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Abstract

Bias correction algorithms for modeled climate variables such as temperature, precipita-

tion, and barometric pressure are used to approximate certain aspects of the distribution

characteristics to the actual observed values. Thus, modeled climate data predicting fu-

ture climate scenarios can be bias-adjusted using data from past periods so that climate

variables and their distribution, as well as their variability, can be represented more real-

istically within the bias-adjusted time series. For this reason, it is essential to understand

how such bias adjustment algorithms work and what impact they can have on the under-

lying data.

This bachelor thesis aims to find out and show how bias adjustment procedures work,

how they can be implemented and applied in di↵erent programming languages, and what

influence the application of such techniques can have on modeled temperature data for the

region of Europe and its surroundings.

This has been done by demonstrating and implementing five di↵erent bias adjustment

procedures mathematically as well as in the programming languages Python and C++

and then applying di↵erent methods from the field of statistics in a detailed analysis to

show the influence as well as the limitations of these techniques.
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1. Introduction

Scientists from all over the world are conducting research at various institutions and

educational facilities in order to better understand the earth’s climate and the physical

as well as biochemical processes and their interrelationships. This is no longer a matter

of simple simulations and weather forecasts, but of large-scale climate studies that use

computer models to map the earth’s climate for past and future time periods. Based

on these climate model outputs, conclusions can be drawn about various processes and a

wide variety of climatic scenarios can be simulated. With climate models, the influence

of humans on the earth’s climate and, above all, climate change, which is increasingly

influencing the actions of human life can be investigated.

Even though these highly complex computer models are state of the art in technology

and science, they are still not able to fully represent the multiplicity and complexity of

small-scale physical processes and climate variability. Due to memory limitations, as well

as the uncertainty because of parameterized small-scale processes that have been little

or unexplored so far, it turns out that modeled climate data show deviations in their

distribution properties of di↵erent climate variables, such as temperature, precipitation,

and air pressure, compared to observed data.

Due to these systematic errors, also called bias, algorithms are used to adjust modeled

climate data sets to approximate certain distributional properties, such as the variance

and short- or long-term means of di↵erent periods, to the time series of observed data.

Bias adjustments of climate data take place wherever studies are conducted with data

from climate models. In paleoclimate, climate impact, and climate change studies, in

which di↵erent scenarios of the earth’s climate are simulated, investigated, and evaluated,

the data must undergo bias adjustment before analysis and further use because trends and

distribution properties of the modeled data can thereby be optimized and adjusted based

on the values that actually occurred in the past. This not only enables more accurate

predictions to be made about time series of future periods but also o↵ers the possibility

of optimizing existing models with the help of bias-adjusted data sets.

1.1. Climate Models

Modeling in general is characterized by a simplified representation of complex and partly

unexplored processes. Climate models, which simulate the earth’s climate, are no longer

only simplified representations of complex climatic processes, as it was at the beginning of

climate modeling in the second half of the 20th century. Today, climate models are highly

complex computer algorithms, which are based on current scientific knowledge from the

fields of physics, biology, chemistry, mathematics, and many others and use a large number

of already known and partly also experimental equations and parameters to describe the

earth’s climate and of course help scientists to understand and study the climate of past

and future time periods.
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1.1. Climate Models

In climate models, the earth and its atmosphere as well as the ocean and land surface

and vegetation are mapped into 3-dimensional grid boxes, which calculate the physical

processes, such as the carbon cycle, biochemical relationships of organisms, and also

heat, dust, water and vapor exchange by simulating the interactions between di↵erent

climate variables like precipitation, solar radiation, air, sea-surface and land temperatures

in di↵erent altitudes. These variables and also processes like drying or the influence of

seasonality are calculated and estimated for the respective grid box for one time step and

are used then as the initial state for the following time step. These grid boxes not only

pass on information to the next time step but also influence the surrounding grid boxes

(i.e. spatial regions; cf. Fig. 1.1). This means that regional and global processes can also

be mapped and simulated, in that processes do not only occur in individual grid boxes but

can spread over large areas.

Some of these models also use information and data obtained through empirical studies as

part of the initial arguments from which the calculations begin or continue. Unlike ordinary

weather forecasting, which only covers very short time periods, scientists use climate

models to explore long-term processes and trends in climate under specific framework

conditions.

These climate models can be very di↵erent from each other because as in many fields of

science, it is important to be specialized in certain areas. For this reason, there are climate

models that are specialized in individual components of the Earth’s climate (atmosphere,

hydrosphere, cryosphere, land surface, and biosphere) by describing and simulating the

processes occurring therein as realistically as possible (Stocker, 2011).

• Atmospheric models use equations that describe the dynamics and thermodynamics

(air and energy circulation) at di↵erent longitudes, latitudes, and altitudes, but also

processes close to the earth’s surface, such as weather, clouds, air temperatures,

precipitation, air pressure, water vapor, wind and storms, heat exchange, radiation

and many more of these well-known variables and processes are considered within

these models.

• Ocean circulation models can simulate most of the known variables and processes

in and on the water, both in the oceans and in lakes and seas. Temperatures and

heat and vapor transport, as well as flow behavior and the carbon budget, are also

central topics here.

• The melting of polar regions and glaciers, as well as the associated rise in sea level and

the release of carbon once trapped under ice, can be simulated using cryosphere and

sea ice models. These models are also used primarily for studying the paleoclimate

in order to learn from past processes and compare them with current processes.

• There are also models for the simulation of land surface. These include plate tecton-

ics, orography, distribution of land mass and sea level, as well as the classification of

climate zones and their characteristics with respect to climate. An important part

here is also the type of soils, because di↵erent substrates reflect long- and short-wave

radiation di↵erently and also have di↵erent energy storage and transport properties.
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1.1. Climate Models

• Finally there are also biosphere and geochemical models. These are specialized in

the transfer, storage and exchange of CO2 and other gases and substances. Thus,

they allow to locate the sources and reservoirs of di↵erent substances, as well as to

simulate them under certain conditions. This not only has an impact on the organic

land mass, which is also modeled, but also serves to represent the earth’s carbon

budget and its reflectivity as realistically as possible, in order to better understand

processes such as climate change.

There are several other models that simulate the climate or individual processes of the

earth such as energy balance models, models that only simulate the carbon cycle, marine

ecosystems, only specific atmospheric chemistry, and many more.

Since climatic conditions and influences can vary greatly depending on the location, each

region has its climatic characteristics and is influenced by local events. Thus, the afore-

mentioned components are not always found in the same combination or expression but

are specifically selected and weighted depending on the study.

General circulation models (GCM) consist of a combination of an atmospheric and an

oceanographic component but they can also occur individually depending on the focus

of the study. GCMs are designed to simulate the fundamental physical processes in

the sea and atmosphere together or individually to map the earth’s climate globally.

In this way, physical dependencies, interrelationships, and fundamental climatic issues

can be investigated. The latest trend in climate modeling is the use of earth system

models (ESM). ESMs not only serve to understand the fundamental physical processes of

dynamics and thermodynamics like GCMs, but they can also realistically represent the

biochemical processes of the atmosphere and the oceans, the exchange of substances, and

the interactions between land and sea mass, vegetation, and atmosphere, as well as a

realistic carbon cycle (Kotamarthi et al., 2021).

Figure 1.1.: Representation of a climate model grid and information exchange between grid boxes
(Figure by Kotamarthi et al., 2021)

This is accomplished by coupling many di↵erent specialized climate and process models,
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1.1. Climate Models

which allows the strengths of a wide variety of models to be combined to run even more

comprehensive and accurate simulations, enabling scientists to make more substantiated

statements about the earth’s climate of the past, present, and future.

The Coupled Model Intercomparison Project Phase 6 (CMIP6) is one of the best-known

and widely used sources of modeled climate data. This project links scientists and institu-

tions around the world, promotes and organizes research and the development of various

climate models, and has contributed to the simulation of about 120 global climate mod-

els in 45 institutions and organizations (“WCRP Coupled Model Intercomparison Project

(CMIP)”, 2022). One of these climate models is the MPI-ESM1-2-HR, whose data will be

researched later in this thesis.

General circulation models and also earth system models, which aim to model climatic

processes of the entire globe, can represent the climate well on average over medium and

long periods of time, but show significantly higher deviations of climate parameters such

as temperature and precipitation compared to observed data, than models that have been

developed specifically for a certain region or a special event. For this reason, regional

circulation models (RCM) are often used. These have a much higher resolution and are

only used for a specific region, e.g. Europe or the Mediterranean. Due to a resolution of

less than 50 km at the equator, they have much smaller cells for which the climate can be

simulated. Depending on the topography, these RCMs can even have resolutions of a few

kilometers and thus o↵er the possibility to map processes also on a regional level much

better than GCMs, which typically only have a resolution of 100 - 250 km.

Figure 1.2.: Di↵erent emissions simulations run by CMIP6 (Figure by Böttinger et al., 2020)

A central topic of climate modeling is also climate change because it already has a strong

impact on many areas of human life and the environment. Transportation, urban planning,

water supply, as well as forestry and agriculture will have to adapt much more to climatic
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changes in the future. Climate modeling increasingly takes into account the impact of

humans on the environment, too. Therefore, research on di↵erent numerical climate

models is an important process to simplify our understanding of our environment and

at the same time to show how and by which means we can provide for a diverse and

livable life on planet Earth. Modeling can also produce information about past climate

events and thus simplify projections for the future by running simulations of di↵erent

emission scenarios (also called RCP; Representative Concentration Pathway, Vuuren et

al., 2011) that simulate the earth’s climate under the influence of certain concentrations

of greenhouse gases (cf. Fig. 1.2), or even the abrupt increase of these.

These simulations are not only of interest to scientists but are also disseminated in various

forms (e.g. IPCC Assessment Reports) to governments and organizations in order to take

appropriate measures to curb CO2 emissions, as well as other climate targets defined in

the Paris Climate Agreement, including limiting global warming to a maximum of 1.5°C
compared to preindustrial levels (“The Paris Agreement”, 2015).

Thus, modeling the earth’s climate can help recreate a variety of complex processes and

interactions of the climate by writing down known and suspected physical, biological, and

chemical processes as realistically as possible in the form of equations and conditions in

millions of lines of source code in climate models to produce usable results for further

research and development in the most time and energy-e�cient manner.

1.2. Bias Adjustments

So there are several di↵erent models that can simulate the earth’s climate globally, but

also regionally under certain framework conditions. Here, of course, the question arises as

to how accurately the outputs of such models agree with the temperatures, precipitation,

and other variables that actually occurred. For the validation of GCMs and ESMs, past

climate forcings such as volcanic eruptions, changing CO2 concentrations and sea levels,

as well as temperatures and precipitation, can be passed to the initial arguments of the

models to check whether the results generated in this way are similar to the assumed or

even observed historical data obtained from ice core drillings, sediments, corals and other

climate proxies. Of course, this assumes that observed data are already available for the

time period under investigation. Thus, although it is possible to verify that the modeled

processes are realistically represented, there are still discrepancies between the modeled

and observed values. This becomes apparent when the data are not considered as a whole,

but at regional and local scales as well as at short time scales.

Due to the limited resolution of these climate models and their large-scale grid cells, the

topography and generalization of the processes cannot be mapped equally everywhere,

which can lead to high deviations between observed and modeled data on a regional scale,

since small-scale processes cannot be fully represented. These statistical deviations and

errors are called “bias” in climate sciences. Depending on the focus of the research, bias

can describe di↵erent aspects of the distributional properties of a climate variable, such

as the mean, the variance and the standard deviation. Also, the distribution of certain
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quantiles and the extremes can only be determined for one cell individually at a time in a

climate model, which means that these cells only represent averaged values for a relatively

large area, depending on the model resolution.

Figure 1.3.: Modeled and observed mean 2m air temperatures by day of the year between 1981 and
2010 in Bremerhaven, Germany

These deviations are particularly troublesome in research when it comes to conducting

studies on threshold and extreme value analyses, because even if modeled data can real-

istically represent current behavior, tides, and seasonal changes in temperature and pre-

cipitation, these data in raw form are not good enough, for example, for research on the

development and behavior of marine organisms that reproduce or grow particularly well

only at certain temperatures. Even when it comes to flood prevention, data from climate

models cannot provide accurate information about the risk of individual localities, but only

provide averaged values for a larger region (depending on the size of the grid boxes within

the model), which means that clouds, floods, droughts, or other events within a grid box

can only be averaged or even not represented at all. It also happens that climate model

output generally show temperatures that are too high or too low compared to observed

time series (cf. Fig 1.3) or storms occur in a di↵erent region, but these originate from the

dynamics within the model and thus cannot be adjusted by hand. Unknown or simplified

processes, and the limited computing and storage capacities are also sources of error that

must be optimized in the future.

If these deviations between observed and simulated data exist, procedures can be applied

to minimize these errors. Due to the fact that these so-called bias corrections do not

eliminate all errors, but can only reduce them to a minimum, the term “bias adjustment”

is also valid and will be used for it in the further course of this thesis.

To perform a statistical transformation in the form of a bias adjustment on modeled

climate data (A), observed (B) and modeled (C) data of a climate variable of the same

time period are needed. Usually, these time series (B and C) cover a historical time period

6



1.2. Bias Adjustments

(i.e. control period) on which the deviation between modeled (C) and observed (B) data

can be determined. Since most adjustment techniques assume that the error between

modeled and observed data remains persistent, i.e. the bias also exists in future periods

(Maraun, 2012), this can be used to adjust modeled time series of the future (A), by

taking into account the change between modeled historical (C) and future (B) periods,

and thus minimizing the deviations discussed earlier. Of course, there are many other

ways to determine and minimize the bias.

Figure 1.4.: Simplified representation of a general bias adjustment procedure

This presupposes the basic assumption that there is an existing relationship between the

data of modeled climate scenarios and the real, actual climatic processes and conditions,

and that topographic influences in observed as well as modeled time series are also related

to each other.

In research, the term “statistical downscaling” is also used in connection with bias adjust-

ments. In downscaling, large-scale grid cells of simulated data are interpolated to obtain

a higher resolution. This can be used in combination with bias adjustments to interpolate

modeled data from a low resolution to a higher resolution in order to subsequently min-

imize the bias. This enables to adjust modeled time series of future periods and at the

same time increases the resolution of the data which can lead to making regionally more

accurate statements about the climate of future time series, based on historical modeled

and observed data.

To perform bias adjustments e↵ectively, the quality of the observed data is particularly

important, as these serve as the basis for the adjustments, and thus it is assumed that

there is no error between them and the actual climate and weather that occurred. For

meaningful results, long-term data sets are needed that represent variability and extremes

well. Too long periods, on the other hand, can also lead to erroneous results, since the

climate is also subject to change. The selection of the optimal adjustment procedure for the

respective application can be varied, since di↵erent methods can lead to di↵erent results,

depending on the period under consideration, the variable, the quality, and the resolution

of the data.

It is also advisable to use simulated data from the same climate model for the historical
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time series and for the time series to be adjusted. In this way the model’s own trends

and dynamics are better preserved instead of being adjusted. Furthermore, only then the

change between the modeled data from the control and scenario period is comparable.

Insurance companies, farms, aid organizations, and governments depend on reliable data

to prepare early for changing climatic conditions and extreme events, as well as the new

challenges they bring, which include water shortages, rising temperatures, droughts, and

storms. Recently, several storms and floods in Rhineland-Palatinate and North Rhine-

Westphalia cost many lives and caused billions in damage (“Jahrhunderthochwasser 2021

in Deutschland”, 2021). Hamburg and other cities located near large rivers, dams, or in

valleys also experience recurrent water and mud floods. If we leave Germany and turn our

gaze towards Africa, we will see that extreme heat waves regularly occur there, resulting in

drought and famine (“Why Africa’s heatwaves are a forgotten impact of climate change”,

2020).

There are countless such examples, not only in Europe and Africa but all over the world.

Researching the earth’s climate, as well as going back to historical data, can help to better

assess the climate of the future, classify di↵erent scenarios, to understand the influence

of humans, the natural processes and dynamics of the earth’s climate, and accordingly to

point out ways in which we can enable a sustainable and livable existence on this planet.

1.3. About this Thesis

This thesis aims to demonstrate di↵erent bias adjustment techniques for climate data both

mathematically and in the programming languages Python and C++. All procedures will

be implemented and applied to evaluate the results of these adjustments. In doing so,

di↵erent statistical methods, such as root mean square error, mean bias error and correla-

tion, are applied to compare the bias-adjusted data sets with the underlying observational

and modeled data to find out what influence the adjustment methods have had on the

modeled data.

Air temperatures at 2m height are adjusted exclusively, but occasionally reference is

made to the adjustment of precipitation. Temperatures are easier to adjust compared

to precipitation since their natural variability and the complexity of the trends are much

lower. Furthermore, precipitation occurs much more locally than temperatures, which

is why temperatures o↵er medium validity for a larger range whereas precipitation, on

the other hand, is not subject to seasonal trends in the vast majority of regions than

temperatures.

Unless otherwise indicated, all illustrations are made by the author. The following table

provides an overview of the topics and issues addressed in the individual chapters.
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Section Content

Abstract What is this Thesis about?

Introduction What are climate models and what means bias adjustment?

Motivation What is interesting about bias adjustments?

Data What data is used in this thesis?

Approach / Methods Which methods are applied and how do they work?

Results Do the methods improve the data and how do they di↵er?

Conclusion Are there any special results?

Table 1.1.: Thesis overview and topics

At the beginning of this thesis, all procedures and calculations were implemented in the

programming language Python. Due to the enormous performance di↵erences, these were

also implemented in C++. The C++ implementations run much more e�ciently and can

be executed on an ordinary PC. However, since the Python programming language is much

easier to represent and understand and can be easily reproduced without much e↵ort, the

code excerpts, which are listed directly for each method, are presented in Python. In an

extra section, the C++ implementations of the bias adjustment procedures are presented

(Sec. 4.7). The compilation of the C++ implementations has been done with g++ (Apple

clang version 13.1.6). It is also recommended to use version 17 of the standard library std.

