyer [1994] and Levitus et al. [1994] has been used. The
model is forced with daily mean 2-m air temperature, dew
point temperature, cloudiness, precipitation, wind speed,
and surface wind stress. For the first 50 years of spin-up,
a climatological mean seasonal cycle based on the period
1979–1993 with added typical daily variability (OMIP
climatology [Röske, 2001]) of these atmospheric data is
used. After the spin-up, the forcing consists of daily mean
atmospheric data from the NCEP/NCAR reanalysis for the
period 1948–2001 [Kalnay et al., 1996]. Fresh water influx
from rivers is not explicitly included. To account for river
run-off and diffuse run-off from the land, as well as to
include the effect of flow into the Arctic through Bering
Strait, a restoring flux with an adjustment timescale of 180
days is added to the surface freshwater flux. The restoring
flux is calculated in reference to observed data from the
EWG atlas [NSIDC, 1997] for the Arctic Ocean and the
Nordic Seas and Levitus and Boyer [1994] and Levitus et al.
[1994] for the rest of the domain. The effect of the restoring
flux on the surface salinity for this and other Arctic Ocean
models is documented by Steele et al. [2001].

2.3. Data Processing

[11] For all model, forcing, and remote sensing variables
used in the following analysis monthly means were gen-
erated. Winter and summer seasons in the Arctic differ
enormously in sea ice variability. Even for interannual
variability this requires to analyze the seasons separately.
We thus split the whole time series into two separate time
series, one only containing winter data, the other only
summer data. These are constructed by concatenation of
the subsequent winter (summer) months. Winter is defined
from November to April, whereas summer is defined from
May to October. Anomalies are calculated by subtracting
the long-term monthly mean values.
[12] Here, we focus on the interseasonal timescales rather

then the intermonthly timescales by performing a running
mean over 7 months for the winter (summer) time series.
Since winter and summer are defined as 6 month periods
each, the running mean involves data from two consecutive
years. All associated variables shown in this analysis are
treated accordingly.
[13] Calculations involving the satellite data are per-

formed on the original grid of the data. For comparison
with the model data, the satellite data are interpolated onto
the model grid. Only those model grid points gained data
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which are surrounded by four satellite grid points; no data
extrapolation is performed.

3. Comparison of Satellite-Derived and
Modeled Sea Ice Concentration

[14] The first EOF of the observations and simulation are
very similar and highly correlated (r = 0.79 for winter). This
holds not for the second EOFs. The first EOFs will be
influenced by sampling variability (observation errors and
simulation errors, respectively). Though, the first EOFs are
similar, the second EOFs being by construction orthogonal
to the first EOFs, do not have to be similar because of the
sampling variability.
[15] Therefore we compared the simulated and remote

sensing data with a Maximum Covariance Analysis (MCA).
The MCA approach searches for patterns with maximal
covariance between two multivariate time series. The
approach reduces the influence of sampling variability,
because the sampling variability of the observations and
the simulation can be assumed to be uncorrelated in time.
The MCA method is often called Singular Value Decom-
position (SVD). Because SVD is one algorithm used to
calculate MCA patterns among others we follow von Storch
and Zwiers [1999] and refer to the method as MCA. The
MCA method can be thought of as a generalization of the
diagonalization of a square symmetric matrix (like in EOF
analysis) to rectangular matrices. Applications of the
method in the context of climate research are given by
Wallace et al. [1992]. Contrary to EOF analysis the MCA
coefficients are generally correlated.

3.1. Winter Months

[16] The large-scale structures of the winter mean state of
observed and simulated sea ice concentration (Figure 1) are
in very good agreement. In the Arctic proper, the sea ice
concentration is close to 100% in both cases. The sea ice

concentration in the Chukchi Sea Sea is somewhat over-
estimated in the simulation, pointing to the impact of the
inflow of warm Pacific water through the Bering Strait,
which is closed in the simulation. The ice edge and the
concentration gradient in the Labrador and the Barents seas
are well simulated. In the central Greenland Sea an ice
tongue known as Is Odden (Norwegian for headland)
[Wadhams et al., 1996] is visible in the satellite-derived
data. The simulated sea ice shows a tongue with a
disconnected maximum that is located a little bit too far
to the north. The bay of open water at about 75�N, known
as Nordbukta is visible in the simulation and the observa-
tion, although the ice-free area is somewhat larger in the
observation.
[17] The modes of variability of the simulated and remote

