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the Southern Ocean surrounding antarctica is a region that is key to a range of climatic 
and oceanographic processes with worldwide effects, and is characterised by high 
biological productivity and biodiversity. Since 2013, the International Bathymetric Chart 
of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of 
bathymetry for the Southern Ocean south of 60°S. Recently, the IBCSO Project has combined 
its efforts with the Nippon Foundation – GEBCO Seabed 2030 Project supporting the goal 
of mapping the world’s oceans by 2030. New datasets initiated a second version of IBCSO 
(IBCSO v2). This version extends to 50°S (covering approximately 2.4 times the area of 
seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current 
and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, 
IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor 
and resolves many submarine landforms in more detail. This makes IBCSO v2 the most 
authoritative seafloor map of the area south of 50°S.

Background & Summary
The Southern Ocean is a major component of the coupled ocean-atmosphere climate system1 and includes the 
largest ocean current on earth, the Antarctic Circumpolar Current (ACC). It is furthermore the most important 
ocean region for the uptake of anthropogenic CO2 and heat from the atmosphere2,3, and cold and dense bottom 
waters form on the shelves surrounding Antarctica4,5. Interactions of the Southern Ocean with Antarctic gla-
ciers and ice shelves are the main drivers of present, past, and future Antarctic ice sheet mass balance6 and thus 
global sea-level change. Biologically, the Southern Ocean is a high-productivity area7 with high biodiversity8. 
The Southern Ocean is also one of the most remote and harshest areas of the world with extensive sea-ice cover 
and year-round severe weather conditions. Despite its remoteness and hostility, human activities are increasingly 
extending into this distant part of the world, examples including research, fisheries, and tourism. Precise bathy-
metric information as e.g. provided by the International Bathymetric Chart of the Southern Ocean (IBCSO) and 
the Digital Bathymetric Model of the Drake Passage (DBM-BATDRAKE)9 are paramount to better understand 
the Southern Ocean and its processes as well as for human activities and conservation and management meas-
ures10. IBCSO aims to provide the most comprehensive compilation of bathymetric data for this region.

IBCSO was initiated in 2006 with the first version published by Arndt et al. in 201311. It is the southern 
equivalent of the International Bathymetric Chart of the Arctic Ocean (IBCAO), which was originally pro-
duced in 2000 and recently released its fourth version12,13. Both initiatives are regional mapping projects of the 
General Bathymetric Chart of the Oceans (GEBCO). GEBCO is a project under the auspices of the International 
Hydrographic Organization (IHO) and the Intergovernmental Oceanographic Commission (IOC) with the goal 
to produce the authoritative map of the world’s oceans. Furthermore, IBCSO has combined its efforts with 
and is supported by the Nippon Foundation – GEBCO Seabed 2030 Project launched in 2017 by the Nippon 
Foundation of Japan and GEBCO14. The IBCSO Project is also an integral part of the Antarctic research commu-
nity and an expert group of the Scientific Committee on Antarctic Research (SCAR).

Initially, IBCSO was limited to the Antarctic Treaty area covering the area south of 60°S with a resolution 
of 500 m × 500 m in a Polar Stereographic projection11. Following the release of Version 1, the user community 
expressed the wish for an IBCSO reaching to 50°S to cover the entire ACC and the Antarctic circumpolar fron-
tal systems. This request, the growing demand for bathymetric information of the Southern Ocean, and the 
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availability of numerous new bathymetric datasets collected since the first version of IBCSO were the motiva-
tions to produce a new version of IBCSO.

Here we present IBCSO Version 2 (IBCSO v2) (Fig. 1) covering the area south of 50°S. The resolution is 
500 m × 500 m in IBCSO Polar Stereographic projection (EPSG: 9354, see also the usage notes). It covers over 77 
million km² of seafloor (approximately 2.4 times the area of seafloor covered by IBCSO v1). Highlights include 
improved bathymetries for the important oceanographic gateways of the ACC, the Drake Passage (now entirely 
included in IBCSO v2), and the Tasmanian Gateway (Fig. 1). The IBCSO v2 Digital Bathymetric Model (DBM) 
is available in two topography versions: one with ice surface elevation on the Antarctic continent and one with 
bedrock elevation, including sub-ice topography15. Furthermore, we provide a Type Identifier (TID) grid that 
indicates the type of data that composes each grid cell. The TID codes adhere to GEBCO standards (Table 1). In 
addition, a unique Regional Identifier (RID) grid links each data cell to the corresponding metadata information 
and thus the DBM’s cell value origin. All grids, a metadata table, and a digital chart of IBCSO v2 are publicly 
available for download from the PANGAEA data repository16.