This can be defined during compilation with -std=c++17.

In addition, all calculations for the examination of the results were carried out with the

help of a large number of C++ and Shell scripts. These are also not presented in this

work, since the focus is the demonstration of the procedures, as well as the evaluation of

these. Diagrams and visualizations, have been made using Python and various modules.

All source code (bias adjustment implementations in C++, Python, and Shell; evaluation

scripts in C++, Python, and Shell; diagrams, notes, and more in Python with the help

of Jupyter Notebooks; LaTeX source code of this thesis) is submitted to the University

of Bremerhaven with this document and is partially publicly versioned on the author’s

Github account.

Name URL

Bias-Adjustment-Cpp https://github.com/btschwertfeger/Bias-Adjustment-Cpp

Bias-Adjustment-Python https://github.com/btschwertfeger/Bias-Adjustment-Python

Table 1.2.: Repositories containing the implementation of the adjustment procedures used in this
thesis

All calculations and visualizations have been performed on a MacBook Pro 13” 2017 with

the operating system macOS Monterey 12.4. This has an Intel Dual Core i5 processor

with 2.3 GHz and 8 GB of RAM. Visual Studio Code was chosen as the development
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1.3. About this Thesis

environment, as this o↵ers support for all programming languages and tools used, as well

as enabling the integration of various Anaconda environments.

All adjustment techniques presented here are applied to the data sets described in Chapter

3. Explanations of the procedures, as well as the demonstration of the functionalities, are

provided at the appropriate places with simple text and source code examples.

In all listings showing source code snippets of the Python programming language, it is

assumed that the PyPi modules Numpy and Xarray are installed and imported with the

abbreviation np resp. xr. These modules can be installed into the respective environment

via the package manager Pip. It is recommended to use at least Python3.6+.

1 python3 -m pip install numpy xarray

Listing 1.1: Installation of required packages using the Python package manager Pip

Installed modules can be imported using the command import <package name>. If

additionally as <name> is specified, all classes, functions, and attributes in the module will

be stored in the specified variable, so that the desired functionalities can be accessed via it.

1 import numpy as np

2 import xarray as xr

Listing 1.2: Import required modules into a Python script

In the listings shown, care has been taken to display data types that do not have to

be explicitly specified in the Python programming language. This can be helpful at

appropriate points to understand the data structures used.

Furthermore, it is necessary to define some terms in order to avoid ambiguities in advance:

Phrase Meaning

data set In this thesis, a data set consists of a three-dimensional matrix,
which represents a variable, such as air temperature, in the dimen-
sions of time, longitude and latitude.

time series A time series describes a one-dimensional vector, which represents a
variable over a time dimension. For example, the time series of Bre-
merhaven corresponds to the temperatures for a certain longitude,
and latitude index in a data set.
When talking about time series in plural, multiple time series of a
data set can be meant.

grid box / grid
cell / cell

A grid box describes the spatial position and size in which a time
series can be within a data set (cf. Fig. 1.1).

Table 1.3.: Definitions of terms and meanings
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2. Motivation

Due to the research carried out in advance at the Alfred-Wegener Institute, which included

the investigation and comparison of teleconnections in global and regional, as well as bias-

adjusted data sets, it was noticed that the bias-adjusted time series not only di↵er from the

raw model outputs in means, variances and further distributional properties, but that the

applied adjustment also has an influence on the dependencies in the form of correlations

of di↵erent regions with each other.

Since these analyses have been performed on data where it was not clear which adjustment

method and parameters were applied, it will be a part of this thesis to show and implement

di↵erent techniques. The goal is to perform these procedures for adjusting and minimizing

deviations between modeled and observed data both mathematically and in the Python

and C++ programming languages to answer the question of what influences the application

of these methods have on the data.

There is the assumption that bias adjustment techniques, while adjusting the distribu-

tional properties of climate model-generated data sets to those of the observed time series

on average, can artificially negatively a↵ect regional and global dependencies. Since there

is no public scientific work yet on the influence of bias adjustments on correlations be-

tween locations within the data, this topic is particularly important when it comes to

mapping feedback events and remote e↵ects, this shall be one of the central elements of

the evaluation of the methods presented here.

In addition, this document is intended to serve as a kind of guide and reference to present

various climate data adjusting techniques in a comprehensible way, as well as ways to

implement them. The implementations of the methods developed during this thesis will

also be made public so that they can be freely used for further research and development.
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3. Climate Data

Climate data generated and made available by various institutions serve as the basis for

the bias adjustment techniques and analyses presented here.

In the scientific context, climate data are mostly available in the file format “NetCDF”

(Network Common Data Form). This self-describing data format has the file extension nc

and, due to the binary data format, o↵ers fast and e�cient storage of multidimensional

data sets and can also be read in many programming languages such as C, C++, Python,

R, and Fortran.

This file format is mainly used in climate research because data such as atmospheric and

oceanographic variables do not consist only of one-dimensional vectors of values. Most

data sets consist of three to five dimensions. Time is usually the first dimension, followed

by one or more dimensions for space like longitude, latitude, altitude, and depth. If these

dimensions are dereferenced, a certain value at a certain time at a certain location can be

obtained.

This can be imagined as a net of square grids (i.e. gird cells) spanning around the globe

(cf. Fig. 1.1). Cells on the same latitude usually have the same spatial size. Since the

circumference of the latitudes decreases above and below the equator, cells there cover a

smaller area than those closer to the equator. This behavior can be di↵erent in models

that uses triangular grid cells, but so far these are quite rare. Within a data set, the

storage of climate variable values can be imagined as in multidimensional arrays:
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Figure 3.1.: Simplified representation of the dimension structure of a four dimensional NetCDF data
set containing temperature values; Dimensions: Time (without subscript), Longitude,
Latitude and Altitude (without subscript)

(Fig. 3.2) A NetCDF file consists of various components that are related to each other.

These include the previously mentioned dimensions that represent the variables contained

in the data set (i.e. climate variables such as temperature and precipitation). These
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variables have attributes that contain a description on the one hand, but also the values

stored in them. Since the NetCDF4 standard, groups and user-defined data types have

been added (marked red). These allow an even more flexible manipulation of the data so

that they can be adapted to the corresponding information depending on the application

and research field. For example, grouping makes it possible to combine information within

a data set into groups without splitting them over several files. Also, the coordinate system

can be customized by not taking the curvature of the earth’s surface into account or by

taking it into account in a di↵erent way when manipulating the data.

Figure 3.2.: The NetCDF data model (Figure by NetCDF-C Documentation, 2022)

Furthermore, this file format makes it possible to apply multiple write and read processes

to one file at the same time, thus ensuring dynamic retrieval and storage of information

by distributed systems. Above all, the system independence, which enables scientists

and other users to exchange findings and data among each other without having to pay

attention to the respective system environment, makes this scalable data type particularly

attractive for research.

To display a NetCDF file in ASCII format in a readable way, the command line tool ncdump

can be used. This requires the installation of the NetCDF library for the command line (cf.

“GeoServer 2.20.x User Manual / Installing required NetCDF-4 Native libraries”, 2022).

The information thus output shows in the first part the dimensions and variables with

their attributes, followed by metadata dealing with the origin, the survey, the history, and

referencing information. Additional information can be added to the metadata as desired.

In the final data part, all data values of all climate variables in the dataset are listed.

An example of the output of the ncdump command applied to the NetCDF file

tas_day_noaa_reanalysis_v3_eur_19810101-20101231_noleap.nc provides the following

listing:

13



3.1. Modeled Data

1 netcdf tas_day_NOAA_Reanalysis_v3_EUR_19810101 -20101231 _noLeap {

2 dimensions:

3 time = 10950; lat = 50; lon = 111;

4 variables:

5 float tas(time , lat , lon); tas:units = "degC";

6 tas:standard_name = "air_temperature ";

7 tas:long_name = "daily mean 3-hourly Air Temperature at 2 m";

8 ...

9 tas:GridType = "Cylindrical Equidistant Projection Grid";

10 double time(time);

11 time:standard_name = "time"; time:long_name = "Time"

12 time:calendar = "standard ";

13 float lon(lon) ;

14 lon:standard_name = "longitude "; lon:long_name = "Longitude"

15 lon:units = "degrees_east ";

16 float lat(lat) ;

17 lat:standard_name = "latitude "; lat:long_name = "Latitude ";

18 lat:units = "degrees_north ";

19 // global attributes:

20 :CDI = "Climate Data Interface version 1.9.6 (http :// mpimet.mpg.de/cdi)" ;

21 :history = "Thu Feb 24 10:25:38 2022: cdo -f nc -sellonlatbox

, -45.5 ,65.5 ,23 ,72.5 -selvar ,tas tas_day_NOAA_Reanalysis_v3_19810101

-20101231. nc tas_day_EUR_NOAA_Reanalysis_v3_19810101 -20101231. nc\nThu Feb

24 10:11:27 2022: ... ;

22 :title = "mean Daily NOAA/CIRES/DOE 20th Century Reanalysis V3" ;

23 :spatial_resolution = "1.0 degree ";

24 :product = "reanalysis "; ...;

25 data:

26 tas = 23.43435 , 23.33434 , 23.23434 , 23.14684 , 23.05935 , 22.94683 ,

27 22.80935 ,22.69686 , 22.59683 , 22.48434 , 22.38433 , ...

28 }

Listing 3.1: Output of ncdump command applied an a NetCDF data set; three dots are symbolic

for more rows of information

The data used in this thesis uses three dimensions. These include the time, longitude, and

latitude to represent the variable “tas” (i.e. temperature) for the region of Europe.

As defined in section 1.2, observed and modeled data sets of di↵erent time spans are needed

for the application of bias adjustment procedures. Subsequent sections describe the data

sets used here, as well as their preparation.

3.1. Modeled Data

The modeled data used in this thesis was generated within the CMIP6 research project

mentioned in the introduction. The climate model that produced this data is called

MPI-ESM1-2-HR, was published in 2017 and executed by the Max-Plank Institute for

Meteorology in Hamburg, Germany (cf. Mauritsen et al., 2019). This model is not only

designed to answer fundamental and advanced scientific questions by providing a global

and realistic representation of the earth’s major and partly minor physical and biochemical
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3.1. Modeled Data

processes and trends, but it also improved results in atmospheric and oceanic dynamics

due to reduced biases due to its higher resolution and more realistic implementations of

processes compared to previous versions.

This earth system model couples an atmospheric general circulation model with an ocean

and sea ice circulation model and also simulates the biochemical interactions between the

ocean, atmosphere, land, and also vegetation. This ESM is one of the best-known models

whose outputs are used for a variety of climate studies and publications. The name of the

model is composed of the name of the Max-Plank Institute (MPI), the type of model (ESM,

i.e. Earth System Model) and the version number. HR means that it is the high-resolution

variant.

Figure 3.3.: Schematic overview of the components of the MPI-ESM1-2-HR (Figure by Mauritsen
et al., 2019)

(Fig. 3.3) the MPI-ESM1-2-HR consists of four components. ECHAM6.3 is an atmospheric

general circulation model, which is used for the simulation of the atmosphere and its ther-

modynamics. This GCM is coupled with the land surface model JSBACH3.2. JSBACH

is responsible for the modeling and calculation of the processes on the land, including the

vegetation living there. Current behavior, dynamics of the seas and oceans as well as

the processing of individual hydrological signals of the JSBACH3.2 are processed by the

MPIOM1.6, which is also directly coupled with the HAMOCC6, which is specialized in

the biochemical processes of the seas and creatures living there.

OASIS3-MCT is the software used to realize the coupling of these models and o↵ers many

interfaces for parameter transfer between the components. For example, water from the

MPIOM can be transferred to the atmospheric model ECHAM by condensation. Also,

the release of CO2, for example by volcanic activities in JSBACH, can be passed on

to the atmosphere. In the other direction, plants in JSBACH can bind CO2 from the

atmospheric component. All these components were developed at the Max-Plank Institute.

Further information on this model, as well as on the description and configuration of the

components can be found in the article by Mauritsen et al., 2019.
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3.1. Modeled Data

The 2m air temperature data set generated by this model has a resolution of 384 x 192

longitude/latitude in the global grid. Thus, it has 384·192 = 73728 cells distributed around

the entire globe as shown in figure 1.1. Since this thesis focuses on air temperatures at 2m

height, the data set used here has no vertical dimensions. In addition, these temperatures

were calculated by the ECHAM6.3 component, which is an atmospheric general circulation

model as a component of the MPI-ESM1-2-HR.

There are also variants of the MPI-ESM that can generate data in higher or lower resolu-

tion. The MPI-ESM1-2-LR, for example, has a resolution of 192 x 96 longitude/latitude

and thus has larger grid boxes. In addition, unlike the high-resolution variant, this one

has dynamic vegetation, as well as carbon and nitrogen cycles (Mauritsen et al., 2019,

“CMIP6: The Coupled Model Intercomparison Project”, 2020).

In this thesis, the high-resolution variant (MPI-ESM1-2-HR) was chosen, because neither

the vegetation nor the carbon cycle is investigated here. Furthermore, a high resolution

is better suited to minimize errors that may occur in advance due to insu�cient grid size,

for example in impassable areas. The high-resolution variant also has a similar resolution

as the observation data presented subsequently.

Since regions and thus also grid cells are to be compared, it is necessary that all data sets

used here have the same resolution. This would not be the case if statistical downscaling

were to be performed, but this is usually done with data from regional climate models

since these usually have a lower resolution than GCMs and ESMs by themselves.

Since the grid of the MPI-ESM1-2-HR has a resolution of 384 x 192 longitude/latitude,

but the observation/reanalysis data presented later have a resolution of 360 x 181 longi-

tude/latitude, it is necessary to make an adjustment by scaling the grid of the ESM to

that of the reanalysis data (cf. Lst. 3.2). This has the disadvantage that by the scaling

artificially deviations are produced, which do not originate from the model. Thus, values

of the original data may not exactly match the values of the same geographic coordinates

in the scaled data, because of interpolation at certain points (i.e. statistical upscaling).

However, since there are currently no publicly available observational data with the same

resolution as those of the 2m air temperature output of the MPI-ESM1-2-HR, scaling is

the only way to produce comparable data here.

The following table lists the parameters that can be used to find and download the ESM

data used in this thesis at https://esgf-data.dkrz.de/search/cmip6-dkrz/.

Search parameter Value

MIP ERA CMIP6
Source ID MPI-ESM1-2-HR
Experiment ID historical
Variant Label r1i1p1f1
Frequency day
Realm atmos
Variable tas

Table 3.1.: Earth system model data set specifications for DKRZ file search
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3.2. Observational / Reanalysis Data

In order to perform and subsequently evaluate bias adjustments, two periods of simulated

data are used. The historical control period covers the years 1951 to 1980 inclusive, and

the period to be bias-adjusted, referred to as the scenario, future, or adjusted time series,

covers the years 1981 to 2010 inclusive.

Climate models do not produce usable and realistic data immediately after startup, because

various physical and biochemical processes must first be in so-called equilibrium, which

in climate research usually corresponds to the preindustrial state of before 1850. This is

achieved by running a model with its initial parameters until it reaches this state. This so-

called spin-up process ensures that the same starting conditions always exist for di↵erent

simulations. In addition, it can be evaluated whether a model can correctly represent the

di↵erent processes, and it also ensures the generated data are no longer dependent on the

initial parameters (Mauritsen et al., 2019).

Since the MPI-ESM1-2-HR model output of the historical simulations already start with

the equilibrium state at year 1850, errors due to the run-o↵ period of the climate model

can therefore be excluded.

3.2. Observational / Reanalysis Data

Observations are always subjective. So it can happen that gauges and measuring instru-

ments, which are only a few meters apart from each other, record di↵erent values for air

pressure, temperature and 3other climate parameters. Also due to the replacement of

devices, which have di↵erent sensitivities, the same quality of the measured data cannot

be guaranteed throughout. These inaccuracies are supported by the patchy distribution of

the measuring stations, whose density within urban areas is higher than towards the sea.

The development of satellite-based information systems, which investigate the processes

and properties in di↵erent atmospheric layers, is constantly being improved, so that more

exact data and higher accuracies in the measurement can be achieved here. However, this

also leads to the fact that the previously generated and observed data are qualitatively

subject and even the improved systems are, however, not able to completely map the

planet and its climate variables, not only spatially, but also over a longer period of time.

With observed data from measurements alone, it is not yet possible to create an exact grid

for observed climate data that maps the actual values for temperatures, CO2 concentration,

air pressure, and more for each time at each location.

Atmospheric climate reanalysis is a very popular method to process these observed cli-

mate data for science and research. Here, historical time series of di↵erent atmospheric

parameters from observations are combined with simulations to reconstruct missing data

points of the observations, to estimate existing ones and to re-evaluate them if necessary.

This is done by using the observation data for each time step as input to a dynamic numer-

ical weather prediction model (NWP), which is then designed to reproduce the next time

step of the observed data as accurately as possible. NWPs are not such comprehensive as
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3.2. Observational / Reanalysis Data

climate models like ESMs, even though they also take into account temperatures, precip-

itation, water vapor and other climate parameters. Particularly small cloud formations,

interactions of solar radiation and other processes on small spatial scales cannot be accu-

rately represented and are therefore approximated (Deutscher Wetterdienst, 2022). Data

assimilation in this way is also called the application of the “Ensemble Kalman Filter”

(Katzfuss et al., 2016).

In contrast to the interpolation of missing values, this procedure allows to preserve the

dynamics of the climate by not transforming them linearly or cubically, but by adjusting

them on the basis of physical laws (Thejll and Gleisner, 2015). By this procedure not only

the missing data points are assigned values, but also the already known observed values

get the new predicted values, which have only a minimal deviation to the observed time

step. This ensures that all data points of a time step are generated with the same forcings

and are therefore in relation to each other.

Reanalysis is used to create complete and consistent data sets for various climate variables

to be able to create a picture of the past weather and climate as close to reality as possible.