sensing sea ice concentration are compared by performing a
MCA for the 7-month running mean filtered winter anoma-
lies. The first four MCA modes describe 31%, 18%, 11%,
and 12% of the variance for the remote sensing observation
and 31%, 25%, 12%, and 4% of the simulated sea ice
concentration. According to North’s ‘‘rule of thumb’’ [North
et al., 1982] only the first two modes can be assumed to be
robust and will be discussed in the following. The first two
MCA modes describe nearly as much variance as the first
two EOF modes (33% and 19% for the remote sensing data;
33% and 26% for the modeled data). Thus the MCA modes
are close to the dominant modes. The correlation between
the principal components of the first two MCA modes of
satellite and modeled sea ice concentration is 0.95 and 0.93,
respectively. The first two MCA patterns are mutually
orthogonal to O(10�3). The mutual correlation of the first
two MCA coefficients for the simulated and observed sea
ice concentration do not exceed 0.13; that is, they can be
regarded as uncorrelated.
[18] The first MCA mode (Figure 2) depicts a dipole

between the Labrador Sea and the Nordic Seas/Barents Sea
strongly resembling the mode described by Deser et al.

Figure 1. (a) Satellite-derived and (b) simulated long-term mean (1978–2001) sea ice concentrations
(%) for the winter months (November–April). The pole hole for the satellite observations is marked in
Figure 1a by a white ellipsoid. The contour level is 10%. Only concentrations greater than 2% are shown.
See color version of this figure at back of this issue.
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[2000]. Again, the large-scale structure of the remote sens-
ing and simulated sea ice concentration mode is very
similar. On the regional scale the negative anomalies in
the Barents Sea have similar amplitudes but the anomalies
are shifted a little bit to the south and to the west in the
simulation. In the central Greenland Sea the maximal
anomalies in the simulation are shifted to the north and
smaller in amplitude, but reflect some variability of the
Odden. The positive anomaly in the Labrador Sea is very

well represented in the simulation and even a positive
anomaly on the east coast of southern Greenland is visible.
The principal component of the mode (Figure 2c) exhibits
quasi-decadal oscillations with positive maxima in the early
halves of the 1980s and 1990s and an indication for a new
maximum evolving from 2000 onward. The mode is very
persistent (winter to winter correlation 0.61) and is lag-
correlated with the Arctic Oscillation (AO) [Thompson and
Wallace, 1998] (data obtained from http://horizon.atmos.
colostate.edu/ao) with a correlation of r = 0.79, where the
AO leads by six month. Because of the data processing
(construction of the winter time series, application of a
7-month running mean) time lags are difficult to interpret.
What we can say is that a time lag of six months clearly
indicates that the previous winter AO strongly influences
the current winter first MCA mode.
[19] An extraordinarily strong anomaly beginning in

November 1998 is visible in the MCA coefficients of the
second mode (Figure 3). The corresponding MCA patterns
show a dipole with positive anomalies in the eastern Barents
Sea and negative anomalies in the western Barents Sea and
the Nordic Seas. There are some slightly positive anomalies
in the Labrador Sea. Comparing the remote sensing data
with the modeled sea ice concentration reveals anomalies of
the observed amplitude. The minimum in the Barents Sea is
slightly stronger in the simulation and located further south.
The minimum in the Greenland Sea is correctly located but
also slightly stronger. The remote sensing data also show
the negative anomalies in the Labrador Sea. Again, the
simulation overestimates these anomalies in the Labrador
Sea.

3.2. Summer Months

[20] Having in mind that the accuracy of the remote
sensing sea ice concentrations in summer is around 15%,
the modeled mean sea ice concentrations in the summer half
year (Figure 4) (May to October) matches the observations
well. Largest discrepancies occur in the East Siberian Sea
where the model overestimates sea ice concentration by
about 20%. On the other hand, the model underestimates
sea ice west of the New Siberian Islands by about 20%. We
assume that the east-west ice transport is too low because the
passage between the New Siberian Islands and Siberia is
very narrow in the model. As in winter, sea ice concentration
is overestimated in the simulation in the Chukchi Sea
probably because of the closed Bering Strait. In the central
Arctic the model estimates sea ice concentrations 10–�20%
lower than the satellite data indicate. This is at the margin of
uncertainty for the remote sensing data but the use of the
NCEP/NCAR cloud cover in the model may contribute to
the discrepancy. Compared with observations [see, e.g.,
Ebert and Curry, 1993] the NCEP cloud cover in summer
is much too low.
[21] On the regional scale, the model fits the concentra-

tion in the Labrador Sea well. The correspondence in the
Barents and Greenland Sea is also very accurate.
[22] The first four MCA modes in summer describe 22%,

21%, 14%, and 6% of the variance for the remote sensing
observation and 31%, 14%, 8%, and 11% for the modeled
sea ice concentration. According to North’s ‘‘rule of thumb’’
even the first two modes cannot be assumed as robust (i.e.,
the eigenvalues are too close) but will be discussed here