Methods
The increase in coverage from IBCSO v1 to IBCSO v2 resulted in a substantial increase in the amount of data 
processing necessary at all levels from data submission to product generation. To cope with this higher com-
puting workload, we have created a full computational environment surrounding the main processing pipeline 
(SEAHORSE, Fig. 2) of the IBCSO v2 DBM. This environment includes a database management system linked 
to SEAHORSE. To reduce run times, SEAHORSE is running dedicated code in a high-performance computing 
environment using parallel computing.

On submission, the quality and integrity of datasets is assessed visually and autonomously using designated 
Python scripts in order to identify major errors (e.g. inverted coordinates, wrong projections, outliers). After 
these initial checks, weights (Table 2) are assigned to datasets for later processing. Weights are based on the type 
of data (Table 1) as well as the quality and age of the data16. Multibeam datasets have generally high weights 
(≥15) compared to e.g. singlebeam data (weights ≤10) in order to supersede during data processing. Then, the 
data are transferred as ASCII XYZ files to SEAHORSE for the production of the IBCSO DBM.

SEAHORSE processing workflow. SEAHORSE consists of four distinct stages (Stage A-D, Fig. 2), each 
containing a number of individual steps. All stages can be run independent from each other. Outputs include 
extensive reports for quality assurance (QA) and continuous feedback to the IBCSO metadata database (i.e. prop-
erties of the data sets derived from processing). SEAHORSE harmonises submitted datasets (harmonisation – 
Stage A), subdivides them into smaller spatial chunks of data (tiling – Stage B), calculates weighted blockmedians 
within these chunks (weighted statistics – Stage C) and computes a composite of all data (containing data of all 
quality). Furthermore, a subset that contains only high-quality data (weights ≥ 15) is computed for subsequent 
gap-filling to produce the final grid product (product creation – Stage D).

Stage A: harmonisation. The initial Stage A (Fig. 2) harmonises incoming datasets line by line and adds the 
harmonised version of the input data to the IBCSO file database. The harmonisation arranges arbitrarily ordered 
datasets into standardised XYZ files (consisting of an X, Y, and Z column) with each line representing a single 
geographic location and depth sounding. A next step identifies and removes potential errors in the data, such 

Fig. 1 (a) Shaded relief of IBCSO v2 with ice surface topography. (b) Regional Identifier (RID) grid showing 
unique datasets (multicolours), topographic data (white), interpolated transition zone (black) and predicted 
bathymetry (dark grey). (c) Locations of example areas shown in Fig. 7.

https://doi.org/10.1038/s41597-022-01366-7


3Scientific Data |           (2022) 9:275  | https://doi.org/10.1038/s41597-022-01366-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

as erroneous depths (values exceeding known maximum depths in the study area) and implausible coordinate 
values (e.g. ship-borne bathymetry with locations on land). Output files from Stage A contain X, Y and Z val-
ues rounded to 1-metre accuracy, with duplicates removed, and separated by a standardised column separator. 
They are stored in a harmonised file database using the dataset identifier and the associated weight as filenames 
(Table 2).

Stage B: tiling. Stage B (Fig. 2) subdivides the harmonised file database into smaller spatial regions, pooling 
data from different sources. For this purpose, we subdivide the area south of 50°S into 100 km × 100 km tiles (in 
EPSG:9354 projection). Subsequently, a spatial join of all datasets with the defined tiles allows the assignment of 
each data point to a distinct tile. Points that do not fall into any tile are skipped and reported to QA. The result 
is a tile database with a single file for each tile. The tiles are further used to identify the origin of outliers and 
erroneous data visible in the final product. Erroneous data are removed from the harmonised database during 
iterative cleaning routines using the software suite Qimera® until all obvious artefacts disappear and a satisfac-
tory quality is achieved.