The quality of the observed data is important not only for bias adjustments but also for

reanalysis since these are also used as the starting point for further procedures.

With the development of new and more e�cient systems, the intervals of time steps, which

are re-evaluated by reanalysis, are getting smaller and smaller. Not only are reanalysis

data sets now available for monthly or daily averages values, but projects such as ERA-

Land (European Reanalysis for Land Surface) even provide hourly values for a period

from 1950 to the present for a variety of land variables with a resolution of 0.1° x 0.1°
longitude/latitude (i.e. a native resolution of 9km at the equator, “ERA5-Land hourly

data from 1950 to present”, 2022).

The enormous resolution of the ERA-Land data set makes it particularly interesting for

regional studies. However, since a very high resolution also requires a lot of computing

capacity for transformations in the form of bias adjustments and the evaluation thereafter,

but the goal of this thesis is to perform and study the e↵ects of the procedures on ESM

data, it was decided to use climate data from another source, which has a lower resolution.

The ERA-Land data would be particularly useful if the bias in data from a regional climate

model needs to be adjusted to perform local studies.

The reanalysis data for this thesis come from the NOAA-CIRES-DOE “The Twentieth

Century Reanalysis Project”, 2022, which is currently in its third phase (V3). It provides

various parameters for 3-hourly, daily average, and monthly average values for a period

from 1836 to 2015 inclusive (“NOAA-CIRES-DOE Twentieth Century Reanalysis (V3):

Summary”, 2022). For this thesis, the daily mean values of the temperatures at 2m height

are used. Like the data of the ESM, these data are also divided into two parts, so that

the years 1950 up to and including 1980 represent the historical control period and the

years 1981 up to and including 2010 are used to evaluate the results of the adjustment

procedures. These data have 381 x 180 grid boxes and thus provide a resolution of 1.0° x
1.0° longitude/latitude.
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3.3. Data Preprocessing

Since the data of the reanalysis, or in the following called observations, are the basis of the

procedures and analyses carried out in this thesis, the scaling of the grid cells mentioned

in Section 3.1 is only applied to the 2m air temperature data sets of the MPI-ESM1-2-HR.

3.3. Data Preprocessing

For scaling the ESM data, the command line tool cdo (“Climate Data Operators”, 2022)

is used. This is developed and provided by the Max-Plank Institute for Meteorology. It

o↵ers an extensive collection of methods for manipulation and selection of climate data in

di↵erent formats and is based on simple to complex in- and output commands, can accept

files and streams, as well as output and write them. Climate Data Operators commands

are executed from right to left, unlike many other command-line tools. This means that

the command closest to the cdo command is executed last. The syntax is as follows:

cdo <key2>,<value> <key1>,<value1>,<value2> input output

If more than one argument is passed to cdo, the keys of the key-value pairs are to

be marked with a dash (“-”). The vast majority of values assigned to the keys of the

arguments are separated from the keys by a comma. The assignment of several values

to one key can be realized by several commas. Also, ranges can be defined with the“/”sign.

1 cdo -f nc \ # force nc output

2 -remapcon ,tas_NOAA_1951 -2015. nc \ # scale grid of input file

3 -subc ,273.15 \ # change deg. Kelvin to deg. Celsius

4 -selyear ,1951/2010 \ # select timespan 1951 - 2010

5 tas_MPI -ESM1 -2-HR_1850 -2014. nc \ # input file

6 tas_MPI -ESM1 -2-HR_1951 -2010. nc # output file

Listing 3.2: Apply observational grid configuration to the modeled data set, change the unit of

temperatures from Kelvin to deg. Celsius and select desired timespan using cdo

(Lst. 3.2) remapcon is the command that can be used to transfer the grid configura-

tions, which include distances between longitudes and latitudes, surface curvature, and

the number of cells, from the observed to the modeled data set by cubic interpolation

(cf. Schulzweida, 2021 and “Hybrid cubic spherical Bernstein-Bézier patch interpolation”,

2022). In addition, the time span is narrowed down to the years 1951 to 2010 and the unit

of measurement of temperatures is changed from Kelvin to deg. Celsius by subtracting all

values with 273.15.

Then the region is narrowed down to Europe so that the data sets only have values for

the longitudes from -45°W to 65°E by 1 deg. East and latitudes from 23°N to 72°N by 1

deg. North (cf. Lst. 3.3).

1 cdo -f nc \ # force nc output

2 -sellonlatbox ,-45,65,23,72 \ # slice space to -45°W - 65°E, 23°N - 72°N
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3.3. Data Preprocessing

3 tas_NOAA_1951 -2010. nc \ # input file

4 tas_NOAA_EUR_1951 -2010. nc \ # output file

Listing 3.3: Select European region using cdo

Finally, the modeled time series, as well as those of the observations, are divided into two

data sets, each covering the periods 1951 to 1980 and 1981 to 2010. Thus, all data sets

represent a period of 30 years and each has 10950 daily mean 2m air temperature values

for 111 x 50 grid cells (i.e. 111 longitudes and 50 latitudes). There are no missing values.

1 cdo -f nc \ # force nc output

2 -selyear ,1951/1981 \ # select timespan 1951 - 1981

3 -selvar ,tas \ # select only temperature values

4 tas_NOAA_1951 -2010. nc \ # input file

5 tas_NOAA_EUR_1951 -1981. nc \ # output file

Listing 3.4: Select specific timespan of observational data using cdo

It should also be noted that days that only occur in leap years have been removed from

the observed and modeled data sets. This is a common method to avoid sources of error

in advance.

Figure 3.4.: MPI-ESM1-2-HR model output; mean of daily 2m air temperatures in Europe between
1981 and 2010; -45°W to 65°E by 1 deg. East, 23°N to 72°N by 1 deg. North

Figure 3.4 represents the mean 2m air temperature per grid cell of the modeled data for

the years 1981 up to and including 2010. This is intended to provide a first overview of

the selected region. This is also the data set, which will be adjusted in the further course

of the thesis using various methods. This data has been interpolated to produce better

visual contours instead of 111 · 50 = 5550 grid boxes.

A somewhat larger section was chosen, which includes not only the countries of Europe

but also the north of Africa, as well as regions in eastern Europe and a part of Greenland.

This is due to the fact that a larger spectrum of regions with di↵erent climatic conditions

can be considered. Therefore, when Europe is referred to in this thesis, the section shown

in figure 3.4 is meant.

20



4. Approach / Methods

In the following, five di↵erent bias adjustment techniques are presented mathematically,

as well as in the Python and C++ programming languages, and illustrated with simple

examples. Bias adjustments can be classified into scaling- and distribution-based meth-

ods. Starting with the scaling-based methods such as the delta method (DM), as well as

the linear (LS) and variance scaling (VS) method, two more complex, distribution-based

techniques, named quantile mapping (QM) and quantile delta mapping (QDM), are then

shown. At the end of this chapter, there is a detailed implementation with explanations

for the execution of selected methods in Python, so that all presented methods can be

taken over and applied directly. In addition, implementation examples and pseudocode

for executing the presented methods in C++ are included in Section 4.7.

The mathematical basis of the scaling-based bias adjustment procedures is derived from

the articles by Teutschbein and Seibert, 2012 and Beyer et al., 2020. For the mathematical

representation of the QM and QDM procedures, the description of Tong et al., 2021, as

well as Cannon et al., 2015 was followed.

Table 4.1 records symbols and abbreviations used in the equations presented in this thesis.

Symbol Meaning Symbol Meaning

T Temperature ⇤ Bias adjusted

Pr Precipitation ({1...n}) Intermediate result (e.g. T V S(1)
sim,p )

f Transformation function obs Observational data (NOAA)

F Cumulative distribution function sim Modeled data (MPI-ESM1-2-HR)

P Probability density function h Historical, control period (1951-1980)

DM Delta Method p Future, predicted time period (1981-2010)

LS Linear Scaling m Monthly interval

V S Variance Scaling i Index in 1D sequence

QM Quantile Mapping µ Mean

QDM Quantile Delta Mapping � Standard deviation

�
2 Variance

Table 4.1.: Mathematical symbols, abbreviations and sub-/superscripts

Bias adjustments are statistical mathematical transformations used to adjust climate data.

For example, the adjustment of a modeled temperature time series representing a future

climate scenario can be represented as T
⇤
sim,p = f(Tsim,p), where f is an arbitrary ad-

justment procedure that aims to minimize deviations between Tsim,p and Tobs,p. This

transformation function is also passed the values of Tsim,h and Tobs,h in all methods shown

here. Thus, depending on the method, deviations in the mean, as well as in the variance

and in the quantiles can be minimized.

The period from 1951 to 1980 is used for the historical control period and is identified with

Tobs,h for observed and Tsim,h for modeled data, respectively. The years from 1981 to 2010

inclusive comprise the so-called future or scenario period, which is identified with Tobs,p
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for observed and Tsim,p for modeled data, respectively. These time series are respectively

a one-dimensional sequence of temperatures for a location or a grid cell as shown in Figure

1.1, in the respective data set.

To determine a certain temperature value within this sequence, the index i (i 2
{0, 10949} 2 N) is used in the equations presented here. The number 10949 corresponds

to the last index, which at the same time means that there are 10950 entries in each

sequence where a daily temperature value is stored. This number results from the number

of days between 1951 to 1980 or 1981 to 2010, whereby days, which occur only in leap

years, are not considered.

For the mathematical demonstration of the procedures, the temperature value of December

17, 1997 is always adapted for the location Bremerhaven. This day corresponds to index

6190, which can be accessed via the subscript i.

Methods to adjust and minimize deviations between observed and modeled climate data

are applied in various ways. For example, the scaling-based methods presented here, are

applied based on long-term monthly periods. This means that equal months are adjusted

together by dividing the modeled time series, as well as those of the observations, into 12

groups, one for each month. Thus, all Januaries of a data set can be adjusted separately

from all other months. Of course, this also applies to February, March through December.

By considering grouped months over the entire period, one has a more extensive contingent

of month-dependent climate events, which can better represent the climate, its variability,

and extremes over a longer period of time than if each month of each year were adjusted

separately or all together.

Mathematically, this aggregation of equal months, for 30 years, can be expressed with the

following equation, provided that the day at index 0 corresponds to the first of January

and each year has exactly 365 days (i.e. days in leap years are ignored).

m(Tsim,p(i)) = {Tsim,p(x) | 8x 2 {0, 10949} ✓ N, x has same month name as i} (4.1)

=) m(Tsim,p(0)) ⌘ m(Tsim,p(30)) ⌘ m(Tsim,p(10615)) (4.2)

Di↵erent variables are used in the source code excerpts shown. These have been designed

uniformly so that the approach of the methods can be easily reflected in the source code

excerpts based on the mathematical equations. The following table serves to define these

uniform variable names.

Symbol Meaning Symbol Meaning

obs Tobs,h as 1D Sequence m_obs m(Tobs,h(i)) as 1D Sequence

simh Tsim,h as 1D Sequence m_simh m(Tsim,h(i)) as 1D Sequence

simp Tsim,p as 1D Sequence m_simp m(Tsim,p(i)) as 1D Sequence

> Output

Table 4.2.: Symbols and abbreviations used in listings
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The source code excerpts shown to illustrate the Python implementations for the scaling-

based procedures assume that the respective commands are applied to 1D sequences (e.q.

1D list, 1D numpy.array or 1D xarray.core.dataarray.DataArray), which have been

separated by month as described before. This is needed, for example, when calculating

monthly means or standard deviations. That means, m_obs, m_simh and m_simp in these

listings each represent one month over 30 years (i.e. m_simp, if it is the month of January,

includes 30 ·31 = 930 entries; daily values of each January in the period from 1981 to 2010

inclusive; cf. Tab. 4.2f.).

i Index in m(Tsim,p(i)) Value Date

0 0 -0.677857 January, 1. 1981

1 1 -1.611131 January, 2. 1981

2 2 -1.641309 January, 3. 1981
.
.
.

.

.

.
.
.
.

.

.

.

10614 928 3.495331 January, 30. 2010

10615 929 2.792645 January, 31. 2010

Table 4.3.: Symbolic example and description of the 1D sequence of temperatures of all Januaries
in Tsim,p; values are 2m air temperatures in deg. Celsius

Since this step is used in several procedures, the separation of months in Python is im-

plemented and explained in Section 4.6 with a detailed example. The monthly separation

and adjustment using C++ and Shell is shown in Section 4.7.

Various tests in the course of this work have shown that this separation of the months

leads to unrealistic results using the quantile and quantile delta mapping procedures. It

has been shown that the first and the last day of the adjusted months give on average a

much too high deviation from the last day of the previous month and from the first day

of the following month, respectively because the distributions of the individual months, as

well as their quantiles are no longer in relation to each other. For this reason, the QM and

QDM procedures are applied directly to the full periods.
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4.1. The Delta Method

4.1. The Delta Method

The delta method (DM) basically consists of adding an observed daily historical value at

a certain index with the di↵erence of the long-term monthly means between the modeled

predicted and historical values of the corresponding month. Thus, the change between the

historical and predicted model output can be determined.

T
⇤DM
sim,p (i) = Tobs,h(i) + (µm(Tsim,p(i))� µm(Tsim,h(i))) (4.3)

The delta method assumes that the bias between modeled and observed data remains

consistent over time, so the calculated change in modeled data can be summed with the

value of the historical observation to estimate the future value (Beyer et al., 2020).

In terms of the data presented in Chapter 3, this means that the bias of the entire time

series of one grid cell in the modeled data from 1981 to 2010, inclusive, can be adjusted

by starting with the first day, January 1, 1981, and determining the monthly mean over

all Januaries in this data set, as well as in the modeled data of the control period from

1951 to 1980. The di↵erence of these two values is the change between the historical and

predicted modeled data and is then added to the historically observed value for January

1, 1951. Thus, the first day is adjusted at index i = 0. This is repeated for all further days

in the time series to be adjusted, taking care to calculate the mean corresponding to the

month in which the day to be adjusted lies over all years (i.e. long-term monthly mean).

Example

The procedure of the delta method is demonstrated below with the adjustment of the

author’s birthday:

T
⇤DM
sim,p (i) = Tobs,h(i) + (µm(Tsim,p(i))� µm(Tsim,h(i))) (4.4)

= 2.93°C+ (2.44°C� 3.0°C) (4.5)

= 2.93°C+ (�0.56°C) (4.6)

= 2.37°C (4.7)

where:

i = 6190 (index of December, 17. 1997 in predicted period)

µm(Tsim,h(i)) = Mean of all December temperatures in Tsim,h

µm(Tsim,p(i)) = Mean of all December temperatures in Tsim,p

The temperature adjusted by the delta change method for December 17, 1997 is 0.56°C
colder than the model simulated it for that day. Here, the mean of all temperatures in

the December months between 1951 and 1980 was subtracted from the mean of all tem-

peratures in the December months between 1981 and 2010 and added with the historical

observed temperature value according to the index i = 6190. This means that the modeled
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4.1. The Delta Method

data for the Bremerhaven region is on average 0.56°C warmer in the December months

between 1981 and 2010 than in the time series from 1951 to 1980.

Implementation

The delta method is shown in the following example using the Python programming

language. Here, line 5 shows the procedure of Equation 4.3, but note that m_obs, m_simh

and m_simp are 1D sequences of a month over all years (cf. Tab. 4.2). The time series

can be adjusted by subtracting the mean of the historical modeled data from the mean of

the predicted time series, as previously shown mathematically, and then adding it to the

values of the observed 1D sequence:

1 def delta_method(

2 m_obs: [float], m_simh: [float], m_simp: [float], kind: str=�+�

3 ) -> [float ]:

4 if kind == �+�:

5 return m_obs + np.nanmean(m_simp) - np.nanmean(m_simh) # Eq. 4.3

6 elif kind == �*�:

7 return m_obs * (np.nanmean(m_simp) / np.nanmean(m_simh)) # Eq. 4.8

8

9 dm_corrected = delta_method(m_obs , m_simh , m_simp) # cf. Tab. 4.2

Listing 4.1: Implementation of the additive and multiplicative delta method

The additive delta method has the disadvantage that it can give unrealistic results when

applied to variables such as precipitation or wind speed, since negative values for T ⇤DM
sim,p (i)

can be calculated. For this reason, the multiplicative procedure of the delta method can

be applied, which consists of multiplying the daily observed temperature values by the

ratio of predicted and historical modeled long-term monthly means.

Pr
⇤DM
sim,p(i) = Probs,h(i) ·


µm(Prsim,p(i))

µm(Prsim,h(i))

�
(4.8)

Equation 4.8 is implemented in Listing 4.1l. 7 by multiplying the relative change between

the historical and predicted modeled long-term monthly means by the historical observed

value, as described previously. The grouping of months is not shown because this is

addressed in Section 4.6 as mentioned previously.
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4.2. The Linear Scaling Method

The linear scaling method (LS) is one of the basic statistical methods for adjusting time se-

ries climate data. Like the delta method, the linear scaling method is used to approximate

model-generated data to that of observed data on a monthly average basis. It also has

additive and multiplicative applications. The additive is much better suited for climate

parameters such as temperatures since small di↵erences in multiplication are too signifi-

cant for temperatures. The application of the multiplicative method is more suitable for

variables such as precipitation, wind speed, and vapor pressure.

(Eq. 4.9) To adjust daily temperature data of a predicted time series using the linear scaling

procedure, the long-term monthly mean of the historical modeled data is subtracted from

the historical long-term monthly mean of the observed time series. Then this value is

added to the value of the day to be adjusted. Again, the long-term monthly means are to

be determined according to the month of the day to be adjusted.

T
⇤LS
sim,p(i) = Tsim,p(i) + µm(Tobs,h(i))� µm(Tsim,h(i)) (4.9)

(Eq. 4.10) The adjustment of a modeled time series can also take place by applying the

linear scaling procedure with observed and modeled data of the same period. This makes

sense if the data adjusted in this way serve as input for further model simulations or

equations.