Figure 2. The first MCA mode for winter. (a) The remote
sensing (31% expl. variance), (b) the simulated (31% expl.
variance) sea ice concentration (%), and (c) the principal
components. In Figure 2c the solid line represents the pc of
the simulation, the dashed line represents the pc of the
remote sensing data, and the gray line represents the Arctic
Oscillation index. In Figures 2a and 2b, only concentrations
greater than 2% are shown. See color version of this figure
at back of this issue.
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anyway. Again, the first two MCA modes describe nearly as
much variance as the two leading EOF modes. The corre-
lation between the principal components of the first two
MCA modes is 0.93 and 0.92. The first two MCA patterns
are orthogonal and the principal components uncorrelated.
[23] The first MCA mode (Figure 5) has largest ampli-

tudes in the Beaufort and East Siberian seas. Small-scale
features of opposite sign populate the Laptev, Kara, and
Barents seas. The model’s first MCA mode depicts stronger
positive amplitudes in the Beaufort Sea and stronger neg-
ative amplitudes in the East Siberian Sea than the remote

sensing data. The simulated negative anomaly in the East
Siberian Sea extends into the central Arctic. The small-scale
features in the Siberian shelf seas are captured rather
faithfully in the model. Positive anomalies in the Nordic
Seas in the model are not present in the remote sensing data.
The principal components of both model and observation
(Figure 5c) reveal a dramatic event in the summer 1990 and
decreasing amplitude from then onward.
[24] The second MCA mode (Figure 6) depicts negative

amplitudes along the Arctic coastal zone from the Laptev
Sea to the Beaufort Sea. The simulation shows variability in
the Chukchi Sea not visible in the observation. We attribute
this to the closed Bering Strait. In the model, the anomaly
extends from the Laptev Sea into the central Arctic while it
is confined to the shelf seas in the observations. This mode
is distinguished by a strong positive trend of the principal
component during the 23 years of the analysis.

4. Discussion of the Dominant MCA Modes:
Physical Mechanisms

[25] The comparison of remote sensing and modeled sea
ice data reveals differences in details but the general
behavior of the model seems to be very satisfying and
encourages the investigation of the underlying processes in
the atmosphere and the ocean that cause the modes of sea
ice variability.
[26] To discuss relations of the MCA modes of sea ice

concentration with other variables (forcing variables and
model related variables) linear regression is used. Linear
regression is the method of choice for explaining variations
in one primary variable (sea ice concentration) in terms of
changes in other subsidiary variables (SAT, wind stress,
ocean velocities etc.) [Thiébaux, 1994]. The statistical
significance of correlation coefficients and regression pat-
terns is discussed in the appendix.

4.1. First Winter MCA Mode: Oceanic Heat Transport

[27] As suggested by Figure 2c, there seems to be a
connection between the first MCA mode in winter and the
Arctic Oscillation. Figure 7 displays the correlation between
the first MCA mode and the Arctic Oscillation for different
time lags. The highest correlation is achieved for a lag of six
months (r = 0.79), whereby the Arctic Oscillation leads.
According to the preparation of the data (see chapter 2.3), a
lag of six months means that the previous winter determines
the sea ice conditions of the current winter. The regression
patterns of the Arctic Oscillation with the sea ice concen-
tration (not shown) strongly resembles the first MCA mode
(Figures 2a and 2b). However, the MCA mode can not
discriminate areas with different time lags of the response to
the Arctic Oscillation. Therefore we calculated lagged
regressions between the sea ice concentration and the Arctic
Oscillation. In Figure 8 the time lag of the maximal
correlations with the AO for the satellite and the model
data are plotted. In the Labrador Sea, the sea ice signal
follows the Arctic Oscillation with a lag of 2–4 months. In
the Greenland Sea, the delay is 6–8 months, and in the
eastern Barents Sea delays up to 12 winter months (i.e., 2–3
years) are obtained.
[28] A lag of 2–4 months as in the Labrador Sea is not