Stage C: weighted statistics. In Stage C (Fig. 2), a weighted blockmedian is calculated for each 500 m × 500 m 
cell using the Generic Mapping Tools 6.1.1 (GMT) blockmedian module17. Five statistic descriptors are calcu-
lated: minimum, 25% quartile, 50% quartile (median), 75% quartile, and maximum of the weighted data in each 
cell. In a subsequent step, the median data points are augmented with additional information from the metadata, 
i.e. TID and RID. The outputs of this stage are single files per tile containing XYZ values, the summary statistics 
(min, q25, q75, and max), and categorical values (TID, RID, and the contributing organisation) for each line.

Stage D: product creation. In the final Stage D (Fig. 2), all files from Stage C are combined and subsets of 
geographic points are created (XYZ files) depending on the type of data. Based on the TID, the data are fil-
tered to extract only high-quality data (weights ≥15, Table 2) from the database. The complete dataset and the 
extracted high-quality dataset are gridded using a modified processing sequence that has been initially intro-
duced for the IBCAO Project by Jakobsson et al.12 and later adapted for IBCSO v111, and the Southwest Indian 
Ocean Bathymetric Compilation18. For IBCSO v2, this approach has been further developed. At first, all irreg-
ularly spaced geographic points are gridded using a “continuous curvature spline in tension” from the GMT’s 
surface module17 with a tension factor of 0.35 (first used in IBCSO v1) to create a 2 km × 2 km background grid. 
Comparisons of outputs show that this tension factor is appropriate for the SEAHORSE workflow. This grid is 
subsequently filtered in the spatial domain using GMT grdfilter with an isotropic cosine arch convolution filter 
(6000 m width). The output is resampled to 500 m × 500 m resolution using a bicubic interpolation (GMT grd-
sample). The high-quality data are gridded to a separate 500 m × 500 m resolution grid using GMT nearneighbor 
to preserve the high-quality direct measurements in the final product.

Background and high-quality grids are combined using the bending algorithm from Arndt et al.11 that 
follows the remove-restore concept described in Hell and Jakobsson19 and Jakobsson et al.12. The algorithm 
is implemented using the programming language Python and its scientific ecosystem, e.g. SciPy20, NumPy21, 

TID data type description weight
no. of 
datasets

10 Singlebeam Depth value collected by a single beam echo-sounder 10 766

11 Multibeam Depth value collected by a multibeam echo-sounder 5, 15, 20, 
25, 30 464

12 Seismic Depth value collected by seismic methods 10 21

13 Isolated sounding Depth value that is not part of a regular survey or trackline 5 2

14 ENC sounding Depth value extracted from an Electronic Navigation Chart (ENC) 5 3

17 Combination of direct measurements Combination of direct measurement methods 5 2

40 Predicted bathymetry based on 
satellite-derived gravity data

Depth value is an interpolated value guided by satellite-derived 
gravity data no weight [1]

41 Interpolated based on a computer 
algorithm

Interpolated based on a computer algorithm - depth value is an 
interpolated value based on a computer algorithm (e.g. Generic 
Mapping Tools)

no weight [1]

42 Digital bathymetric contours from 
charts Depth value taken from a bathymetric contour dataset 5 1

45 Predicted bathymetry based on 
flight-derived gravity data

Depth value is an interpolated value guided by helicopter/flight-
derived gravity data 10, 5 3

46 Draft of a grounded iceberg Depth estimated by calculating the draft of a grounded iceberg using 
satellite-derived freebord measurement 10 1

70 Pre-generated grid Depth value is taken from a pre-generated grid that is based on mixed 
source data types, e.g. single beam, multibeam, interpolation etc. 5 [2]

71 Unknown source Depth value from an unknown source 5 1

72 Steering points Steering points - depth value used to constrain the grid in areas of 
poor data coverage no weight [2]