T
⇤LS
sim,h(i) = Tsim,h(i) + µm(Tobs,h(i))� µm(Tsim,h(i)) (4.10)

The linear scaling procedure is particularly well suited to adjust bias between historical

long-term monthly means by adding the di↵erence to the value to be adjusted. This is

shown by the fact that the long-term monthly mean of the adjusted time series T
⇤LS
sim,h,

matches the long-term monthly mean of the observed time series in the control period:

µm(T ⇤LS
sim,h(i)) = µm(Tobs,h(i)) (Teutschbein and Seibert, 2012).

In the multiplicative variant, a factor based on the ratio between the long-term monthly

mean of historical observations and the modeled time series is multiplied by the corre-

sponding value of the time series to be adjusted. This is not used for temperature data

but is presented below for completeness.

Pr
⇤LS
sim,p(i) = Prsim,p(i) ·


µm(Probs,h(i))

µm(Prsim,h(i))

�
(4.11)

This also makes sense, as with the delta method, for variables whose value range is

unilaterally limited and this is also the resting state (e.g. default precipitation equals

zero and cannot be less than zero).

Example

The following equations serve as an example of the application of the additive linear

scaling procedure, where the temperature of 4.34°C predicted by the model is adjusted
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4.2. The Linear Scaling Method

using Equation 4.9:

T
⇤LS
sim,p(i) = Tsim,p(i) + (µm(Tobs,h(i))� µm(Tsim,h(i))) (4.12)

= 4.34°C+ (3.48°C� 3.0°C) (4.13)

= 4.34°C+ 0.48°C (4.14)

= 4.82°C (4.15)

where:

i = 6190 (index of December, 17. 1997 in predicted period)

µm(Tobs,h(i)) = Mean of all December temperatures in Tobs,h

µm(Tsim,h(i)) = Mean of all December temperatures in Tsim,h

After applying the linear scaling procedure, the temperature on December 17, 1997 is

0.48°C warmer, because the observed temperatures, averaged over all December months in

the historical control period, were warmer by exactly this value than the model simulated

it for the same period. This also means that every day in all December months in

Bremerhaven between 1981 and 2010 is 0.48°C warmer after applying the linear scaling

method with these time series.

Implementation

In Python, the additive, as well as multiplicative linear scaling method can be imple-

mented as follows:

1 def linear_scaling(

2 m_obs: [float], m_simh: [float], m_simp: [float], kind: str=�+�

3 ) -> [float ]:

4 if kind == �+�:

5 return m_simp + np.nanmean(m_obs) - np.nanmean(m_simh) # Eq. 4.9

6 elif kind == �*�:

7 return m_simp * np.nanmean(m_obs) / np.nanmean(m_simh) # Eq. 4.11

8

9 ls_corrected = linear_scaling(m_obs , m_simh , m_simp) # cf. Tab. 4.2

Listing 4.2: Implementation of the additive and multiplicative linear scaling method

Again, it is a requirement that the values of m_obs, m_simh, and m_simp have been separated

into monthly groups (cf. Tab 4.2). The implementation of this grouping is done in Section

4.6, Listing 4.15↵..

Figure 4.1 represents the mean temperatures per month for the location Bremerhaven in

the control and scenario period. By applying the linear scaling procedure, changes in the

monthly means can now be seen. It is noticeable that the deviation between the adjusted

time series and Tobs,p in February, compared to the modeled data Tsim,p, has increased,

i.e. worsened.
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4.2. The Linear Scaling Method

Figure 4.1.: Comparison of observed, modeled and linear scaling adjusted monthly mean 2m air
temperatures in Bremerhaven at di↵erent periods

For this reason, the historical observed and modeled long-term monthly means are also

shown. Since this bias adjustment procedure assumes that errors remain persistent, this

di↵erence was also taken into account during the adjustment. However, in the control

period, the modeled time series is warmer than the observed data, but this is not the case

in the period from 1981 to 2010, so the bias actually increased here.

In March and April, the di↵erence has been somewhat reduced. In June, it is noticeable

that the modeled and observed data of the control period show rather similar values, which

means that here, too, the adjustment has brought only minimal changes. In autumn, on

the other hand, a significant improvement is seen. This is because the di↵erence between

Tobs,h and Tsim,h is about the same as between Tobs,p and Tsim,p.

Figure 4.2.: Comparison of observed, modeled and linear scaling adjusted monthly mean 2m air
temperatures in Europe at di↵erent periods

(Fig. 4.2) By applying the linear scaling procedure not only to the time series of one

region but to all grid boxes of the modeled data presented in Chapter 3, it can be seen

that the di↵erence between modeled and observed data has the highest deviations in the

winter months. In January, it can be seen that the di↵erence between Tobs,h and Tobs,p has

increased, but in the modeled data, this temperature increase between Tsim,h and Tsim,p

is not as high. For this reason, a too small di↵erence is added to the time series to be
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4.2. The Linear Scaling Method

adjusted, so that the LS-adjusted data set still show values that are too cold.

The di↵erence of this technique compared to the delta method is that the linear scaling

procedure attempts to project the historical di↵erence between the observed and modeled

data onto the time series to be adjusted, rather than adding the change between the

modeled data onto the historical observations.
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4.3. The Variance Scaling Method

As an extension of the linear scaling method, the variance scaling (VS) not only allows

minimizing the deviations in the long-term monthly mean but can also adjust the long-

term monthly variance of the temperatures of modeled climate data to approximate those

of the historically observed time series. This assumes, of course, as with the linear scaling,

that the climate conditions for the historical and future modeled and observed time series

are the same. Because of the same conditions in di↵erent periods, it is also assumed that

the bias between modeled and observed values remains constant over time.

When applying the variance scaling procedure on temperature data, the first step is to

perform the additive linear scaling method as shown before (cf. Eq. 4.9f.). Then, the

long-term monthly mean is subtracted from the linear scaled value at index i:

T
V S(1)
sim,h (i) = T

⇤LS
sim,h(i)� µm(T ⇤LS

sim,h(i)) (4.16)

T
V S(1)
sim,p (i) = T

⇤LS
sim,p(i)� µm(T ⇤LS

sim,p(i)) (4.17)

If the equations 4.16f. are applied to all entries of the time series, then:

µm(T V S(1)
sim,h (i)) = µm(T V S(1)

sim,p (i)) = 0 (4.18)

(Eq. 4.19) With the long-term monthly mean shifted to zero, it is now possible to adjust

the standard deviation by multiplying the intermediate result T
V S(1)
sim,p by the ratio of its

long-term monthly standard deviation and the result from Equation 4.16. This, when

applied to all elements of T V S(1)
sim,p , ensures that the values are scaled up or down without

a↵ecting the mean (i.e. adjustment of the standard deviation and so variance, too).

T
V S(2)
sim,p (i) = T

V S(1)
sim,p (i) ·

2

4 �m(Tobs,h(i))

�m(T V S(1)
sim,h (i))

3

5 (4.19)

(Eq. 4.20) Finally, the long-term mean of the respective month, of the time series linearly

scaled at the beginning (cf. Eq. 4.9f.), is added with the standard deviation-adjusted

value of T V S(2)
sim,p to account for the long-term monthly standard deviation as well as the

long-term monthly mean.

T
⇤V S
sim,p(i) = T

V S(2)
sim,p (i) + µm(T ⇤LS

sim,p(i)) (4.20)

Thus, the linear scaling procedure is applied to adjust the data in the long-term monthly

mean. To account for the standard deviation as well, the long-term monthly mean is

subtracted from the previously linearly scaled time series (i.e. shift to zero mean; cf.

Eq. 4.16f.) and multiplied by the ratio of the observed and modeled long-term monthly

standard deviations (cf. Eq. 4.19). This completes the scaling of the long-term monthly

standard deviation. To add the linear scaled long-term monthly mean again, the previous

intermediate result is added to the linear scaled value from the beginning (cf. Eq. 4.20).
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4.3. The Variance Scaling Method

Example

Also, the variance scaling method is applied as an example to adjust the temperature

value of December 17, 1997. In the first step, the linear scaling procedure is applied for

the historical time series as well as for the time series to be adjusted. Thus two linear

adjusted time series result, over which in the following the average of all December months

is formed. This mean is subtracted from the temperature value at index i = 6190:

T
V S(1)
sim,h (i) = T

⇤LS
sim,h(i)� µm(T ⇤LS

sim,h(i))

(4.21)

= 3.23°C� 3.49°C (4.22)

= �0.26°C (4.23)

T
V S(1)
sim,p (i) = T

⇤LS
sim,p(i)� µm(T ⇤LS

sim,p(i))

(4.24)

= 4.82°C� 2.92°C (4.25)

= 1.9°C (4.26)
where:

i = 6190 (index of December, 17. 1997 in predicted period)

µm(T ⇤LS
sim,h(i)) = Mean of all December temperatures in T

⇤LS
sim,h

µm(T ⇤LS
sim,p(i)) = Mean of all December temperatures in T

⇤LS
sim,p

To determine T V S(2)
sim,p (i), the previous step must be applied not only for i = 6190, but for all

i that exhibit days in December months (cf. Eq. 4.1). Through this, the long-term mean

of temperatures in December is shifted to zero. Once this is done, the standard deviation

of the historical observed December values can be related to the standard deviation of the

zero-mean shifted values of the historical modeled data calculated in the previous step.

Multiplying this ratio by T
V S(1)
sim,p (i) realizes the scaling of the standard deviation and so

variance, too.

T
V S(2)
sim,p (i) = T

V S(1)
sim,p (i) ·

2

4 �m(Tobs,h(i))

�m(T V S(1)
sim,h (i))

3

5 (4.27)

= 1.9°C · 3.12°C
3.85°C

(4.28)

= 1.5397°C (4.29)

where:

i = 6190 (index of December, 17. 1997 in predicted period)

�m(Tobs,h(i)) = Standard deviation of all December temperatures in Tobs,h

�m(T V S(1)
sim,h (i)) = Standard deviation of all December temperatures in T

V S(1)
sim,h

The result of Equation 4.29 corresponds to the standard deviation adjusted temperature

value for the predicted time series. To add the long-term monthly mean, which was

removed at the beginning, it can be added to the previously standard deviation scaled
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intermediate result:

T
⇤V S
sim,p(i) = T

V S(2)
sim,p (i) + µm(T ⇤LS

sim,p(i)) (4.30)

= 1.5397°C+ 2.92°C (4.31)

= 4.4597°C (4.32)

where:

i = 6190 (index of December, 17. 1997 in predicted period)

µm(T ⇤LS
sim,p(i)) = Mean of all December temperatures in T

⇤LS
sim,p

The variance scaling procedure also changed the temperature value and produced a warmer

value for December 17, 1997 (4.4597°C> 4.34°C). However, this is not quite as warm as the

linear scaling procedure reported. This is due to the fact that the standard deviation of

December temperatures in T
V S(1)
sim,h is higher than in historically observed December months

and is therefore scaled-down (cf. Eq. 4.28).

Implementation

This can also be implemented in the Python programming language. Here, as in the

numerical example, the linear scaling method is applied in the first step to then determine

VS1_simh (i.e. T
V S(1)
sim,h ) and VS1_simp (i.e. T

V S(1)
sim,p ) by subtracting the linearly scaled

mean. In line 11, the scaling of the standard deviation is done to return this scaled result

added with the monthly mean in line 13.

1 def variance_scaling(

2 m_obs: [float], m_simh: [float], m_simp: [float]

3 ) -> np.array:

4

5 LS_simh = linear_scaling(m_obs , m_simh , m_simh) # Eq. 4.10

6 LS_simp = linear_scaling(m_obs , m_simh , m_simp) # Eq. 4.9

7

8 VS1_simh = LS_simh - np.nanmean(LS_simh) # Eq. 4.16

9 VS1_simp = LS_simp - np.nanmean(LS_simp) # Eq. 4.17

10

11 VS2_simp = VS1_simp * (np.std(m_obs) / np.std(VS1_simh)) # Eq. 4.19

12

13 return VS2_simp + np.nanmean(LS_simp) # Eq. 4.20

14

15 vs_corrected = variance_scaling(m_obs , m_simh , m_simp) # cf. Tab. 4.2

Listing 4.3: Implementation of the variance scaling method for temperatures

Here it should be noted again that m_obs, m_simh and m_simp must be separated into

monthly groups in line 15 according to Table 4.2. This means that the predefined method

is applied to, for example, all Januaries in a time series of 30 years. A detailed example

can be found in Section 4.6.
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4.4. The Quantile Mapping Method

Distribution-based procedures, in contrast to the scaling-based techniques, do not aim

to directly match the modeled time series in mean or variance to that of the observed

period, but rather attempt to minimize distributional biases by transferring the values

corresponding to the quantiles of the distribution function from one time series to another.

This is achieved in the simple quantile mapping (QM) procedure by inserting a temperature

value of the time series to be adjusted (Tsim,p(i)) into the cumulative distribution function

(CDF ) of the modeled time series of the control period (Fsim,h). Hereby a quantile value

is determined, which tells in which quantile the temperature value of the predicted time

series is located in the simulated data of the control period. This quantile value is then

inserted into the inverse CDF of the historical observations F�1
obs,h, providing the adjusted

temperature value for the time step of Tsim,p(i).

The adjustment of a temperature value, using QM, can be performed with the following

equation:

T
⇤QM
sim,p(i) = F

�1
obs,h {Fsim,h [Tsim,p(i)]} (4.33)

There is no need to di↵erentiate between curly and square brackets, nor is separation by

month necessary. The application of the quantile mapping is most easily illustrated with

visualizations, therefore a detailed example follows, in which the procedure is clarified.

Example

Figure 4.3 represents the first step in QM. Here, the temperature value of 4.34°C of the

predicted time series Tsim,p at index i with i = 6190 (i.e. index of December, 17. 1997) is

inserted into the CDF of the modeled time series of the historical period Fsim,h to obtain

the corresponding y-value representing the 0.28 quantile (i.e. 28% quantile of the modeled

time series of the control period).

Figure 4.3.: Determination of the quantile value by inserting Tsim,p(6190) into the CDF of the
modeled time series of the control period; black lines indicate the 25% and 75% quantile
respectively

(Fig. 4.4) Then, the value of 0.28 (i.e. 28% quantile) is inserted into the inverse CDF of

the historical observations F
�1
obs,h to determine the adjusted temperature value of 4.74°C
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of the corresponding quantile in the historical period of the observed data. To adjust the

entire predicted time series, this must be repeated for each value of Tsim,p.

Figure 4.4.: Inserting the quantile value of 0.28 into the inverse CDF of historical observational
data (F�1

obs,h) to equate the adjusted temperature value of Tsim,p(6190); black lines
indicate the 25% and 75% quantile respectively

The term mapping is chosen for this reason, as the quantile value of Fsim,h [Tsim,p(i)] is

applied to the CDF of the historical observed time series to adjust a temperature value

from the scenario time series according to this quantile.

Figure 4.5.: Cumulative distribution functions of observed, modeled and QM-adjusted daily mean
2m air temperatures in Bremerhaven, Germany for di↵erent time periods

Figure 4.5 plots the cumulative distribution functions of the observed, as well as modeled

and QM-adjusted time series for the location of Bremerhaven, Germany. It can be clearly

seen that Fobs,p has shifted to the positive range of values, which in turn is due to climate

change and increasing temperatures. At the same time, it can be seen that the CDF of the

QM-adjusted time series is similar to one of the observations of the control period. Since
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Fsim,h is significantly further to the left of Fobs,h, the procedure has applied this deviation

to the modeled data of the predicted period. Therefore, the time series adjusted by QM

has on average warmer values than Tsim,p. However, these still have a clear di↵erence to

Fobs,p.

In the highlighted subplot it can be seen that the historical modeled (yellow line), as

well as the predicted data (blue line) initially, have very similar values in the quantiles

between 0.2 to 0.3. Here, quantile mapping has minimized the historical bias of the data

in the predicted time series, which is why the adjusted data (red line) almost match those

of the historical observations (gray dotted line). In the quantiles between 0.4 to 0.5 a

similar behavior can be seen, because here there is also a deviation between Fsim,h and

Fobs,h, which is compensated by QM using higher temperatures in the adjusted time series.

However, as the distance between Fsim,h and Fsim,p has increased, F ⇤QM
sim,p is shifted even

further to the right, causing it to no longer match the CDF of Tobs,h, as it did shortly

before.

Since the climate is changing and thus the data of the observations do not remain the

same, the QM adjustment technique can only provide an approximation of the distribu-

tions. Also, the changes between historical and predicted modeled data are not considered

here. However, if the modeled data are identical, the adjustment can ensure that the

distributions can produce a very high agreement with the observed data of control period.

The missing trends between the modeled time series, which also include the climate change,

are adjusted when the simple quantile mapping procedure is applied. Although the data

can be adjusted using historical values, their extreme values are not adequately taken into

account (Cannon et al., 2015). Also, values produced by QM can never be higher or lower

than the maximum or minimum value of the observed time series of the control period,

since for example, the 100% quantile corresponds to the highest temperature value in F
�1
obs,h

(cf. Fig. 4.4), so this procedure is only suitable for adjusting predicted data whose range

of values is approximately equal to that of the historical observations.

Implementation

The QM technique can be implemented in Python by first determining the probability

boundaries (xbins) by dividing the range between the minimum and the maximum

temperatures of the control period into n equally-sized sections:

1 def get_xbins(obs: [float], simh: [float], n: int =100) -> np.array:

2 global_max: float = max(np.amax(obs), np.amax(simh))

3 global_min: float = min(np.amin(obs), np.amin(simh))

4 wide: float = abs(global_max - global_min) / n

5 return np.arange(global_min , global_max + wide , wide)

6

7 xbins: np.array = get_xbins(obs , simh)

Listing 4.4: Define monotonously increasing vector xbins, containing equally sized bins between the

maximum and minimum historical modeled and observed temperature values
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These probability boundaries are needed to determine the probability density function

(PDF ) of the modeled, as well as of the observed time series (cf. Fig. 4.6 and Lst. 4.5l.