substantial in the light of the 7 months running mean

Figure 3. The second MCA mode for winter. (a) The
remote sensing (14.2% expl. variance), (b) the simulated
(16.7% expl. variance) sea ice concentration (%), and (c) the
principal components. In Figure 3c the solid line represents
the pc of the simulation, and the dashed line represents the
pc of the remote sensing data. In Figures 3a and 3b only
concentrations greater than 2% are shown. See color version
of this figure at back of this issue.
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smoothing. Lags of 6 to 12 winter months, on the other
hand, can only be explained by nonlocal, presumably
oceanic processes. Figure 9 depicts the instantaneous linear
relationship between the simulated SST and the Arctic
Oscillation and the response two winters later. Instantane-
ously, positive anomalies can be found in the North Sea, the
Norwegian Sea, and the Barents Sea while the Labrador Sea
shows a cooling. After two winters, there are still positive
anomalies visible in the Barents and Greenland seas. We
attribute the long delays found in the Greenland and Barents
seas to the advection of heat anomalies caused by the
anomalous heat transport in the atmosphere during a high
Arctic Oscillation index in the Nordic Seas [Furevik, 2001].
These anomalies are produced in winter in the Nordic Sea
and extend over the deep winter mixed layer. In summer the
anomalies are insulated from the atmosphere by a shallow
mixed layer. They are reentrained when the mixed layer
deepens again in fall and winter in a reemergence mecha-
nism like that described by Timlin et al. [2002].
[29] Karcher et al. [2002] show that at the end of the

1980s a strong positive temperature anomaly enters the
Arctic Ocean through Fram Strait and the Barents Sea
opening (BSO) between Svalbard and northern Norway.
Figure 10 displays the net heat transport (relative to 0�C)
into the Barents Sea through the BSO section. Except for
the end of the record, there is a remarkable resemblance of
the heat transport through the BSO and the first winter
MCA mode. The correlation between the BSO heat trans-
port and the AO in the period 1978 to 1998 is maximal
when the AO leads with a lag of about 5 months (r = 0.56).
The BSO heat transport on the other hand is leading the first
MCA mode by about 2–3 months (r = 0.84). Taking into
account the advection time of heat anomalies from the BSO
into the eastern Barents Sea (about one years [Karcher et
al., 2002]), we conclude that heat anomalies in the Nordic
Seas associated with anomalous states of the Arctic Oscil-
lation have a travel time that stretches over at least 2
winters.

[30] Vinje [2001] found a strong correlation between the
temperature of the Atlantic Water at weather ship Mike and
the eastern Barents Sea sea ice extent with a lag of 2–3
years, which supports our analysis. In summary, the first
MCA mode of the sea ice concentration in winter reflects a
delayed response to the Arctic Oscillation due to heat
transport in the ocean.

4.2. Second Winter MCA Mode: The Late
1990s Anomaly

[31] The second MCA mode for winter was especially
pronounced in the late 1990s (Figure 3c). It is associated
with a triple pole sea level pressure anomaly (Figure 11). An
almost Arctic-wide high-pressure anomaly with its center
over the Kara Sea is surrounded by low-pressure anomalies
with centers over the North Sea and over the Bering Sea,
respectively. The pressure anomaly has a strong gradient
over the Barents Sea that causes less than normal ice export
into the western Barents Sea and stronger than normal ice
export through the Kara Gate into the eastern Barents Sea
(Figure 12). The anomalous transport results in the sea ice
concentration dipole in the Barents Sea (Figure 3).
[32] Large distance advection in the ocean is unimportant

for the second winter mode that shows an instantaneous
relation with the atmospheric forcing. Associated with this
mode is an increased Beaufort gyre resulting in decreased
sea ice thickness in the Canadian Archipelago and increased
sea ice thickness at the coastal zones of the East Siberian
Sea. The principal component (Figure 3c) has an outstand-
ing maximum in the winter 1999, preceding the large
transport of heat through the BSO into the Barents Sea
(Figure 10) that was not related to the AO.

4.3. First Summer MCA Mode: Lingering
Winter Effects

[33] The instantaneous regression pattern of the modeled
sea ice thickness in winter with the Arctic Oscillation in
winter (Figure 13) shows reduced sea ice thickness in the

Figure 4. (a) Satellite-derived and (b) simulated long-term mean sea ice concentrations (%) for the
summer months (May–October). The contour level is 10%. See color version of this figure at back of this
issue.
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East Siberian Sea (up to 1 m) and the central Arctic. Sea ice
thickness is larger in the Beaufort Sea, in the Canadian
Archipelago, the Kara Sea, the Greenland Sea along the
Greenland Coast, and in the Labrador Sea. The structure of
the first summer MCA mode (Figures 5a and 5b) of the sea
ice concentration strongly resembles the winter sea ice
thickness anomaly associated with the AO (Figure 13). A
lagged correlation between the principal component of the
first MCA mode in summer and the previous winter time
AO (Figure 14) reveals highest correlation (r = 0.87) for lag
0, i.e., between the AO state of the previous winter and the
first summer mode. Much lower correlations are obtained

between the first MCA mode and the summer time AO (not
shown).
[34] The most prominent event in the time series for the

winter AO is the strong increase toward the winter 1989/
1990 and, correspondingly, the strong increase of the first
summer mode toward the summer 1990. The proposed
mechanism can thus be best illustrated by taking the
winter/summer 1989/1990 sequence. The strong AO of that
winter caused a large sea ice transport through Fram Strait
[Köberle and Gerdes, 2003]. The Arctic sea ice volume is
strongly reduced by the export. This allows more rapid
generation of open water in the following spring, both due