Table 1. Type identifier (TID) table with codes adhering to the standards of the General Bathymetric Chart 
of the Oceans (GEBCO), short data type name, description, weight (see also Table 2), and number of linked 
datasets featured in IBCSO v2.
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PyGMT22, and Dask (https://dask.org/) as an interface for GMT17. Based on experiences from previous compi-
lations, we choose a transition zone covering 20% high-quality and 80% background data grid along the inter-
section edges for the bending (Fig. 3). An extended high-quality grid is calculated by convolving both grids to 
infill (i.e. extrapolate) the transition zone for the sparse high-quality grid. This is required to calculate the depth 
values (zc) in Eq. (1) for the transition zone using a combination of the extended high-quality and background 
grids where zh and zb are depth values of the high-quality and the background grid, respectively,
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Fig. 2 Schematic overview of the SEAHORSE processing workflow comprising the Stages A–D. Ice surface 
elevation and sub-ice bathymetry from BedMachine15, gap-filling with SRTM15+23.

weight description

5 Exceptions for known bad quality data

10 Singlebeam

15 Multibeam older than 1993

20 Multibeam from 1993 to 2000

25 Multibeam younger than 2000

30 Exceptions for known good quality data

35 Above 0 (should replace any erroneous bathymetry)

Table 2. Numerical weights assigned to each source dataset based on data type, age, and quality.
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with weighted distances of the transition zone grid cells to the inner (di) and outer (do) edges of the transition 
zones, using a hyperbolic weighting function (1/d2). Depth values in the transition zone are progressively more 
affected by the closer (e.g. high-quality) input grid. Finally, the high-quality and background grids are merged 
by replacing cell values in the background grid with values from the high-quality grid before inserting the tran-
sition zone cell values calculated via Eq. (1). This approach successfully minimises undesired edge effects caused 
by the combination of grids of different resolutions and potential depth offsets. The quality of the resulting com-
posite grid is visually evaluated using the Open Source Geographic Information System QGIS.

In the following gap-filling step, areas without direct measurements are filled with predicted bathymetry 
(for IBCSO v2 this is SRTM15+ v2.223). The composite and predicted bathymetry grids are combined using 
the above-described bending algorithm with a transition zone of 10 km (or 20 grid cells for 500 m resolution) 
that exclusively comprises grid cells from the predicted bathymetry grid to avoid altering high-quality data cells 
representing direct depth measurements. Pre-bending, the predicted bathymetry grid is adjusted to the IBCSO 
database to minimise artefacts caused by varying depths by calculating an offset factor between both grids on a 
cell-by-cell basis. A 1000 m × 1000 m blockmedian is computed with the GMT blockmedian module to suppress 
small-scale artefacts in the grid. The factor values are re-gridded and filtered using GMT surface and grdfilter 
with a cosine arch filter (2000 m × 2000 m) via PyGMT before the resulting grid is resampled to 500 m × 500 m 
using GMT grdsample. Then, this factor grid is used to adjust the predicted bathymetry grid by multiplying 
both grids. Areas are masked out, if the adjusted predicted bathymetry differs significantly from the surface grid 
(e.g. continental shelf areas and around islands). There, the background surface spline grid is used instead. This 
approach successfully prevents artefacts caused by differences in data resolution and accuracy.

In the final step, ice-surface and ocean mask grids are dynamically generated from the datasets created in 
previous processing steps (Fig. 2). The ice-surface mask is derived from the BedMachine15 surface elevation 
grid. The ocean mask is calculated from the gap-filled composite grid considering the ice-surface mask and RID 
grid (excluding all values above 0 m). It is used to assure that all ocean cells are modelled below sea level and all 
topographic cells are modelled above sea level. Grid cells that failed this logical test are set to the value −1 for 
ocean cells and to the value 1 for topographic cells. The ice-surface mask is used to create IBCSO v2 with ice 
surface elevation from BedMachine15.

Data Records
IBCSO v2 is available for download from the PANGAEA data repository16. It comprises a variety of datasets 
(Table 1) ranging from digitised contours and lead line soundings to high-resolution multibeam data. If possible, 
the use of gridded compilations was avoided and source datasets were used instead to achieve the most con-
sistent interpolation and prevent an overestimation of the covered area (Fig. 3). Therefore, each dataset mostly 
refers to a single expedition with its unique RID value16.