2). In this thesis, the value of 100 is always used for the parameter n, thus xbins is a

monotonically increasing vector with 101 values, which define the limits of the probability

boundaries based on the temperature values of the control period. Therefore, xbins defines

the boundaries in which the bars of a density function are represented in a histogram, so

101 xbins values will show 100 histogram bars:

Figure 4.6.: Probability density function as line and bar plot of observed daily mean temperatures
in Bremerhaven, Germany between 1951 and 1980 as a representation of the need of
xbins

The probability density function of a time series is needed to determine the corresponding

CDF by summing up the values (i.e. densities) of the PDF (cf. Lst. 4.5l. 3).

1 def get_cdf(a: [float], xbins: [float]) -> np.array:

2 pdf , _ = np.histogram(a, xbins) # compute P (x)

3 return np.insert(np.cumsum(pdf), 0, .0) # compute F (x)

Listing 4.5: Define function get cdf that computes the PDF of a vector (i.e. 1D sequence) by given

probability boundaries (i.e. xbins) to equate and return the CDF

The summation of the values is achieved with the help of the function cumsum from the

Numpy module. At the same time, a zero is shifted to the first position of the array

determined in this way. This is important in order to interpolate between 0% quantile and

the minimum occurred value later.
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Since now a function is defined, with which the CDF of a time series can be determined,

it is time to bundle all this in a final function (cf. Lst. 4.6f.). Here, in the first step,

the previously described boundaries xbins are determined with the help of the function

get_xbins (l. 4), in order to subsequently determine the cumulative distribution functions

of Tobs,h and Tsim,h (l. 5f.):

1 def quantile_mapping(

2 obs: [float], simh: [float], simp: [float], n_quantiles: int =100

3 ) -> np.array:

4 xbins: np.array = get_xbins(obs , simh , n_quantiles) # Lst. 4.4

5 cdf_obs: np.array = get_cdf(obs , xbins) # Fobs,h

6 cdf_simh: np.array = get_cdf(simh , xbins) # Fsim,h

Listing 4.6: Implementation of the quantile mapping method (Part 1)

(Lst. 4.7) To calculate according to the Equation 4.33 Fsim,h [Tsim,p], the function interp

from the module Numpy can be applied with the parameters x, xp and fp. Here, for x,

the values to be interpolated from simp (simp = {Tsim,p(i) | 8i 2 {0, 10949}, i 2 N})
are used to determine the associated quantile values (y_values) with the help of linear

interpolation. xp corresponds to the probability boundaries xbins and thus forms the

x-values of the interpolation function. The parameter fp is passed cdf_simh (Fsim,h),

because this vector contains the y-values (i.e. quantile values) of the function. Line one to

three is the execution of what is shown in Figure 4.3. The last line realizes the subsequent

insertion into F
�1
obs,h (cf. Fig. 4.4).

1 y_values: np.array = np.interp( # Eq. 4.33; Fig.4.3

2 x=simp , xp=xbins , fp=cdf_simh

3 )

4 return np.interp(x=y_values , xp=cdf_obs , fp=xbins) # Eq. 4.33; Fig.4.4

Listing 4.7: Implementation of the quantile mapping method (Part 2)

Unlike the previous bias adjustment implementation examples, quantile and quantile

delta mapping do not require obs, simh, and simp to be separated at equal months as

shown in Table 4.2. For this reason, this method can be applied directly to the full-time

periods.

1 qm_corrected: np.array = quantile_mapping(

2 obs=obs , # Tobs,h

3 simh=simh , # Tsim,h

4 simp=simp # Tsim,p

5 )

Listing 4.8: Execute the quantile mapping method

The number of probability boundaries (i.e. length of xbins), results from the value, which

is passed for n to the function get_xbins (cf. Lst. 4.4). This value not only specifies
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how many bins the PDF is divided into, but is also crucial when linear interpolation is

applied (e.g. when inserting Tsim,p(i) into Fsim,h; Eq. 4.33). If this value is too low, for

example only 10, the range of P (x) is only divided into 10 equal parts, which can cause

inaccuracies in the further course of the calculations, because the distributions cannot be

mapped su�ciently, since the distances between which interpolation is performed are too

large.

Since temperatures in the data presented here have approximately a range of values from

-50°C to +50°C, this range can be divided into 100 parts, whereby the spacing of the

values in the vector xbins is approximately 1°C, provided that a region is adjusted which

also covers such a range of values. If the values of a time series to be adjusted are only

between -10°C and +30°C, this will also be divided into 100 equal parts, resulting in smaller

distances of the values in xbins.

Since data for 30 years with a total of 10950 days per grid cell are used here, this value can

also be set significantly higher, such as 250 or even more. Since most of the cells adjusted

here only have temperatures between -10°C and 25°C, which means that the distances in

xbins are only about 0.35°C between which a value is interpolated (when length of xbins

= 101), the value of 100 is assumed to be su�cient and is used in both quantile mapping

and quantile delta mapping. As an aside, Figures 4.3f. and 4.6 map the CDFs of various

time series. These have exactly 100 values.

Determining the optimal number of boundaries is a subfield unto itself and certainly

requires some further investigation, as it may be defined di↵erently depending on the

variable, time period, location, and quality of the data.
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4.5. The Quantile Delta Mapping Method

The quantile delta mapping procedure (QDM) for temperatures is characterized by taking

into account the absolute changes in the quantiles between historical and future simulated

climate model output and thus obtaining the model-specific trends, which are adjusted in

the simple quantile mapping (cf. Section 4.4). By trend, in terms of the data used here,

the the absolute change in temperatures between historical and projected modeled period

is meant. Here, the simple quantile mapping technique is applied in a modified form as

part of the transfer function.

(Eq. 4.34) First, the temperature value of Tsim,p at index i is inserted into the cumulative

distribution function Fsim,p. This gives the value of the quantile for the temperature at

index i. Since this value is used several times in the following equations, it is assigned to

the variable ".

"(i) = Fsim,p [Tsim,p(i)] , "(i) 2 {0, 1} (4.34)

(Eq. 4.35) This is followed by minimizing the bias between the observations of the control

period and the time series to be adjusted by inserting the previously calculated quan-

tile value "(i) into the inverse CDF of the historical observations F
�1
obs,h. This is done

similarly to Figure 4.4, but in QDM Fsim,p [Tsim,p(i)] is inserted into F
�1
obs,h instead of

Fsim,h [Tsim,p(i)].

This is called detrending, because the trends or the absolute changes of the quantiles be-

tween the control and predicted period of the modeled time series are ignored (Tong et al.,

2021). T
QDM(1)
sim,p (i) now represents an adjusted temperature value, which was determined

based only on the observational time series of the control period and the modeled time

series of the scenario period.

T
QDM(1)
sim,p (i) = F

�1
obs,h ["(i)] (4.35)

(Eq. 4.36) Now, to determine the absolute change in quantiles between historical and

predicted modeled time series, the quantile value "(i) is inserted into the inverse CDF of

Tsim,h to obtain the temperature value of the historical modeled time series corresponding

to this quantile.

This value is then subtracted from the value to be adjusted to determine the di↵erence.

�(i) is thus a temperature value representing the absolute change in quantiles between

the historical and predicted values.

�(i) = F
�1
sim,p ["(i)]� F

�1
sim,h ["(i)] (4.36)

= Tsim,p(i)� F
�1
sim,h {Fsim,p [Tsim,p(i)]} (4.37)

(Eq. 4.38) Finally, the previously determined temperature value�(i), which represents the

change in quantiles, is added to the temperature value T
QDM(1)
sim,p (i) adjusted in Equation

4.35, which was determined based on the observed time series of the control period and
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the time series to be adjusted only.

T
⇤QDM
sim,p (i) = T

QDM(1)
sim,p (i) +�(i) (4.38)

By adding the change between the quantiles of the simulated time series, the results

of quantile delta mapping are no longer bound to the range of values of the historical

observations, as was previously the case with the simple quantile mapping technique.

To adjust the bias in precipitation time series by QDM, it is recommended to determine

the relative change in Equation 4.36 by dividing instead of subtracting. Subsequently,

multiplication must be performed in Equation 4.38. However, since this does not apply in

this thesis, the reader is therefore referred to the article by Tong et al., 2021.

Example

To adjust a temperature value in Tsim,p at time step i using QDM, so that it ideally matches

the observed value of Tobs,p(i), the value of the quantile of Tsim,p(i) must be determined.

This is accomplished by inserting the temperature value that occurred on that day, from

the predicted modeled time series into the CDF of Tsim,p (cf. Eq. 4.34):

"(i) = Fsim,p[Tsim,p(i)] = 0.1997 (4.39)

where:

i = 6190 (index of December, 17. 1997 in predicted period)

Tsim,p(i) = 4.34°C

The 0.1997 quantile thus determined, which indicates in which quantile the temperature

of 4.34°C in Tsim,p is located in the predicted time series, is now inserted into the inverse

CDF of the historical observations (cf. Eq. 4.35) to adjust the value, similar to the simple

quantile mapping, but without mapping between the modeled time series nor taking into

account the absolute change of the quantile between historical and projected modeled data:

T
QDM(1)
sim,p (i) = F

�1
obs,h(0.1997) = 3.35°C (4.40)

The value of 3.35°C obtained in this way represents the adjusted temperature value, which

does not take into account the change in the quantiles between the modeled time series. It

indicates the temperature of the 0.1997 quantile in the observed time series of the control

period.

(Eq. 4.41↵.) In parallel, the value of "(i) is also inserted into F
�1
sim,h (cf. Eq. 4.36)

to determine the historical modeled temperature value corresponding to quantile 0.1997.

The di↵erence of this determined value with Tsim,p(i) results in �(i) and represents a

temperature value describing the absolute change of the quantile between the control and
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predicted modeled period:

�(i) = Tsim,p(i)� F
�1
sim,h ["(i)] (4.41)

= 4.43°C� F
�1
sim,h(0.1997) (4.42)

= 4.43°C� 2.75°C (4.43)

= 1.59°C (4.44)

The temperature value�(i) is then added to the detrended-adjusted value of Equation 4.40

to obtain, in addition to the temperature value adjusted based only on the observational

control period time series, the absolute change in the quantile (i. e. change between

Fsim,h [Tsim,p(i)] and Fsim,p [Tsim,p(i)]):

T
⇤QDM
sim,p (i) = T

QDM(1)
sim,p (i) +�(i) (4.45)

= 3.35°C+ 1.59°C (4.46)

= 5.04°C (4.47)

Finally, it can be seen that the temperature value of December 17, 1997, adjusted using

the quantile delta mapping method, is 0.7°C warmer than the model reported for that

date.

Implementation

Since the inverse CDF of a time series must be formed several times in the quantile delta

mapping procedure, it is worthwhile to write a method for this at the beginning. This also

makes it easier to understand the subsequent source code section. This is implemented

by interpolating again with the help of the function interp from the Numpy module.

1 def get_inverse_cdf(

2 base: [float], insert: [float], bins: [float]

3 ) -> np.array:

4 return np.interp(x=insert , xp=base , fp=bins) # F�1
base [insert]

Listing 4.9: Implementation of function get inverse cdf that computes the inverse CDF and enables

inserting values in one step

(Lst. 4.10) The quantile delta mapping procedure can now be performed by first determin-

ing the probability boundaries xbins (l. 4) using the function defined in Listing 4.4. This

number of quantiles, whose default value here is 100, has the same influence on the result

as in the simple quantile mapping. Afterward, the cumulative distribution functions of

the historical time series and also of the time series to be adjusted can be calculated (l. 7↵.).

1 def quantile_delta_mapping(

2 obs: [float], simh: [float], simp: [float], n_quantiles: int =100

3 ) -> np.array:
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4 xbins: np.array = get_xbins(obs , simh , n_quantiles)

5

6 # compute CDFs

7 cdf_obs: np.array = get_cdf(obs , xbins) # Fobs,h

8 cdf_simh: np.array = get_cdf(simh , xbins) # Fsim,h

9 cdf_simp: np.array = get_cdf(simp , xbins) # Fsim,p

Listing 4.10: Implementation of quantile delta mapping method (Part 1)

After the CDFs are determined, the Equations 4.35↵. can be applied by realizing the

insertion via linear interpolation:

1 # calculate exact CDF values (Fsim,p [Tsim,p], i.e. ")

2 epsilon: np.array = np.interp( # Eq. 4.34

3 x=simp , xp=xbins , fp=cdf_simp

4 )

5

6 # insert " into inverted Fobs,h

7 QDM1: np.array = get_inverse_of_cdf( # Eq. 4.35

8 cdf_obs , epsilon , xbins

9 )

10

11 # compute �

12 delta: np.array = simh - get_inverse_cdf( # Eq. 4.36f.

13 cdf_simp , epsilon , xbins

14 )

15

16 return QDM1 + delta # Eq. 4.38

Listing 4.11: Implementation of quantile delta mapping method (Part 2)

As with simple quantile mapping, it is not necessary to separate the months beforehand.

Therefore, the quantile delta mapping method can be applied directly to the full period

of the time series, just like the simple QM. These must be passed to the method

quantile_delta_mapping in the form list or numpy.array:

1 qdm_corrected = quantile_delta_mapping(

2 obs = obs , # Tobs,h

3 simh = simh , # Tsim,h

4 simp = simp # Tsim,p

5 )

Listing 4.12: Application of the quantile delta method

The variable qdm_corrected contains the same number of values after execution as

the passed 1D sequence simp and includes all temperature values adjusted by QDM

(qdm_adjusted = T
⇤QDM
sim,p ).
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4.6. Extensive Implementation

In order to show how the presented scaling-based procedures can be applied using Python,

a detailed example follows, in which the linear scaling procedure is carried out in order to

adjust the time series from 1981 to 2010 of the modeled data with the help of modeled and

observed data of the period 1951 to 1980. Here, it is particularly important to note that

the adjustment is performed for a specific location. Thus, the loaded data sets must have

a resolution of 1 x 1 longitude/latitude and in this example, they have 10950 daily mean

2m air temperature values spanning 30 consecutive years, not including days that occur

only in leap years. If it is desired to bias-adjust data sets with higher spatial resolutions,

a loop can be constructed around the following example, which iterates over all desired

locations or even vertical dimensions. Depending on the resolution, it is advisable to split

the calculations into several processes, as the adjustments of di↵erent locations can be

calculated independently of each other.

First, the data sets need to be loaded into the Python script. For this, the module

Xarray is used, which must be imported as shown in Listing 1.2. In the same step, the

variable “tas” (i.e. temperatures) is selected, which changes the data type of the loaded

data set from xarray.core.dataarray.Dataset to xarray.core.dataarray.DataArray.

This simplifies more direct access to the values and at the same time defines that only

temperature values are used.

1 obs: xr.core.dataarray.DataArray = xr.open_dataset( # Tobs,h

2 �path/to/observational_dataset_1951 -1980. nc�

3 )[�tas�]

4 simh: xr.core.dataarray.DataArray = xr.open_dataset( # Tsim,h

5 �path/to/modeled_dataset_1951 -1980. nc�

6 )[�tas�]

7 simp: xr.core.dataarray.DataArray = xr.open_dataset( # Tsim,p

8 �path/to/modeled_dataset_1981 -2010. nc�

9 )[�tas�]

Listing 4.13: Loading Tobs,h, Tsim,h and Tsim,p into a Python script

Once this data has been successfully loaded, it is time to specify which of the methods

presented should be used to adjust the data. The following functions are available for

selection:

Method Listing

delta_method 4.1

linear_scaling 4.2

variance_scaling 4.3

Table 4.4.: Available methods for long-term monthly scaling-based bias adjustment implemented
in Python
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In the following example, the linear scaling method is chosen by assigning the function

linear_scaling, described in Listing 4.2, to the variable method. Furthermore, the

variable results is initialized by copying the data set, which has all information of the

time series to be adjusted, into it. The parameter deep is set to True here, so that a copy

and no reference is created from the object. Then the function load is called so that this

1D sequence is completely loaded into memory. This is necessary for longer time series in

order to set values at specific indexes as the sequence progresses. This is because Xarray

uses the Dask backend, which only loads data sets into working memory using chunks

whose values cannot be accessed directly without first loading them completely into the

working memory.

1 # define adjustment method

2 method: function = linear_scaling # cf. Lst. 4.2

3

4 # prepare result data set by deep copying the scenario data set

5 result: xr.core.dataarray.DataArray = simp.copy(deep=True).load()

Listing 4.14: Selection of the desired adjustment method and preparation of the results data set by

deep copying all attributes and values of the Tsim,p time series

(Lst. 4.15) The Xarray module provides many useful functionalities to select specific

spatial and temporal scales. For example, using the groupby method, which is available

by default to all objects of the xarray.core.dataarray.DataArray class, it is possible to

create 12 groups containing all indices of the temperature values of the given month. To

subsequently assign these grouped values to a variable in the dict data type, the groups

attribute is accessed.

1 groups: dict = simh.groupby(�time.month�).groups

Listing 4.15: Create dictionary containing indices grouped by month

In some cases, for example, when adjusting precipitation, it may even lead to better results

if not grouped by month but by season using time.season. Grouping to time.dayofyear

is also possible, but leads to problems with the current version of Xarray, because days in

leap years cannot be considered su�ciently by this approach due to their less frequent

occurrence. After applying the grouping described in Listing 4.15, the variable groups

contains 12 keys corresponding to integer values from 1 to 12. These keys are assigned

the indices of the corresponding days in the respective month.

1 groups: dict = {

2 1: { # Januaries

3 0, 1, 2, 3, ..., 30, # year 1 (1951)

4 395, 396, ..., 425, # year 2 (1952)

5 ..., ..., ...,

6 10585 , 10586 , ..., 10615 # year 30 (1980)

7 },
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8 2: { ... }, # Februaries

9 ...,

10 ...,

11 ...,

12 12: { ... } # Decembers

13 }

Listing 4.16: Pseudocode representing the grouped key-value pairs containing monthly separated

indices

Since now the respective indices of all days of a certain group, which indicates the respective

month, are assigned, it can be iterated over each key (month = key 2 {1, 12}) (cf. Lst.