Figure 5. The first MCA mode for summer. (a) The
remote sensing (19.5% expl. variance), (b) the simulated
(23.9% expl. variance) sea ice concentration (%), and (c) the
principal components. In Figure 5c the solid line represents
the pc of the simulation, and the dashed line represents the
pc of the remote sensing data. In Figures 5a and 5b, only
concentrations greater than 2% are shown. See color version
of this figure at back of this issue.

Figure 6. The second MCA mode for summer. (a) The
remote sensing (16.6% expl. variance), (b) the simulated
(11.5% expl. variance) sea ice concentration (%), and (c) the
principal components. In Figure 6c the solid line represents
the pc of the simulation, and the dashed line represents the
pc of the remote sensing data. In Figures 6a and 6b, only
concentrations greater than 2% are shown. See color version
of this figure at back of this issue.
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to less ice to melt and to less restricted ice movement. The
absorption of solar radiation by the mixed layer reinforces
this development. Figure 15 depicts the mixed layer temper-
ature regressed on the first summer MCA mode. In the
mixed layer temperature regression, the sea ice concentra-
tion mode is clearly visible. Where the sea ice concentration
is decreased, the mixed layer temperature is increased and
vice versa. In the East Siberian Sea, the mixed layer
temperature is up to 1�C higher, and in the Beaufort up to
1�C lower than normal. The warm mixed layer warms the
overlying atmosphere. The lower sea ice concentration in
summer appears as a consequence of the sea ice thickness
conditions in the previous winter. The influence of the
winter conditions on the summer sea ice concentration is
also documented by Rigor et al. [2002] and supported by
several modeling studies [Hu et al., 2002; Köberle and
Gerdes, 2003; Bitz, 1997; Walsh and Zwally, 1990].
[35] The observed state of the atmosphere in summer is

also consistent with this picture. Figure 16 depicts the air

temperature on 1000 hPa and 600 hPa isobars regressed
upon the first MCAmode. The air temperature pattern on the
1000 hPa isobar reflects the sea ice concentration mode with
a warming spread over the central Arctic (up to 0.5�C), i.e.,
in areas of reduced sea ice concentrations. The regression
pattern shows also warming in the eastern Barents Sea and in
the Kara Sea where sea ice concentration is reduced. Colder
than normal temperatures are found over the Beaufort and
the Laptev Sea where the sea ice concentration is increased.
On the 600 hPa isobar (in about 4000 m height) the imprint
of the sea ice concentration pattern is not reflected anymore.
Thus the temperature anomaly is restricted to the lower
atmosphere and exhibits small spatial structure consistent
with the sea ice cover. We interpret this as an imprint of the
sea ice distribution and corresponding ocean heat fluxes on
the lower atmosphere. A direct forcing of the sea ice
concentration mode by air temperature anomalies, on the
other hand, should be seen on both height levels.
[36] The presented analysis clearly shows the limits of the

model forcing as employed in this study. The model is
forced with the 2-m air temperature. As can be seen in
Figure 16 the 2-m air temperature implicitly ‘‘knows’’ the
sea ice concentration and mixed layer temperature (the
lower boundary conditions of the reanalysis model). Thus
even if our model describes the wind stress driven sea ice
variability correctly the vertical heat fluxes are wrong,
because wind driven sea ice changes are implicitly present
in the 2-m air temperature. This means that analyzing the
heat flux anomalies gives no accurate insight. The problem
can only be avoided by coupling of (at least) an atmospheric
boundary layer model [Seager et al., 1995; Kleeman and
Power, 1995; Rinke et al., 2003].

4.4. Second Summer MCA Mode: Climate Change?

[37] In contrast to the first summer mode, the patterns of
air temperature associated with the second mode show a

Figure 7. The correlation between the first MCA mode
and the Arctic Oscillation for different time lags (months).
Negative values mean that the Arctic Oscillation leads.