Fig. 3 (a) Map showing the data type identifier (TID) of source data used for IBCSO v2. Various data types 
representing isolated soundings (TID: 10, 12, 13, 14) are grouped together and displayed as “singlebeam”. Data 
type “other” includes all TID greater than 14 (e.g. 71: unknown source) whereas “multibeam” only represents 
actual multibeam datasets (TID: 11). White dashed line represents the northernmost IBCSO v1 extent (60°S 
latitude). (b) Comparison of percent seafloor coverages by different data types for IBCSO v1 and v2 south of 
60°S as well as current status of IBCSO v2 (south of 50°S).
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Bathymetry. High-resolution multibeam datasets make up the basis of the compilation with a total of 464 
datasets. In addition, 766 singlebeam datasets provide measured bathymetric information (Table 1, Fig. 3). The 
datasets were received in various formats and were standardised as ASCII XYZ data with associated metadata 
information when available (e.g. data contributor, source survey, year of survey). However, many datasets lack 
detailed information regarding their origins making it difficult to assess their quality. Furthermore, the spatial dis-
tribution of data shows a high degree of heterogeneity. For example, Drake Passage and the Ross Sea areas display 
high multibeam data coverage while along East Antarctica mostly singlebeam data exist (Fig. 3).

IBCSO v2 uses SRTM15+ v2.223 as the predicted bathymetry. It, however, contains numerous artefacts espe-
cially in areas of sea-ice cover and on the continental shelves. To avoid the incorporation of those artefacts, after 
interrogation of the available high-resolution multibeam data, critical areas are masked out for the infill with 
predicted bathymetry.

Sub-ice shelf bathymetry. Sub-ice shelf bathymetry in IBCSO v2 is constrained by direct measurements 
(e.g. from seismic campaigns), and in the absence of direct measurements by bathymetry estimations from gravity 
inversions, interpolation, and artificial steering lines. Seismic measurements from 21 datasets conducted since the 
1950s are included (Supplementary Table 1).

We only include bathymetry inferred from gravity inversion that rely on airborne gravity measurements and 
only in areas that are further away than 5 km from direct measurements in the IBCSO v2 database. In addition, 
we do not use bathymetry inferred from gravity inversions in areas where the models produce unrealistically 
shallow topography. Such areas have been identified either by a large discrepancy between the depths modelled 
by the gravity inversion and depths determined by seismic measurement, or by very small water column thick-
nesses (less than 100 m) in the sub-ice shelf continuation of narrow, deeply incised subglacial troughs beyond the 
grounding-line. Such areas with steep topography and abrupt elevation changes are usually poorly resolved by 
gravity inversions due to the long wavelength and are therefore typically inadequately modelled24,25. This mainly 
occurs at the western Ross Ice Shelf close to the Transantarctic Mountains. Supplementary Table 2 summarises 
the gravity inversions that are incorporated directly or as part of the BedMachine Antarctica dataset15.

For the Amery Ice Shelf cavity, we use the bathymetric model created by Galton-Fenzi et al.26. This model 
also uses seismic point data and an interpolation guided by tidal modelling for the deepest, most inland section 
of the ice shelf which is difficult to survey due to crevasses. For the remaining ice shelf areas, i.e. where neither 
direct measurements nor good quality gravity inversions exist, we have investigated the adjacent bathymetry and 
subglacial bedrock measurements for glacially incised troughs. Where such troughs are located, we introduce 
artificial steering lines to guide our interpolation to model a continuation of these troughs. For the remaining 
areas, we use the seafloor depths as provided in the bed layer of BedMachine15.

Sub-ice sheet topography, ice surface topography, and island topography. Sub-ice sheet topog-
raphy is entirely derived from the bed layer of BedMachine15. BedMachine in these areas builds on ice-thickness 
measurements from airborne radio-echo sounding and a mass-conservation approach that uses ice sheet dynam-
ics to interpolate between measurements15.

The topography is derived from various datasets (Fig. 3). Their selection depends on the geographical region 
and the quality of the different datasets in these regions. For the Antarctic mainland, we use the surface layer 

Fig. 4 Map showing the interquartile range for the final depth values of the grid. Estimation based on grids 
created from the 25% quartile and the 75% quartile of data as reported by GMT blockmedian.
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of the BedMachine dataset15 derived from the “Reference Elevation Model of Antarctica“ (REMA) that has 
a spatial resolution of 8 m27. Despite this higher resolution, we use the BedMachine topography information 
in continental ice-covered areas of Antarctica to ensure consistency with the ice thicknesses reported within 
BedMachine. For some coastal, ice-free areas of East Antarctica and for some small islands that are not resolved 
in BedMachine, we have directly added elevation information from the REMA dataset27.