4.17l. 1).

(Lst. 4.17l. 2) Then the variables m_obs, m_simh and m_simp are declared. They are

initialized by iterating over all indices assigned to the key month of the dictionary groups

in another loop (l. 4↵.). Thus, the temperature values at the corresponding index, from

the time series loaded in Listing 4.13, can be selected and assigned to the corresponding

list. After this initialization is performed, m_obs, m_simh, and m_simp are 1-dimensional

sequences of float values containing all temperature values of a month, over the entire

30-year period under consideration (cf. Eq. 4.1).

1 for month in groups.keys():

2 m_obs , m_simh , m_simp = [], [], []

3

4 for i in groups[month]:

5 m_obs.append(obs[i])

6 m_simh.append(simh[i])

7 m_simp.append(simp[i])

Listing 4.17: Declaration and initialization of the 1D sequences containing all temperature values

of all same named months: m(Tobs,h(i)), m(Tsim,h(i)) and m(Tsim,p(i))

(Lst. 4.17) Now that the 1D sequences of a particular month (e.g. all Januaries if month

= 1) are prepared over the entire 30-year period, these vectors of data type list can be

passed to the method to adjust the bias (l. 1↵.).

1 computed_result: np.array = method(

2 m_obs = m_obs , # all e.g. Januaries between 1951 - 1980

3 m_simh = m_simh , # -- // -- between 1951 - 1980

4 m_simp = m_simp , # -- // -- between 1981 - 2010

5 kind = �+� # set additive method

6 )

7

8 for i, index in enumerate(groups[month]):

9 result[index] = computed_result[i]

Listing 4.18: Application of the adjustment method and mapping of the computed results to the

right position in the result sequence
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(Lst. 4.18) The variable computed_result contains the adjusted values, for example of all

Januaries. To transfer these to the final dataarray result prepared in Listing 4.14, these

adjusted values must be set at the correct indexes. This is achieved by again iterating

over all indices of the respective month (l. 8f.) to determine the corresponding index (i.e.

index) in the source data set simp for each adjusted value and assigning it afterward.

After the outer loop defined in Listing 4.17 finishes, the variable result, which is of data

type xarray.core.dataarray.DataArray, contains 10950 adjusted values. This completes

the bias adjustment for this procedure.

1 print(obs [:10])

2 > [

3 > -1.766821 , 1.51333 , 1.356714 , 2.278741 , 3.902856 , 4.230951 ,

4 > 5.146173 , 3.950952 , 4.558404 , 3.350427 , 5.191095 , 4.790887

5 > ]

6 print(simh [:10])

7 > [

8 > 3.086204 , 3.941287 , 3.566806 , 1.656013 , -3.553522 , -4.855335 ,

9 > 1.640700 , -5.968388 , -8.783854 , -7.284368 , -2.95557 , -1.361990

10 > ]

11 print(simp [:10])

12 > [

13 > -0.677857 , -1.611131 , -1.641309 , -3.011029 , -1.313527 , 1.022544 ,

14 > 5.259728 , 5.509796 , 1.314042 , 0.981995 , 1.003031 , -0.400324

15 > ]

16 print(result [:10])

17 > [

18 > -0.602686 , -1.535959 , -1.566137 , -2.935858 , -1.238356 , 1.097715 ,

19 > 5.334899 , 5.584968 , 1.389213 , 1.057166 , 1.078203 , -0.325152

20 > ]

Listing 4.19: Output first 10 values of Tobs,h, Tsim,h, Tsim,p and T
⇤LS
sim,p

Listing 4.19 shows the first 12 values of the historical, as well as predicted and linear scaled

time series. These correspond to the first 12 days in January of the years 1951 and 1981,

respectively. Here it can be seen that the adjusted time series has about 0.075°C warmer

values on each day than the predicted time series. This is because the long-term monthly

mean of the modeled data of the control period is slightly colder than in the observed

time series. Thus, all Januaries in this grid cell during the period from 1981 to 2010

inclusive, which are adjusted with these historical data using the linear scaling procedure,

are 0.075°C warmer than the predicted time series for this period.

To save this adjusted time series as a NetCDF file, the function to_netcdf can be called

at the end of the script:

1 result.to_netcdf(�linear_scaling_result.nc�, name=�tas�)

Listing 4.20: Save adjusted data set to file
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This data set now contains 10950 adjusted daily mean 2m air temperature values for the

period 1981 to 2010 inclusive. In addition, this has various meta-information addressed in

Chapter 3, such as the exact timestamps of the entries, the history of the data set, and,

most importantly, the geographic coordinates of these values.

Since grouping by month is not applied for quantile and quantile delta mapping, adjusting

a time series using these methods can be performed as described in Listing 4.8 and 4.12

respectively.
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4.7. Hands on C++

In the final part of the implementations, the presented methods will be shown in the

programming language C++. Here however the focus will be exclusively on the methods,

this means that neither the loading nor the saving is represented, since this does not work

as in Python, using a module, which loads the data set into the program by indication of

the file path alone.

The complete C++ implementations, as well as executable examples, are available in the

GitHub repository listed in Table 1.2. There are also data structures for loading and

saving, as well as a main program that implements the application of the methods to

multidimensional NetCDF data sets. The methods presented in the following are part of

the class CMethods. In the repository, this can be found in the lib directory. This class

is declared in the header file CMethods.h and implemented in CMethods.cpp. All functions

inside are declared with static. An executable file named DoBiasAdjustment allows the

adjustment of climate data with all methods presented in this thesis. The source code of

this program is also available as a .cpp file.

Exception handling, as well as warning and hinting when parameters are wrong or invalid,

have not been considered in the following examples, as in the Python implementations,

so that the focus on the methods for adjusting the bias is not lost. Furthermore, there is

a class MyMath, which has functions like mean and sd, which calculate the mean of a time

series, respectively the standard deviation.

All analyses performed in Section 5 are based on data sets whose bias has been mini-

mized using these methods implemented in C++. As mentioned in Section 1.3, the g++

compiler (Apple clang version 13.1.6) with the standard library std version 17 is used.

Since this is done on a macOS operating system, this is optimized for the target system

x86_64-apple-darwin21.5.0.

Since the scaling-based bias adjustment procedures, in contrast to the quantile and quantile

delta mapping procedures, require that they are applied to long-term monthly data sets,

they are presented separately below. It is also assumed here that these methods are each

applied to a single time series. This means that a time series of a grid cell is adjusted by

using the same location for the historical observed and modeled time series as well as for

the time series to be adjusted, and their values are stored in float arrays. These arrays

must have the same length. An example is shown at the end in Listing 4.33.

4.7.1. Scaling-based Bias Adjustment Techniques in C++

As with the implementation of the scaling-based methods in Python, it also applies in C++

that the observed, as well as the modeled time series, which are passed to the function

call of an adjustment method, must be separated into monthly separate groups. This can

be achieved with the presented tool cdo by running a loop before the call of the program,

which contains the adjustment methods, to iterate over the input files, separates these in

each case into 12 individual data sets and stores them under temporary paths.
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1 declare -a data sets=("obs.nc" "simh.nc" "simp.nc") # input file paths

2 declare -a tmp_paths =("tmp_obs" "tmp_simh" "tmp_simp" "tmp")

3 for d in "${tmp_paths[@]}"; do mkdir -p $d; done

4 for (( month =1; month <13; month++ ));do

5 declare -i index=0

6 for dataset in "${data sets[@]}"; do

7 cdo -f nc -s \ # silent .nc forced output

8 -selvar ,tas \ # select variable "tas"

9 -selmon ,$month $dataset \ # selection of month

10 "${tmp_paths[index ]}/${month}.nc" & \ # execute in background

11 (( ++ index ))

12 done

13 wait

14 done

Listing 4.21: Data set preparation for scaling-based bias adjustment

In Listing 4.21 Bash code is shown, in which the first two arrays are declared and initialized,

which contain on the one hand the respective paths to the observed and modeled data,

on the other hand for each of these three data sets a directory path, likewise in an array

is stored and afterward created (l. 2f.). Finally, two loops iterate over the numbers from

1 up to and including 12, to separate the respective month for each data set in the inner

loop using cdo and to store the separated data in the respective temporary directory. This

creates 36 data sets, 12 for each input file. Thus, for example, each January of the observed

data can be found in a file named “1.nc” in the directory tmp_obs. This separation can

be done in parallel since the execution of the cdo commands are not dependent on each

other.

The scaling-based adjustment procedures have almost all the same parameters in the C++

implementation. These include the output pointer, which points to a float array with the

same length, as well as the m_obs, m_simh and m_simp parameters. This length is passed

via the n_time parameter. The array pointed to by the pointer output is the adjusted

time series after applying the respective method. Again, it should be noted that this is

done per month, which means that the variables and parameters prefixed with m_ each

represents one month over the full period of, say, 30 years. The parameter kind specifies

whether the adjustment is to be performed additively or multiplicatively.

Delta Method

The procedure of the delta method in C++ is almost the same as in the Python

implementation (cf. Lst. 4.1). In the first step, the long-term monthly mean values of the

modeled time series m(Tsim,h(i)) and m(Tsim,p(i)) are calculated by calling the method

mean from the class MyMath. This class is not shown here. Then, depending on the value

of the parameter kind, a loop iterates over all time steps to perform the adjustment

calculation and stores the result in the main function (cf. Lst. 4.33) using the pointer

output at the corresponding position of the array that is used to store the adjusted values.

Since C++ can work with pointers and references, this function has no return values.
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1 void CMethods :: Delta_Method(

2 float* output , float* m_obs , float* m_simh , float* m_simp ,

3 unsigned n_time , std:: string kind

4 ) {

5 const float

6 simh_mean = MyMath ::mean(m_simh , n_time), // m(Tsim,h(i))

7 simp_mean = MyMath ::mean(m_simp , n_time); // m(Tsim,p(i))

8

9 if (kind == "add" || kind == "+") {

10 for (unsigned ts = 0; ts < n_time; ts++)

11 output[ts] = m_obs[ts] + (simp_mean - simh_mean); // Eq. 4.3

12 } else if (kind == "mult" || kind == "*") {

13 for (unsigned ts = 0; ts < n_time; ts++)

14 output[ts] = m_obs[ts] * (simp_mean / simh_mean); // Eq. 4.8

15 }

Listing 4.22: Implementation of the additive and multiplicative delta method in C++

Linear Scaling

The implementation of the linear scaling method for climate data is very similar to the

delta method just presented, but here the first step is not to take the long-term monthly

mean of the time series to be adjusted m(Tsim,p(i)), but that of the time series from the

control period m(Tobs,h(i)) and m(Tsim,h(i)). This then allows to determine the di↵erence,

or ratio, between the observed and modeled data to add or multiply this by the values of

m(Tsim,p(i)) to be adjusted.

1 void CMethods :: Linear_Scaling(

2 float* output , float* m_obs , float* m_simh , float* m_simp ,

3 unsigned n_time , std:: string kind

4 ) {

5 const float

6 obs_mean = MyMath ::mean(m_obs , n_time), // m(Tobs,h(i))

7 simh_mean = MyMath ::mean(m_simh , n_time); // m(Tsim,h(i))

8

9 if (kind == "add" || kind == "+") {

10 for (unsigned ts = 0; ts < n_time; ts++)

11 output[ts] = m_simp[ts] + (obs_mean - simh_mean); // Eq. 4.9

12 } else if (kind == "mult" || kind == "*") {

13 for (unsigned ts = 0; ts < n_time; ts++)

14 output[ts] = m_simp[ts] * (obs_mean / simh_mean); // Eq. 4.11

15 }

16 }

Listing 4.23: Implementation of the additive and multiplicative linear scaling method in C++

Here, too, the results of the calculations are stored with the help of the variable ts at the

corresponding index of the array to which the pointer output points. One of the strengths

of C++ shows up here because while Python must initialize and return almost always and
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everywhere new variables, which possess all also a multiplicity of attributes and functions,

with again own variables, it is possible with C++ to initialize pointers, which point to

certain memory addresses so that their values can be set and read, without the entire

contents of the array or also object must be passed between di↵erent functions.

Variance Scaling

The variance scaling procedure for temperatures requires the implementation of the

additive linear scaling procedure since this is an extension of the linear scaling procedure

in that it adjusts the long-term monthly variance and standard deviation in addition

to the long-term monthly mean. Therefore, in the first step, the additive linear scaling

procedure is run for both the modeled control period m_simh and the time series to be

adjusted m_simp. Here it can be seen that two float arrays are previously declared, which

are then passed to the first parameter output of the function Linear_Scaling. Since the

Linear_Scaling and Variance_Scaling functions are in the same class and declared with

static, the class name does not need to be prefixed when calling the Linear_Scaling

function.

1 void CMethods :: Variance_Scaling(

2 float* output , float* m_obs , float* m_simh , float* m_simp ,

3 unsigned n_time

4 ) {

5 float LS_simh[n_time], LS_simp[n_time ];

6 // Lst. 4.23

7 Linear_Scaling(LS_simh , m_obs , m_simh , m_simp , n_time);

8 Linear_Scaling(LS_simp , m_obs , m_simh , m_simp , n_time);

9

10 float

11 LS_simh_mean = MyMath ::mean(LS_simh , n_time),

12 LS_simp_mean = MyMath ::mean(LS_simp , n_time);

13

14 float VS_1_simh[n_time], VS_1_simp[n_time ];

15 for (unsigned ts = 0; ts < n_time; ts++) {

16 VS1_simh[ts] = LS_simh[ts] - LS_simh_mean; // Eq. 4.16

17 VS1_simp[ts] = LS_simp[ts] - LS_simp_mean; // Eq. 4.17

18 }

19

20 float

21 obs_sd = MyMath ::sd(m_obs , n_time),

22 VS1_simh_sd = MyMath ::sd(VS1_simh , n_time);

23

24 float VS2_simp[n_time ];

25 for (unsigned ts = 0; ts < n_time; ts++) {

26 VS2_simp[ts] = VS1_simp[ts] * (obs_sd / VS1_simh_sd); // Eq. 4.19

27 output[ts] = VS2_simp[ts] + LS_simp_mean; // Eq. 4.20

28 }

29 }

Listing 4.24: Implementation of the variance scaling method in C++
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After the modeled time series are linearly adjusted, the mean is subtracted from each of

them (l. 15↵.). This gives these two time series a mean of zero (cf. Eq. 4.18). After

both the standard deviation of the observed time series, as well as for the modeled data of

the control period are determined (l. 20↵.), the Equations 4.19f. can be applied starting

at line 25 by iterating again over all time steps, scaling the standard deviation, and then

adding back the previously subtracted mean. The results are pushed into the array pointed

to by the pointer output, as in the previously described methods. This can be done in

one step, but is presented separately for a better understanding of the equations and their

execution.

Execution of the scaling-based Bias Adjustment Techniques implemented in C++

If the methods Delta_Method, Linear_Scaling and Variance_Scaling (cf. Lst. 4.22↵.) are

implemented in the program code, it is necessary for the following listing that this program

can take arguments. These arguments are required to pass the necessary parameters, such

as the input and output paths, as well as the selected method to the program start.

The first step is to define the method and the type of adjustment. In this example, the

additive linear scaling method is chosen. Then a loop is created again, which iterates over

the 12 months. Within this loop, the program in which the previously described methods

are implemented is executed. Additionally, the required input parameters are passed

to the program call. For this it is necessary, as shown in Listing 4.21, to have monthly

separated data sets. In this case these are located in the respective temporary directory.

1 method="linear_scaling"; kind="+" # define method and kind

2 for (( month =1; month <13; month++ )); do

3 ./ adjustment_program \ # execute the program

4 --obs "tmp_obs/${month}.nc" \ # m(Tobs,h(i))

5 --simh "tmp_simh/${month}.nc" \ # m(Tsim,h(i))

6 --simp "tmp_simp/${month}.nc" \ # m(Tsim,p(i))

7 --method $method \ # set method

8 --kind $kind \ # "+" or "*"

9 --variable tas \ # variable to adjust

10 --output "tmp/${month}_${method }.nc" & \ # output file path

11 done

12 wait

13

14 # Merge LS-adjusted data sets

15 cdo -f nc \ # force .nc output

16 -mergetime "tmp_path/"*${method }.nc \ # merge all months

17 "tas_${method}_kind -${kind}.nc" # output file path

18 for d in "${tmp_paths[@]}"; do rm -rf $d; done # cleanup

Listing 4.25: Execution of monthly separated adjustment and merge to final adjusted data set using

Bash and cdo

After each month has been adjusted separately and its adjusted time series has been saved

in the tmp directory, these separate data sets must be merged. For this purpose, the cdo
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tool can be used again. Its mergetime method allows to merge several data sets using the

time dimension (cf. Lst. 4.25l. 15f.). Once this is done, the directory where this script has

been executed contains a data set named tas_linear_scaling_kind-+.nc and contains

the fully adjusted time series. After that, the previously generated monthly separated

data is no longer needed and will be deleted with the created directories in line 18.

Since the adaptation of the separated months can be done independently, parallel execution

using “&” (cf. Lst. 4.25l. 10) is also possible here. The complete implementation can be

found in the prepared repository of the C++ implementation in Table 1.2.

4.7.2. Distribution-based Bias Adjustment Techniques in C++

The quantile and quantile delta mapping methods do not require separation at equal

months, but additional methods are needed here to determine, for example, the probability

density function, as well as the cumulative distribution function.

First, however, as in the Python implementation, a monotonically increasing vector

v_xbins is created. This vector has also the function to divide the value range of the

observed and modeled time series of the control period into a defined number of equally

large distances. This is necessary to determine the PDF of a time series on the one hand,

on the other hand this vector is also used for the interpolation.

(Lst. 4.26) The function get_xbins is passed two pointers, each pointing to a float array.