Figure 8. The time lag (months) of the maximal correlation between the sea ice concentration and the
Arctic Oscillation for (a) the satellite-derived sea ice concentrations and (b) the modeled sea ice
concentrations in winter. See color version of this figure at back of this issue.
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warming signal on the 1000 hPa as well as on the 600 hPa
isobars (Figure 17). Because the warming signal is visible
on both isobar levels we argue that the warming is not
caused by sea ice concentration anomalies but is caused by
high-reaching atmospheric heat anomalies. The pattern’s
amplitude at the 1000 hPa isobar is somewhat stronger than
the amplitude at the 600 hPa. This may reflect a positive
feedback between air temperature and sea ice concentration.
On the 100 hPa isobar (i.e., the upper troposphere) the
pattern (Figure 17c) associated with the second summer
MCA mode depicts a slight cooling. The pattern of geo-
potential height (Figure 18) on the 600 hPa surface
regressed on the second summer mode shows a positive
anomaly (i.e., a low-pressure anomaly) located over the
Arctic and the Northern North Atlantic. We argue that this
anomaly (reflecting an increased Arctic Vortex not caused
by the sea ice) increases the heat advection into the Arctic
troposphere along the pathway of the storm tracks resulting
into the air temperature anomalies (compare Figure 17).
[38] The principal component of the second summer

MCA mode depicts a strong positive trend over the 23

years of the comparison (Figure 6c). We can not prove
whether the mode shows an (anthropogenic) trend or if the
mode is a manifestation of long-term (multidecadal) varia-
bility. Nevertheless, the mode is associated with changes in
the atmosphere which are consistent with the expected
imprint of Climate Change, i.e., an increased Arctic Vortex
linked with a warming of the lower and middle troposphere
and a cooling of the upper troposphere/stratosphere [Albrit-
ton et al., 2001].

4.5. Sea Ice Summer Modes and Arctic Sea Ice
Area Trends

[39] The model provides sea ice concentration for the
period 1948 to 2001. By projecting the modeled sea ice data

Figure 9. The winter month SST regressed upon the AO for (a) lag 0 and (b) lag 12 months. Shown is
the change of the SST (�C) related to one standard deviation change of the AO. See color version of this
figure at back of this issue.

Figure 10. The net heat transport (solid line) in the winter
months (TW) relative to 0�C into the Barents Sea through
the Barents Sea opening (BSO). The gray line shows the
(scaled) Arctic Oscillation index.

Figure 11. The sea level pressure regressed upon the
second MCA mode in winter. Shown is the change of the
sea level pressure (Pa) related to one standard deviation
change of the second MCA mode principal component.
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onto the summer modes we are able to receive the principal
components for the whole modeled time period. Figure 19
shows the first two summer principal components for 1948
to 2000. Both principal components have interdecadal
variability prior to 1990 but the behavior in the 1990s is
unique. While the first principal component changes
strongly to large positive values in 1989 (the ‘‘lingering
winter mode’’) and drops back slowly to normal values in
the following years the second principal component exhibits
a strong upward trend from 1990 onward that is super-
imposed by biannual variability (the ‘‘Climate Change’’
mode).

[40] A change of one standard deviation in the first mode
is associated with a change of the Arctic-wide sea ice area
by �1.2 � 105 km2. The corresponding number for the
second mode is �1.7 � 105 km2. Multiplying these sea ice
area changes by the principal components and superimpos-
ing both modes we calculate the Arctic-wide sea ice area
fluctuations associated with the first two summer modes
(Figure 20). The two modes are able to describe much of the
variability of the total sea ice area except in the 1960s. The
total sea ice area drops from high to low values in summer
1989 and remains low during almost the whole 1990s. This
drop is caused by the increase of the AO in winter 1989 (the
‘‘lingering winter’’ mode) and by the trend in the ‘‘Climate
Change’’ mode in the 1990s. Both modes together yield the
extremely low ice area of the 1990s and in summer 2000.
[41] The 1960s are exceptional. There, the first two MCA

modes cannot describe the extremely high sea ice area. The
end of the 1960s are strongly influenced by the Great
Salinity Anomaly (GSA) [Dickson et al., 1988]. The high
sea ice area prior to the GSA seems to be inconsistent with

Figure 12. Sea ice thickness (gray scale) and the sea ice
velocity (vector) regressed upon the second MCA mode in
winter. Shown is the change of the sea ice thickness (m) and
the sea ice transport (cm/s) related to one standard deviation
change of the second MCA mode principal component. See
color version of this figure at back of this issue.

Figure 13. Sea ice thickness regressed upon the AO.
Shown is the change of the sea ice thickness (m) related to
one standard deviation change of the AO. See color version
of this figure at back of this issue.

Figure 15. The mixed layer temperature regressed upon
the first summer MCA mode. Shown is the change of the
mixed layer temperature (�C) related to one standard
deviation change of the first summer MCA mode. Only
changes greater than 0.1�C are shown. See color version of
this figure at back of this issue.