For many Antarctic islands, REMA, and thus also BedMachine, yields no (e.g. South Orkney Islands, Balleny 
Islands) or incomplete (e.g. King George Island) topographic information. For these islands, most sub-Antarctic 
islands, and for South America we use elevation data from the ALOS Global Digital Surface Model Version 3.2 
of the Japan Aerospace Exploration Agency28. For a few islands, including some smaller reefs, and for a few 
parts of larger islands, the ALOS model does not provide elevation information. These areas are modelled using 
elevation data from other models, for example reefs at South Georgia from a compilation by Fretwell et al.29 and 
parts of the South Sandwich Islands from a compilation by Leat et al.30. In the cases where no elevation models 
are available but the location of the island is constrained by satellite imagery, we create artificial elevation data to 
constrain our model to a reasonable elevation.

technical Validation
SEAHORSE produces detailed reports for each individual stage. These reports are used to get estimates on runt-
imes per step and the size of data processed in each stage. In addition, we create a wide range of auxiliary data 
used for internal quality management and data review.

For estimating the variation of data from different surveys within a grid cell, we use the interquartile range 
(the absolute distance between the 25% and 75% quartile) of blockmedian window data to produce bathymetric 
charts analogous to the main workflow. These we use to derive a map of depth-ranges (zrange) in Eq. (2).

z Q Q( ) (2)range 75 25∣ ∣= −

Under the assumption that depth values per grid cell are normal distributed with zero skewness, this is the 
most intuitive measure of variability that we can derive. While this is not a perfect way to measure the uncer-
tainty in a given grid cell, we regard this as the most practical way to get an estimate of the expected range of 
depth values for every given grid cell (Fig. 4).

Overall variability increases with the number of datasets in a grid cell. The interquartile range of depth 
values at any given cell falls mostly between 0 m and 100 m. High values occur along the regular supply routes 
for Antarctic stations and within areas of high scientific interest where many datasets overlap. These areas have 
been visited across multiple generations of technical proficiency. On the other hand, areas with low variability 
indicate areas with little survey effort or areas that have produced similar data across multiple data sources. This 
can be expected for measurements e.g. in shallower waters. However, variability does not immediately quantify 
the reliability of the reported depth value. We can conclude that our blockmedian approach is robust against 
outliers in the 25th and 75th quartiles. Only areas where both low coverage and high variation in measured data 
coincide have a detrimental effect on the final depth value in a grid cell.

The RID grid (Fig. 1b) gives a first impression, where the IBCSO v2 grid is constrained by actual data. Data 
coverage per tile (Fig. 5) provides an additional indication of how many grid cell values per tile originated from 

0

Fig. 5 Overall data coverage of IBCSO v2 indicated by coverage per tile (100 km × 100 km). (a) Data coverage 
of only high-quality multibeam datasets (weights ≥15, multibeam data, see Tables 1 and 2) with tiles featuring 
only low-quality data (weights <15) masked out in grey. (b) Data coverage based on all datasets.
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measured data. This coverage map highlights distinct distribution patterns. Exceptionally high coverages, up to 
100%, occur e.g. in the Drake Passage (upper left sector Fig. 5), whereas vast areas with sparse data coverage are 
especially prominent offshore East Antarctica. Depths in regions of high data coverage can be considered relia-
ble, regardless of an apparent increase in the interquartile range. These areas are located along more frequently 
used ship routes and have been surveyed using more accurate recent multibeam systems. In areas with low data 
coverages (Fig. 5), the inclusion of the SRTM15 + predicted bathymetry grid yields a more comprehensive and 
representative DBM of the seafloor.