In addition, two further values are passed, which define on the one hand the number of

quantiles to be considered, and on the other hand the length of the arrays. Within the

function, the minimum and maximum of the values pointed to by a and b are determined

to divide this range of values into n_quantiles of equal size. For this purpose, a vector of

the data type double is created. This data type makes it possible to map larger numbers

than float. This is important later for the interpolation in order to achieve particularly

accurate results.

1 std::vector <double > CMethods :: get_xbins(

2 float* a, float* b, unsigned n_quantiles , unsigned length

3 ) {

4 const double

5 a_max = *std:: max_element(a, a + length),

6 a_min = *std:: min_element(a, a + length),

7 b_max = *std:: max_element(b, b + length),

8 b_min = *std:: min_element(b, b + length);

9

10 const double

11 global_max = std::max(a_max , b_max),

12 global_min = std::min(a_min , b_min);

13 const double wide = std::abs(global_max - global_min) / n_quantiles;

14

15 std::vector <double > v_xbins (0);

16 v_xbins.push_back(global_min);

17 while (v_xbins[v_xbins.size() - 1] < global_max)

18 v_xbins.push_back(v_xbins[v_xbins.size() - 1] + wide);
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19 return v_xbins;

20 }

Listing 4.26: Function to create a monotonically increasing double vector

The vector v_xbins is returned at the end of the function.

Listing 4.27 contains the function which allows determining the probability density function

of the array pointed to by the pointer arr. For this, a vector is needed which specifies how

many bins should be used. In addition, the length of the array is also passed.

The first step of the get_pdf function creates the vector, which at the end of the function

contains integer values that indicate how many values of the array pointed to by the arr

pointer are to be found in each bin.

1 std::vector <int > MyMath :: get_pdf(

2 float* arr , std::vector <double > bins , unsigned length

3 ) {

4 std::vector <int > v_pdf(bins.size() - 1);

5 for (unsigned ts = 0; ts < length; ts++) {

6 for (unsigned i = 0; i < v_pdf.size() - 1; i++) {

7 if (i == 0 && arr[ts] <= bins[i]){

8 ++ v_pdf[i]; break;

9 } else if (arr[ts] >= bins[i] && arr[ts] < bins[i + 1]){

10 ++ v_pdf[i]; break;

11 } else if (i == v_pdf.size() - 2 && arr[ts] >= bins[i + 1]){

12 ++ v_pdf[i + 1]; break;

13 }

14 }

15 }

16 return v_pdf;

17 }

Listing 4.27: Function to create the probability density function in C++

These values are determined by iterating over the length of the array in a loop. Within

this loop, it is then checked whether a value is to be found within a bin. If this is the case,

the value of this bin is incremented by one and jumps out of the inner loop. If all values

are assigned, the vector v_pdf is returned at the end. This now contains the y-values of

the PDF of the array pointed to by the pointer arr. This function is comparable to the

Numpy function histogram(a, bins, range).

(Lst. 4.28) The last function to highlight, which is needed for distribution-based bias

adjustment procedures, is the get_cdf method. This method allows to determine the

cumulative distribution function of an array pointed to by the pointer arr. To do this, the

probability density function is first determined by calling the previously defined method

get_pdf (cf. Lst. 4.27), with the appropriate arguments. Subsequently, the sum of the

values of the previous indexes is stored at each index. This function also returns the

created vector at the end.
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1 std::vector <int > MyMath :: get_cdf(

2 float* arr , std::vector <double > bins , unsigned length

3 ) {

4 std::vector <int > v_pdf = MyMath :: get_pdf(arr , bins , length);

5 std::vector <int > v_cdf(v_pdf.size() + 1);

6 v_cdf [0] = 0;

7 for (unsigned i = 0; i < v_pdf.size(); i++)

8 v_cdf[i + 1] = v_cdf[i] + v_pdf[i];

9 return v_cdf;

10 }

Listing 4.28: Function to create the cumulative distribution function in C++

Once all these functions are defined, the implementation of the quantile and quantile delta

mapping procedures can begin. Before that, however, it is important to mention that the

following implementations are optimized for oscillating values, such as air temperatures.

Since this thesis only deals with air temperatures at 2m height, no variant of the methods

is designed for precipitation or even wind speed. The di↵erence is that time series with pre-

cipitation have an exponentially increasing CDF at the beginning, whose slope stagnates

when advancing into the positive value range. This o↵ers the possibility to extrapolate at

the positive end of the value range of the vector v_xbins. For temperatures, however, this

can produce unrealistic values.

Quantile Mapping

The quantile mapping procedure for the adjustment of a time series has a similar workflow

in C++, as in the programming language Python.

(Lst. 4.29) Here in the first step a vector is determined, which determines the probability

boundaries v_xbins (l. 5↵.). This can be determined with the previously defined function

get_xbins and the corresponding parameters. Once this is done, the CDFs of the

observed and modeled data of the control period must be determined by calling the

function get_cdf in each case (l. 10↵.). Since this vector has values of the data type

int but is to be interpolated with these, equivalent vectors of the data type double are

subsequently declared and initialized (l. 15↵.).

1 void CMethods :: Quantile_Mapping(

2 float* output , float* obs , float* simh , float* simp ,

3 unsigned n_time , unsigned n_quantiles

4 ) {

5 std::vector <double > v_xbins = get_xbins(

6 obs , simh , n_quantiles , n_time

7 );

8

9 // create CDFs

10 std::vector <int >

11 v_obs_cdf = MyMath :: get_cdf(obs , v_xbins , n_time), // Fobs,h

12 v_simh_cdf = MyMath :: get_cdf(simh , v_xbins , n_time); // Fsim,h
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13

14 // create CDF vectors of type double

15 std::vector <double >

16 obs_cdf(v_obs_cdf.begin(), v_obs_cdf.end()), // Fobs,h

17 simh_cdf(v_simh_cdf.begin(), v_simh_cdf.end()); // Fsim,h

Listing 4.29: Implementation of the quantile mapping bias adjustment procedure in C++ (Part 1)

Now the exciting part begins; the determination of the quantile values of each value of

Tsim,p inserted in Fsim,h (cf. Lst. 4.30l. 2↵.). This can be used to determine which

temperature value of the time series to be adjusted corresponds to which quantile in

the modeled data of the control period. For this the function interpolate from the

class MyMath is used. This contains the implementation of linear interpolation, without

extrapolation. Here, the first two parameters correspond to two vectors containing the x-

and y-values of the function between which the last parameter is to be interpolated. This

implementation of the linear interpolation function is not shown here.

1 // compute Fsim,h [Tsim,p]

2 std::vector <double > q_values;

3 for (unsigned ts = 0; ts < n_time; ts++)

4 q_values.push_back( // Eq. 4.33; Fig.4.3

5 MyMath :: interpolate(v_xbins , simh_cdf , (double)simp[ts])

6 );

7

8 // insert Fsim,h [Tsim,p] into F�1
obs,h

9 for (unsigned ts = 0; ts < n_time; ts++)

10 output[ts] = (float)MyMath :: interpolate( // Eq. 4.33; Fig.4.4

11 obs_cdf , v_xbins , q_values[ts]

12 );

13 }

Listing 4.30: Implementation of the quantile mapping bias adjustment procedure in C++ (Part 2)

Once all the values of simp are inserted into the cumulative distribution function simh_cdf,

the vector q_values results, which contains the quantiles of the temperature values of the

time series to be adjusted corresponding to the CDF of the modeled data of the control

period.

In Listing 4.30, starting at line 9, iterating again over all time steps is needed to insert

these previously determined values into the inverse CDF of the historical observations.

The results are inserted into the final array at the appropriate index, using the pointer

output. Thus, this function has no return value. Here, a conversion from double to float

is done, since temperature data is usually stored in the float data type.

Quantile Delta Mapping

The most complex of the methods presented here for adjusting bias in climate data is the

quantile delta mapping technique. This is also implemented in the C++ programming

language and o↵ers the possibility to adjust a time series similar to the quantile mapping,
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but the crucial di↵erence is that as described in Section 4.5, the change of the quantiles

between the modeled time series of the control period and the time series to be adjusted

is taken into account.

(Lst. 4.31) The first steps in quantile delta mapping are very similar to QM because

the probability boundaries v_xbins are also determined to subsequently determine the

cumulative distribution functions. In QDM, however, the CDFs of the control period, as

well as those of the time series to be adjusted, are needed. These are determined using

the function get_cdf defined at the beginning, starting at line 10, and then stored in

vectors whose values are of type double (l. 16↵.).

1 void CMethods :: Quantile_Delta_Mapping(

2 float* output , float* obs , float* simh , float* simp ,

3 unsigned n_time , unsigned n_quantiles

4 ) {

5 std::vector <double > v_xbins = get_xbins(

6 obs , simh , n_quantiles , n_time

7 );

8

9 // create CDFs

10 std::vector <int >

11 v_obs_cdf = MyMath :: get_cdf(obs , v_xbins , n_time), // Fobs,h

12 v_simh_cdf = MyMath :: get_cdf(simh , v_xbins , n_time), // Fsim,h

13 v_simp_cdf = MyMath :: get_cdf(simp , v_xbins , n_time); // Fsim,p

14

15 // create CDF vectors of type double

16 std::vector <double >

17 obs_cdf(v_obs_cdf.begin(), v_obs_cdf.end()), // Fobs,h

18 simh_cdf(v_simh_cdf.begin(), v_simh_cdf.end()), // Fsim,h

19 simp_cdf(v_simp_cdf.begin(), v_simp_cdf.end()); // Fsim,p

Listing 4.31: Implementation of the quantile delta mapping bias adjustment procedure in C++

(Part 1)

Once these preparatory steps are done, the application of the Equations 4.34↵. can begin

by determining ", by inserting the values of Tsim,p into Fsim,p (cf. Lst. 4.32l. 3↵.). The

interpolation function of the MyMath class used here is the same function that was used for

the quantile mapping in Listing 4.30. This means that the first two parameters are the x-

and y-values of the function, between which the third parameter is interpolated linearly,

without extrapolation. After all values of epsilon (i.e. ") are determined, this vector can

be used to determine a new vector QDM1, which corresponds to an adjusted time series

based only on the observed time series, as well as the time series to be adjusted. For this

purpose, interpolation is performed again to insert the previously determined values of

epsilon into the inverse CDF of the observations of the control period (l. 10↵.).

1 // calculate exact CDF values (Fsim,p [Tsim,p], i.e. ")

2 std::vector <double > epsilon;

3 for (unsigned ts = 0; ts < n_time; ts++)
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4 epsilon.push_back( // Eq. 4.34

5 MyMath :: interpolate(v_xbins , simp_cdf , simp[ts])

6 );

7

8 // insert " in inverted Fobs,h

9 std::vector <double > QDM1;

10 for (unsigned ts = 0; ts < n_time; ts++)

11 QDM1.push_back( // Eq. 4.35

12 MyMath :: interpolate(obs_cdf , v_xbins , epsilon[ts])

13 );

14

15 // compute and add �

16 for (unsigned ts = 0; ts < n_time; ts++){

17 double delta = simp[ts] - MyMath :: interpolate( // Eq. 4.36f.

18 simh_cdf , v_xbins , epsilon[ts]

19 );

20 output[ts] = (float)(QDM1[ts] + delta); // Eq. 4.38

21 }

22 }

Listing 4.32: Implementation of the quantile delta mapping bias adjustment procedure in C++

(Part 2)

(Lst. 4.32) Finally, the quantile delta mapping procedure determines � for each time

step by subtracting Fsim,h ["(i)] from each value of the time series to be adjusted (simp;

l. 16↵.). This di↵erence is then added in line 20 to the corresponding value of the vector

QDM1, adjusted in lines 10↵. and stored in the final array using the pointer output and the

iteration variable ts. In the following subsection is a pseudocode example that shows how

this method can be used.

Execution of the distribution-based Bias Adjustment Techniques implemented in C++

Once all required methods and functionalities for the execution of the distribution-based

bias adjustment procedures are implemented, the adjustment can begin. The following

listing shows an example of how these methods can be called. First, the number of

quantiles to be considered as well as the length of the time series are defined, and then

the input data sets are loaded. This is shown in a very simplified way for demonstration

purposes.

1 ...

2 int main(int argc , char** argv){

3 unsigned

4 n_quantiles = 100,

5 n_time = 10950;

6 float

7 adjusted_data[n_time], // declare array to store adjusted data

8 obs = load("obs.nc"), // load data set into program

9 simh = load("simh.nc"), // --//--

10 simp = load("simp.nc"); // --//--

11
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12 // apply the quantile delta mapping method

13 CMethods :: Quantile_Delta_Mapping(

14 adjusted_data , obs , simh , simp , n_time , n_quantiles

15 );

16 // adjusted_data now contains the QDM bias -adjusted time series

17 ...

18 return 0;

19 }

Listing 4.33: Pseudocode to demonstrate the quantile delta mapping function call

(Lst. 4.33) After executing the Quantile_Delta_Mapping function of the CMethods class,

the adjusted_data array has the fully bias-adjusted time series. It should be noted here

that all input data sets must have exactly n_time entries. This approach can also be applied

to the scaling-based adjustment methods presented earlier, as long as the corresponding

parameters of the functions as well as the monthly separations are taken into account.
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4.8. Method Discussion

All five presented methods aim at minimizing the bias between modeled and observed

climate data of a past or future period, based on past observed and modeled time series.

This means that the methods are only calibrated based on past simulated and observed

data and can then be applied to predicted and also past modeled data. All methods

also assume that there is a relationship between modeled and observed data, as well as

between the historical and future time series, in that both the modeled and the observed

data represent the same region (i.e. grid box), which is subject to similar to identical

topographic and atmospheric conditions.

The methods di↵er in their approach, because the delta method, as well as the linear

and variance scaling method try to minimize the bias directly by scaling mean values.

The quantile and quantile delta mapping methods, on the other hand, try to achieve the

adjustment on the basis of changed distributions by not scaling values but redefining them

according to historical distribution properties. The linear and variance scaling methods,

as well as the quantile mapping method also try to project the bias between the historical

observed and modeled data onto the predicted time series. The delta method, as well as

the quantile delta mapping method, on the other hand, also try to take into account the

change between the modeled data at di↵erent periods.

(Equations 4.12↵., 4.21↵., 4.39↵. and Figures 4.3f.) During the exemplary execution

of the methods for adjusting the temperature on December 17, 1997, it was noticed

that all methods, except for the delta method, produced a warmer adjusted tem-

perature value. The delta method is also the only method that includes a specific

value from the control period (Tobs,h(i)). This value, which corresponds to the index

6190 and is assigned to the December 17, 1967 in the control period, thus has a very

high influence on the result, although it only originates from the observations of the

past. Thus, if there is no change between the modeled data of the control and predicted

period, the result will always be the historically observed value at the corresponding index.
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In each of the adjustment procedures presented, historical observed and modeled daily

mean 2m air temperatures of the period from 1951 to 1980 inclusive are used to adjust

values of modeled time series of the period from 1981 to 2010 inclusive. This adjustment

is applied per grid cell. This means that each adjustment procedure is performed 5550

times to fully adjust the modeled data set of the MPI-ESM1-2-HR with a resolution of

111 x 50 cells (longitude/latitude), presented in Section 3.1.

This is achieved by applying the methods discussed in Chapter 4. Due to the better

performance of C++, the presented methods are implemented in this language to perform

the adjustment for each grid box (i.e. spatial cell). Excerpts are shown in Section 4.7.

The complete source code of the bias adjustment techniques, as well as usage examples

can be found in the public repositories listed in Table 1.2.

The scaling-based adjustment techniques are carried out in such a way that the same

months are adjusted together. This means that the results of the methods are not de-

pendent on individual months, but are calculated based on long-term monthly means and

standard deviations. Code snippets are shown in Section 4.7.1.

Quantile and quantile delta mapping were performed as shown in Section 4.7.2 by adjusting

the full period without monthly separation. Furthermore, a value of 100 was passed to the

respective method for the parameter n_quantiles.

In the first part of the evaluations, various statistical methods are applied to check the

results and the success of the implemented methods. In the second part, further analyses

will be performed in which individual time series will be compared, and the e↵ect on

quantiles and distributions will be addressed. In addition, it will be determined whether

and to what extent correlations between locations within a data set are a↵ected by the

procedures and how this a↵ects the teleconnections described later.

5.1. Method Evaluation

To investigate the e↵ects of the adjustment techniques, three statistical methods are used

to compare the results of the adjustment procedures. The aim is to show whether and to

what extent the deviations between modeled, observed and adjusted data have changed.

This should provide information on whether the procedures were applied correctly, whether

an adjustment was necessary at all, and whether the adjusted data resemble the values of

the observations more closely than the unadjusted, modeled data do.

In addition to considering Europe as a whole, five regions are also defined to examine in

detail how far the error between observed and modeled data di↵ers before and after the

adjustment. Thus, one does not only have roughly averaged data of the whole of Europe

and its surroundings but can examine the e↵ects at di↵erent locations in more detail.

These regions are listed in the table below.
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Oslo (NO) Bremerhaven
(DE)

Zurich
(CH)

Milan (IT) Lyon (FR)

Longitude 10.7579°E 8.5833°E 8.5392°E 9.1885°E 4.8343°E

Latitude 59.9115°N 53.5499°N 47.3686°N 45.4647°N 45.7634°N

Table 5.1.: Coordinates of selected locations in Europe

Since the selected locations are not in the center of a grid box in the data sets, the closest

box is used for the investigation. The following table shows the coordinates used.

Oslo (NO) Bremerhaven
(DE)

Zurich
(CH)

Milan (IT) Lyon (FR)

Longitude 11°E 9°E 9°E 9°E 53°E

Latitude 60°N 54°N 47°N 45°N 46°N

Table 5.2.: Coordinates of the nearest cell of selected locations

The selected location Oslo covers the grid cell from 11°E to 12°E and 60°N to 61°N, since
all grid boxes in this data are 1.0° x 1.0° longitude/latitude. This region thus covers much

more than just the city of Oslo, but in the further course, only the respective city name

will be referenced when talking about the selected grid cells defined in Table 5.2.