Figure 14. The correlation between the first MCA mode
in summer and the Arctic Oscillation in winter for different
time lags (months).
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the described modes of variability hinting that physical
mechanisms not described by these two modes are involved.

5. Conclusions

[42] In the first part of this study we were able to show
that the leading statistical modes of common observed and
modeled sea ice concentration variability resemble each
other to a high degree. Even small-scale features like the
Greenland Sea’s Is Odden and the associated ice-free
region, the Nordbukta, are captured by the model. Larger
discrepancies occur in summer due to the use of the NCEP/
NCAR cloud cover which has too low values. Additional
discrepancies show up where ocean straits are poorly
resolved by the model (e.g., between the New Siberian
Island and Siberia). The influence of the closed Bering
Strait in the simulation can be seen in the Chukchi Sea.
[43] The advantage of the procedure followed here is

that only those modes of variability are analyzed which are
common in observation and simulation. Because it is very

unlikely that the sampling variability of the observation
and the simulation are temporally correlated the approach
reduces the influence of sampling variability. This does not
necessarily mean that the statistical modes are physical
modes (i.e., eigenstates of the underlying (linearized)
physical equations) because the physical modes can be
linear combinations of the statistical modes. However, it
was possible to explain the statistical modes of variability
by well known physical processes, which gives some

Figure 16. The air temperature on the (a) 1000 hPa and
(b) 600 hPa isobars regressed upon the first summer MCA
mode. Shown is the change of the air temperature (�C)
related to one standard deviation change of the first summer
MCA mode.

Figure 17. The air temperature on the (a) 1000 hPa, (b)
600 hPa, and (c) 100 hPa isobars regresses upon the second
summer MCA mode. Shown is the change of the air
temperature (�C) related to one standard deviation change of
the second summer MCA mode.
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confidence that the discussed modes are in fact physical
modes.
[44] For both seasons the leading dominant modes of

variability are connected to the wintertime Arctic Oscilla-
tion. In winter, the response to the AO is delayed by several
months because of heat advection in the Nordic Seas.

Especially the sea ice concentration in the Barents Sea lags
the AO by up to two winters. In summer, the imprint of the
AO of the previous winter has been detected in the leading
mode and associated with reduced ice thickness following
ice transport events.
[45] The pattern of the NCEP 2-m temperature regressed

upon the first mode in summer demonstrates the general
inconsistency in forced sea ice ocean models. The regres-
sion pattern ‘‘knows’’ the sea ice properties to be simulated
because of the lower boundary conditions used by the
reanalysis model. So it is not only that some atmosphere-
ocean feedbacks are not implemented, but rather unphysical
feedbacks are introduced. For the future we plan model
simulation where an atmosphere surface boundary layer
model is coupled to the sea ice-ocean model.
[46] Most of the results treated so far confirm results that

have been discussed earlier. An innovation is the second
summer mode. The mode is associated with a warming of
the lower and middle troposphere and a cooling of the upper
troposphere and the ‘‘reconstructed’’ principal component
shows a trend superimposed by some short-term fluctua-
tions beginning at about 1990. The principal component
shows no such trend in the four decades prior to the 1990s
but contains decadal variability. With these properties, the
second summer mode has all ingredients a ‘‘climate warm-
ing’’ fingerprint should have. However, at the present time
one can hardly state that the results are significant. The
mode is surely not robust in a statistical sense. For robust
results longer integrations with high-resolution ocean-sea
ice models are necessary to estimate the ‘‘natural’’ varia-
bility of the Northern Hemisphere sea ice.

Appendix A: Statistical Significance

[47] When dealing with correlation coefficients (and
regression patterns) the question of statistical significance
arises. Parametric or nonparametric test can be applied. If
parametric tests are applied the premises (like for instance
the question if the variable is Gaussian) have to be checked
carefully. Often this is not possible due to the limited
degrees of freedom (length of the time series). Estimating
the degrees of freedom is also problematic because the time
series are often serial correlated (winter-to-winter correla-
tion of the first winter MCA principal component r = 0.6).
Nevertheless, we performed two different parametric tests.
[48] The first we used is a t-test. With estimated n = 23

degrees of freedom (=number of winters), correlation coef-

Figure 18. The geopotential height on the (a) 1000 hPa
and (b) 600 hPa isobars regresses upon the second summer
MCA mode. Shown is the change of the geopotential height
(m) related to one standard deviation change of the second
summer MCA mode.

Figure 19. The first (black) and second (gray) summer
principal components for 1948–2000.