The overall increase in multibeam data coverage (Fig. 3b) resulted in a clear improvement of the grid. The 
differences between IBCSO v2 and the reference grids IBCSO v1 (Table 3) and SRTM 15+ were assessed to 
quantify the impact of the new data contributions (and updates of external data, such as the predicted bathyme-
try grid and high-resolution topographic data). When comparing grids, we applied the ocean mask from Stage D 
to use the same extent. Then, the arithmetic difference between each cell of IBCSO v2 and its corresponding grid 
cell from the reference grid (discarding all empty cell pairs) were calculated. Due to the amount of data, moving 
averages (with window sizes of 100 and 500) were plotted of the depth difference for each grid cell (Fig. 6a,b). 
The plot is created with ggplot231 in R version 3.6.1 (https://www.r-project.org/). Difference between IBCSO v2 
and IBCSO v1 (Fig. 6a) are noticeable throughout all depth ranges. The comparison with SRTM15+ (Fig. 6b) 
also shows noticeable differences for water depths in particular between −4500 m and −2000 m.

For more detailed comparisons between IBCSO v2 and the reference grids IBCSO v1 and SRTM15+, we 
target six areas of interest for closer inspection (Figs. 1c, 7). Since IBCSO v1 does not provide information on 
uncertainty, we cannot use any measure of uncertainty for this comparison. Instead, we opt for a discrepancy 
metric (discrepancy λ, Eq. (3)) defined as the difference grid between IBCSO v2 and IBCSO v1 or SRTM15+ (δ, 
Eq. (4)) divided by the mean of IBCSO v2 and IBCSO v1 or SRTM15+ (μ, Eq. (5)):

λ δ
µ

=
(3)

δ = −z z (4)IBCSO v Reference2

z z( )

2 (5)
IBCSO v Reference2µ =

+

This results in values centred on zero, with positive numbers indicating IBCSO v2 depths being deeper than 
the reference grid and negative numbers being shallower.

When comparing IBCSO v2 with v1, areas with significant bathymetric changes over a relatively short dis-
tance e.g. the shelf break around Antarctica (Fig. 7a,c), the South Scotia Ridge (Fig. 7b) or slopes around islands 
(Fig. 7d) display more pronounced discrepancies. The change in data coverage and quality is obvious when 

Fig. 6 Cell by cell difference between IBCSO v2 depths (x-axis) and reference grid depth differences (on 
y-axis). (a) IBCSO v1 as reference grid; (b) SRTM 15+ as reference grid. Blue lines indicate moving average 
with step size 100, orange lines indicate moving averages with step size 500. Grids were masked to contain only 
ocean cells and extents were adjusted in order to ascertain identical extents when comparing IBCSO v2 and the 
reference grid.
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Fig. 7 Comparison between IBCSO v1 and IBCSO v2 for: (a) Cosmonauts Sea, (b) South Scotia Ridge, (c) 
seaward of Totten Glacier and (d) Balleny Islands. Plots indicate (from left to right) IBCSO v1 chart, IBCSO 
v2 chart and calculated discrepancy between IBCSO v1 and IBCSO v2. Comparison between SRTM15+ 
and IBCSO v2 for: (e) Williams Ridge (Kerguelen Plateau) and (f) South Sandwich Trench and Islands. Plots 
indicate (from left to right) SRTM15+ chart, IBCSO v2 chart and calculated discrepancy between SRTM15+ 
and IBCSO v2. Grids for comparison are masked to contain only ocean cells. Columns IBCSO v1 and IBCSO 
v2 show the seabed as depth-scaled colour layer shaded by multiplication with a slope-inclination layer and a 
synthetic light source (hillshade) with 10× vertical exaggeration.
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looking at the area seaward of Totten Glacier (Fig. 7c) where a multibeam dataset acquired in 2017 by the 
Australian research vessel RV Investigator improves the morphology of the shelf break and resolves a network of 
submarine channels at the slope. Similar improvement is visible at the South Scotia Ridge where incised slopes 
facing towards the Powell Basin have been mapped in high-resolution by the RV Polarstern32 in 2019 resulting 
in a larger discrepancy. The benefit of incorporating actual source data rather than gridded compilations is seen 
in Fig. 7d. In IBCSO v1, the slopes around the Balleny Islands are based on a data compilation with a resolution 
of 1000 m. However, for IBCSO v2 we were able to receive the source data in full multibeam resolution resulting 
in a much more detailed DBM for this area compared to IBCSO v1.

Improvements can also be observed when comparing IBCSO v2 with the predicted bathymetry grid 
(SRTM15 + v2.2, Fig. 7). The Williams Ridge and the adjacent Labuan Basin at the Kerguelen Plateau were 
mapped by the RV Investigator and the RV Sonne in 2020. These additional data substantially improved the 
bathymetry for this region (Fig. 7e). Distinct improvements are also visible when examining the region around 
the South Sandwich Islands and Trench (Fig. 7f). Although not covered by IBCSO v1, the comparison with the 
SRTM15 + grid highlights an increased grid quality caused by large seafloor areas now constrained by multi-
beam measurements. This effect is especially obvious at the slopes around the South Sandwich Islands. Overall, 
the IBCSO v2 grid contains a multiplicity of additional datasets gathered since the release of IBCSO v1 also 
including extended areas previously not covered.

Usage Notes
The IBCSO DBM is provided in GeoTIFF and netCDF-4 file formats with coordinates and depth stored as 16-bit 
integers and a pixel node registration. These formats can be imported into all major GIS packages (e.g. QGIS, 
ArcGIS). All grids are available in geographic coordinates (WGS84, EPSG:4326) and in projected Cartesian 
coordinates defined in the IBCSO Polar Stereographic projection registered with the EPSG Geodetic Parameter 
Dataset using the code EPSG:9354 (https://epsg.org/crs_9354/WGS-84-IBCSO-Polar-Stereographic.html). The 
projection’s true scale is set at 65°S and coordinates in X and Y directions are given in meters. The horizon-
tal datum is WGS84 whereas the vertical datum is approximately Mean Sea Level. Due to limited acquisition 
parameter information, there are uncertainties associated with the vertical datum information, especially for 
older data. The grid cell value of the DBM is given in meters with negative values representing depths below sea 
level and positive values corresponding to topographic elevation. For the RID and TID grids, the cell values rep-
resent a unique dataset and type identifier value, respectively. An overview of the TID codes is given in Table 1, 
whereas a list of all incorporated datasets is provided at the PANGAEA data repository16.

When using the native IBCSO projection, it is important to consider the following: The EPSG code was regis-
tered in March 2020 and first included in EPSG v9.8.11 database published on the 30th April 2020 that was again 
included in the PROJ 7.1.0 database (from 1st July 2020). However, QGIS versions prior to release 3.20.0 (from 
19th June 2021) are using older PROJ database versions that do not include the IBCSO projection (EPSG:9354). 
Similar limitations may also apply to other GIS software packages (e.g. ArcGIS) depending on the version of 
their libraries. In this case, we recommend creating a temporary user-defined CRS from the specifications pro-
vided at the PANGAEA data repository16.

Code availability
The GMT and GDAL routines used in the SEAHORSE workflow are Open Source and can be accessed on their 
respective webpages (https://www.generic-mapping-tools.org/ and https://gdal.org/). All relevant code related 
to the main SEAHORSE workflow are available at https://github.com/SeaBed2030/IBCSO_v2_Dorschel_
et_al_2022. Data for the technical validation are hosted on figshare33. Since the SEAHORSE workflow was 
customised to fit the existing architecture of AWI’s high performance cluster, most of the code is specific and 
requires severe adjustments when moved to a different environment.

Received: 10 November 2021; Accepted: 5 May 2022;
Published: xx xx xxxx

Item Value

Number of contributors 39

Number of sources >90

Number of contributing countries 18

Seafloor area covered by IBCSO v1 32,676,775 km2

Seafloor area covered by IBCSO v2 77,321,752 km2

IBCSO v2 data coverage 23.79%

Multibeam coverage 22.32%

Singlebeam coverage 1.37%

Other data type coverage 0.10%

Table 3. Descriptive summary of metadata and the database of IBCSO v2. Seafloor area is calculated based on 
WGS84 ellipsoid using the QGIS plugin Cruise Tools (https://github.com/simondreutter/cruisetools). Data type 
coverages correspond to percentage of filled ocean cells in IBCSO v2 grid resolution (500 m × 500 m).
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