Figure 20. The total summer anomalous sea ice area
(black) and the superposition of the first two MCA modes
(gray). Unit: (105 km2).
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ficients greater than 0.37 are statistically significant at the
95% level. For the second test, we fitted an AR(1) process
(premise: AR(1) processes describe variables with a red
spectra) to the time series by estimating the autocorrelation
and performed Monte Carlo Experiments which give sig-
nificance levels. The significance levels depend on the time
series used. Correlation coefficients greater than 0.90 are
statistically significant at the 95% level for the first winter
MCA principal component (the time series with the highest
serial correlation) and correlation coefficients greater than
0.8 are significant at the 95% level for the other discussed
MCA principal components. The two approaches differ
considerably. Surely, the t-test underestimates the signifi-
cance levels and the AR(1) test is likely to overestimate the
significance levels.
[49] The statistical significance of regression patterns can

be tested by local t tests or local F tests. However,
regression patterns are spatially correlated, which means
that a pattern locally significant can be globally not sig-
nificant. Also a pattern statistically not significant, can be
physical significant. ‘‘In general, patterns are worthy to
physical interpretation when the basic structure is not
strongly affected by sampling variability (i.e., when there
is reproducibility)’’ [von Storch and Zwiers, 1999].
[50] We performed local F tests. In general the structures

with the highest amplitudes of all regression patterns shown
in this study are highly statistically significant. However, we
are more interested in physical significance and followed an
approach of Wallace and Gutzler [1981]. Wallace and
Gutzler assessed reproducibility by comparing the regres-
sion patterns for independent data. We split the time series
in two halfs and compared the regression patterns. Only
those structure in the regression patterns which are reprodu-
cible (show up in both regression patterns of the two halfs
of the time series) are discussed in this study. The regression
patterns shown are the regression patterns of the whole time
series.
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Figure 1. (a) Satellite-derived and (b) simulated long-term mean (1978–2001) sea ice concentrations
(%) for the winter months (November–April). The pole hole for the satellite observations is marked in
Figure 1a by a white ellipsoid. The contour level is 10%. Only concentrations greater than 2% are shown.
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Figure 2. The first MCA mode for winter. (a) The remote
sensing (31% expl. variance), (b) the simulated (31% expl.
variance) sea ice concentration (%), and (c) the principal
components. In Figure 2c the solid line represents the pc of
the simulation, the dashed line represents the pc of the
remote sensing data, and the gray line represents the Arctic
Oscillation index. In Figures 2a and 2b, only concentrations
greater than 2% are shown.

Figure 3. The second MCA mode for winter. (a) The
remote sensing (14.2% expl. variance), (b) the simulated
(16.7% expl. variance) sea ice concentration (%), and (c) the
principal components. In Figure 3c the solid line represents
the pc of the simulation, and the dashed line represents the
pc of the remote sensing data. In Figures 3a and 3b only
concentrations greater than 2% are shown.
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Figure 4. (a) Satellite-derived and (b) simulated long-term mean sea ice concentrations (%) for the
summer months (May–October). The contour level is 10%.
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Figure 5. The first MCA mode for summer. (a) The
remote sensing (19.5% expl. variance), (b) the simulated
(23.9% expl. variance) sea ice concentration (%), and (c) the
principal components. In Figure 5c the solid line represents
the pc of the simulation, and the dashed line represents the
pc of the remote sensing data. In Figures 5a and 5b, only
concentrations greater than 2% are shown.

Figure 6. The second MCA mode for summer. (a) The
remote sensing (16.6% expl. variance), (b) the simulated
(11.5% expl. variance) sea ice concentration (%), and (c) the
principal components. In Figure 6c the solid line represents
the pc of the simulation, and the dashed line represents the
pc of the remote sensing data. In Figures 6a and 6b, only
concentrations greater than 2% are shown.
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Figure 8. The time lag (months) of the maximal correlation between the sea ice concentration and the
Arctic Oscillation for (a) the satellite-derived sea ice concentrations and (b) the modeled sea ice
concentrations in winter.

Figure 9. The winter month SST regressed upon the AO for (a) lag 0 and (b) lag 12 months. Shown is
the change of the SST (�C) related to one standard deviation change of the AO.
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Figure 12. Sea ice thickness (gray scale) and the sea ice velocity (vector) regressed upon the second
MCA mode in winter. Shown is the change of the sea ice thickness (m) and the sea ice transport (cm/s)
related to one standard deviation change of the second MCA mode principal component.

Figure 13. Sea ice thickness regressed upon the AO.
Shown is the change of the sea ice thickness (m) related to
one standard deviation change of the AO.

Figure 15. The mixed layer temperature regressed upon
the first summer MCA mode. Shown is the change of the
mixed layer temperature (�C) related to one standard
deviation change of the first summer MCA made. Only
changes greater than 0.1�C are shown.
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