When Europe is referred to in subsequent studies, e.g., in tables and descriptions, the

entire region from -45°W to 65°E, 22°N to 72°N as described in Chapter 3 is meant.

In the analysis of climate data, the weighted mean is often used, because the surface area

of grid cells in data sets becomes smaller the further away they are from the equator, due

to the curvature of the earth’s surface. A weighting of the values then ensures that values

or also the mean values of such cells, which have a smaller earth surface, are less important

if for example the mean is determined over a large region (e.g. Fig. 3.4).

This weighting of an individual cell can be determined by the following equation:

w(Tsim,p) = cos(x · ⇡

180
) (5.1)

where:

x = Latitude of 1D sequence Tsim,p

If the time series Tsim,p is on the latitude 23°N, then a weighting of w = 0.92 results.

For very high or low latitudes, this weighting decreases. To determine the weighted mean

temperature value of a data set that has time series at di↵erent geographic locations,

the regular mean value of each time series must be weighted according to its geographic
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location.

A =

2
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µA =

P90
i=�90

P160
j=�160Ai,j · w(Ai,j)

P90
i=�90

P160
j=�160w(Ai,j)

(5.3)

where:

Ai,j = Temperature at a specific longitude and latitude in A

The value of each cell of matrix A corresponds to the mean value of the temperatures

of a grid cell over the entire observation period (e.g. 30 years). This mean value can be

determined on a daily, but also a monthly or even annual basis. By applying Equation

5.3, values in cells covering only a fraction of the earth’s surface have a smaller impact on

the overall mean value of A than cells covering a larger region.

However, since bias adjustments are performed for each individual cell and it should be

determined which e↵ects these procedures have taken on the data, it does not make sense,

in this case, to use weighting when determining global values, since possible inaccuracies

in higher latitudes are not su�ciently taken into account here.

The cdo tool takes this weighting into account. To disable this behavior, weights=FALSE

can be passed to the respective calculation argument.

1 cdo -output \ # enable command line output

2 -fldmean ,weights=FALSE \ # mean without spatial weight

3 mbe_no_correction_19810101_20101231.nc \ # input file

Listing 5.1: Compute the European unweighted mean
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5.1.1. Mean Bias Error

The mean bias error (MBE) is a statistical method that is suitable for estimating the

mean error between two time series. Thus, it can be recognized in advance whether an

adjustment has to be made or whether the data of the observed and modeled time series

show high similarity in the mean. Since the MBE only calculates the mean error, it does

not provide information on how strong individual deviations occur. Thus, extreme values

are not su�ciently represented, which is why partly high di↵erences can result in a low

MBE. For this reason, this method is usually only used to estimate whether an error

exists and whether it is less or greater than zero. The following equation can be used to

calculate the mean bias error between two time series:

MBE(Tobs,p, Tsim,p) =
1

n

nX

i=1

(Tsim,p(i)� Tobs,p(i)) (5.4)

To determine the MBE on a daily basis, the di↵erence between the modeled or bias-

adjusted and observed value is taken for each day of the time series from 1981 to 2010

inclusive. This is followed by dividing by the number of all entries. Thus, a negative MBE

means that the model is simulating temperature values that are too cold on average. A

positive value, on the other hand, means that the model-generated (or bias-adjusted) data

includes temperatures that are too warm on average. If the value is close to zero, the data

are very similar on average, but can still di↵er greatly. The unit of MBE calculated here

is degrees Celsius, since all data sets used here have temperature values in this unit.

Method Oslo Bremerhaven Zurich Milan Lyon Europe

No Correction -1.4858 -1.1661 -0.2571 -1.5312 -1.2646 -0.7881
DM -0.7317 -0.6923 -0.3087 -0.2739 -0.3797 -0.1551
LS -0.7318 -0.6923 -0.3087 -0.2739 -0.3797 -0.1551
VS -0.7318 -0.6923 -0.3087 -0.2739 -0.3797 -0.1551
QM -0.7525 -0.6789 -0.3177 -0.3064 -0.3734 -0.1749
QDM -0.7345 -0.6944 -0.3082 -0.2727 -0.3790 -0.1550

Table 5.3.: MBE of daily mean 2m air temperatures between observed, modeled and adjusted data
respectively in deg. Celsius at di↵erent locations in Europe (1981-2010)

(Tab. 5.3) The mean bias error between the observed and raw modeled data is always

negative. When considering Europe as a whole, the unweighted MBE has a value of

�0.7881°C, which means that the model calculated values of almost one deg. Celsius

colder on average than observed for the same period. This indicates that an adjustment

of this data set is appropriate to minimize this deviation in the mean. After applying

the adjustment procedures, the MBE, relative to Europe as a whole, has moved more

than half a degree toward zero. This is the first sign of the successful implementation and

application of the adjustment procedures. Furthermore, it is noticeable that the MBE

for the locations Oslo, Bremerhaven, Milan as well as in Lyon have improved significantly.

Only in Zurich has it deteriorated. The scaling-based methods have produced the same
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results, except for Oslo, but they hardly di↵er from the results of the quantile and quantile

delta mapping.

No Cor-
rection

DM LS VS QM QDM

Minimum -5.8870 -3.1945 -3.1945 -3.1945 -3.1658 -3.1944
Mean -0.7881 -0.1551 -0.1551 -0.1551 -0.1749 -0.1550
Maximum 5.7449 1.0348 1.0348 1.0348 1.0063 1.0336

Table 5.4.: Minimum, mean and maximum MBE of daily mean 2m air temperatures between
observed, modeled and bias-adjusted data in deg. Celsius in Europe (1981-2010)

(Tab. 5.4) When looking at the minimal and maximal values of the MBE, related to

Europe, it is noticeable that the unadjusted values not only show the highest deviation

on average but also the minimal and maximal values deviate strongly from zero. The

procedures, on the other hand, have been able to reduce this di↵erence. It is interesting

to note that the minimum and maximum of all MBE in the data adjusted by the quantile

mapping method are closer to zero, although the mean MBE shows the highest distance

to zero compared to the other methods.

The MBE related to the whole period from 1981-2010, whether calculated with daily or

monthly means, has of course no great significance, because just as the climate behaves

di↵erently at di↵erent times, the error is also not the same at every season. For this reason,

it makes sense to determine the long-term monthly MBE to find out in which months

particularly high or low deviations are to be found:

Month No
Correction

DM LS VS QM QDM

Jan -1.3403 -0.5404 -0.5404 -0.5404 -0.4812 -0.4740
Feb -0.8770 -0.0993 -0.0994 -0.0994 -0.0175 -0.0090
Mar -0.8966 -0.2675 -0.2675 -0.2675 -0.0781 -0.0662
Apr -0.9951 -0.0017 -0.0017 -0.0017 -0.2675 -0.2509
May -0.7343 0.1275 0.1275 0.1275 -0.1785 -0.1541
Jun -0.5037 -0.0007 -0.0007 -0.0007 -0.1567 -0.1292
Jul -0.3764 -0.0399 -0.0399 -0.0399 -0.2107 -0.1790
Aug -0.3277 -0.0053 -0.0053 -0.0053 -0.1567 -0.1206
Sept -0.5047 -0.0527 -0.0527 -0.0527 -0.0577 -0.0243
Oct -0.7250 -0.3194 -0.3194 -0.3194 -0.0252 -0.0052
Nov -1.0207 -0.2361 -0.2361 -0.2361 -0.1713 -0.1584
Dec -1.1595 -0.4088 -0.4088 -0.4088 -0.2799 -0.2713

Table 5.5.: Mean MBE per month based on daily mean 2m air temperatures in Europe in deg.
Celsius (1981-2010)

(Tab. 5.5) It can be seen that both the modeled and the adjusted data have the highest

deviations from the observed data in the winter months. In February, April, and June

to September, the MBE of the scaling-based methods, is even below 0.1°C. Furthermore,
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despite their di↵erent approaches, the scaling-based methods almost consistently have the

same values. This is due to their goal of adjusting the long-term monthly means. The fact

that their daily values of individual locations and time series are not always the same due

to the di↵erent approaches will be shown later.

Figure 5.1.: Long-term monthly mean MBE in Europe based on daily mean 2m air temperatures
(1981-2010)

Figure 5.1 serves as a visual representation of the Table 5.5 and shows once again how

much the methods have reduced the mean bias error related to the whole of Europe and

its surroundings. The scaling-based methods have the same values and therefore cannot

be di↵erentiated. The quantile and quantile delta mapping procedures also have very

similar results, but those of the quantile delta mapping are minimally better, which can

be seen from the closer mean to zero. The distribution of the bias has also changed. The

unadjusted 2m air temperatures of MPI-ESM1-2-HR have a MBE with a range of about

1°C, whereas the bias-adjusted data sets have a range of only 0.67°C, with a little variation

here from 0°C in the months of February through October.

Now it is clear that the procedures have changed the monthly mean temperatures. But

how is this reflected in daily values? Figure 5.2 serves to illustrate this topic. Here the

modeled (blue line), as well as observed (black dashed line) and DM-adjusted temperatures

(red line), averaged to day of the year are shown. It is now clearly visible that the modeled

data always have colder values on average than the observed data. This must also have

been the case in the control period (1951-1980) because the delta method provided higher

temperatures here. From April to the end of September, there are hardly any di↵erences

between the observed and the adjusted values. This has already been shown in Table 5.5.

In winter, the highest di↵erences between the adjusted and observed values can be seen.

This may be due to the fact that the di↵erence between the modeled winter months of

the control and scenario period was somewhat smaller than the di↵erence between the

observed and modeled time series of the scenario period, which caused the delta method

to add a too small di↵erence to the predicted time series.
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Figure 5.2.: Mean 2m air temperatures per day of the year in Europe between 1981 and 2010;
grey lines represent the daily mean 2m air temperatures of each individual year in the
DM-adjusted data set

This representation is of course also available for the other bias-adjusted data sets, but

since these hardly di↵er, they are attached to the appendix (cf. Fig. A.1↵.). However,

it is to be mentioned that with this representation method a conspicuousness has come,

because by the monthly-separated adjustment of the temperatures, the first and last day

of a month possess often a disproportionately high di↵erence to each other, whereby it

comes for example in Figure A.1 to jumpy behavior of the mean temperatures by day per

year. This can be observed in early April, June, and October. Also in Figure A.2 this can

be observed especially in April and October. This is due to the month-dependent scaling,

which in the scaling-based techniques procedures a di↵erent value depending on the month,

which is added to the predicted or observed time series (depending on the method), causing

these deviations to be observed especially at the change of month. Thus, this is a weakness

of these adjustment procedures.

At the beginning of this thesis, the quantile and quantile delta mapping procedures were

also adjusted, just like the scaling-based methods, not with the entire period at once, but

in monthly separated groups. Here, this conspicuousness was even more noticeable at

almost every turn of the month. This is to be justified with the QM-technique in the fact

that for example, an adjusted May can possess only temperature values from the historical

observed value range of the May months (cf. Section 4.4), since the May possesses however

on the average warmer temperatures than the April and the quantiles of the one month

have nothing more in common with those of the other, it can lead so to strong deviations.

Also, if the control period is too far in the past in relation to the period to be adjusted, or

one of the periods is too long or too short, this error can be amplified, since the adjustment

here is bound to the range of values of the observations of the control period. Nevertheless,

it is worth mentioning here that the QM and QDM techniques were also tried for monthly

separated time series and these partly yielded better values for the mean bias error and

statistical procedures listed later. Since the monthly separation of the temperatures of
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QM and QDM has not been a topic in any publication found so far, it has been omitted

in this thesis.

As an aside, Figure 4.2 plots similar data to Figure 5.2, but it plots the monthly means of

the linearly scaled data rather than the mean of the DM-adjusted data for the mean day

of the year.

Figure 5.2 has shown that the DM-adjusted data set is very similar to those of the observed

time series. But it was not possible to see exactly how much this di↵erence is at certain

points in time. For this reason, the di↵erence between the modeled and observed, and the

bias-adjusted and observed data was calculated. Again, this is done per day of the year,

so that it can be shown, analogous to the previous figure when which deviations occurred.

Figure 5.3.: Mean 2m air temperature di↵erence between modeled and observed and bias-adjusted
and observed per day of the year in Europe (1981-2010)

(Fig. 5.3) Now it can be seen how similar the mean deviations of the adjusted time series

are. Especially the similarity between the quantile (violet line) and quantile delta mapping

(brown line) results can be observed. The scaling-based methods have a smaller deviation

from the observed data, especially in the summer months, this is also shown in Table 5.5.

The linear and variance scaling methods have very similar values and intensities of the

movements at many time points, the delta method, on the other hand, has produced a

slightly di↵erent symmetry, even if it is not too di↵erent overall. In the winter months,

as previously noted several times, the highest di↵erence from the observed data can be

seen. All the di↵erences shown between the adjusted and observed time series, which

represent the mean value per day of the year, are always smaller than the modeled data

of the same period. The application of the adjustment procedures has provided significant

improvements here.

(Fig. 5.4) When Europe is visualized on the map, it can be seen that the strongest

discrepancies between modeled and observed data occur primarily in the North Atlantic.

This may be due to the North Atlantic Oscillation, which may not be adequately accounted

for in the model, and therefore colder temperatures are shown by the model.
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Figure 5.4.: Mean bias error of daily mean 2m air temperatures in Europe (1981-2010)

Also in the northern regions, Iceland, Greenland, as well as in the Scandinavian countries

and North Africa, the modeled data show significantly colder temperatures than the ob-

served data. The adjustment procedures have been able to reduce these errors significantly

so that hardly any di↵erences between the results of the procedures can be found here.

Only in Islandsea are even higher deviations to be found. Since the minimum and max-

imum values of MBE vary greatly between modeled and adjusted values (cf. Tab. 5.4),

which is why the land contours, which seem to range from -1°C to +1°C, are hardly distin-

guishable, the separate consideration of the land and sea regions, as well as the adjustment

of the color bar, is appropriate.

(Fig. 5.5) In contrast to Figure 5.4, it is particularly easy to see that the mean bias error

at almost every location has a di↵erence of less than 1°C. Regions whose mean bias error

values are higher or lower than the maximum or minimum in the adjusted data sets are

marked with yellow horizontal lines. This type of plot allows close examination of the

change in mean errors. All methods give roughly similar results and have significantly

reduced the deviations in many regions. Especially in the north of Africa, Iceland, and the

Scandinavian countries, but also in central-eastern Europe and south of Russia the mean

error has been reduced.

However, it is striking that in Greenland the previously too cold temperatures are now
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somewhat too warm. This change of sign is since the di↵erences between the modeled and

observed data of the scenario period are no longer as large as they were in the control

period so the adjustment procedures here provided too much compensation for the cold

temperatures, which has now led to somewhat too warm values.

Figure 5.5.: Mean Bias Error of daily 2m air temperatures in Europe (1981-2010)

(Fig. 5.6) Not only on land but also the sea regions have, after applying the methods

presented in Chapter 4, significantly lower mean deviations compared to the observed

data. All methods have been able to visibly reduce the particularly high di↵erences in the

North Atlantic. Also above Iceland, the error was reduced, nevertheless, strong deviations

of up to -3.25°C are found in all adjusted data sets. The coastal region of Greenland is

too warm in the modeled data compared to the observed data, but too cold after the

procedures were applied. This may indicate that there has been a large change there

between the observed data of the 1951 - 1980 and 1981 - 2010 time series, which was not

simulated in this form in the modeled time series.
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Figure 5.6.: Mean bias error of daily mean 2m air temperatures in Europe (1981-2010)

Interestingly, the air temperatures near Greenland have changed their sign in all adjusted

data sets. This means that the observed data show significantly warmer values than the

adjusted time series for the period 1981-2010. This may be due to the fact that the modeled

data for the control period was also already too warm in this region (cf. Fig. 5.7).

Figure 5.7.: Mean bias error of daily mean 2m air temperatures between modeled and observed
data in the control and scenario period

(Fig. 5.7) Due to the already too warm temperatures of the modeled data of the control
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period in this region, the methods have projected colder values onto the predicted time

series. Climate change, which is causing temperatures to rise, especially in the polar

regions, is also present in the modeled data and can cause the MBE of the adjusted data

to become negative because the observed temperatures, which are now also warmer, are

subtracted from the modeled temperatures, which have been cooled by the procedures.

This can create a di↵erence with a negative sign if the temperatures of the observed values

are higher than those of the adjusted data.

It has been shown that the bias adjustment techniques have significantly reduced the error

in the daily mean temperatures, as well as the long-term monthly means between the

observed and modeled data related to the whole of Europe. The application of the scaling-

based methods, have provided roughly similar results with respect to the mean bias error

(cf. Tab. 5.4f. and Fig. 5.1↵.), but it has also been shown that these techniques can also

change the previously too cold values to too warm values (cf. Fig. 5.5) or to warm values

to too cold values (cf. Fig. 5.6).

Since the mean bias error cannot tell how strong individual deviations are due to partic-

ularly high or low temperatures on specific days, further steps are needed to examine the

e↵ects of the bias adjustment procedures on the data.
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5.1.2. Root Mean Square Error

The Root Mean Square Error (RMSE) is, like the MBE, a statistical method that can be

used to measure the errors between two time series and to summarize them in one value.

These errors are again the di↵erences between a modeled or bias-adjusted and an observed

time series. The RMSE is used as a measure of accuracy because the root is taken

from squared di↵erences. Thus, in contrast to the MBE, particularly high di↵erences

between observed and modeled or predicted data (at a given time) can also be weighted

disproportionately.

RMSE(Tobs,p, Tsim,p) =

vuut 1

n

nX

i=1

(Tsim,p(i)� Tobs,p(i))2 (5.5)

When calculating the RMSE, the reference value at index i, which here always represents

an observed time series, is always subtracted from the corresponding modeled or adjusted

value. In the following the value which is determined by inserting the respective time

series from one of the adjusted data sets instead of Tsim,p into Equation 5.5 is called the

RMSE of the adjusted time series. In addition, squaring ensures that the RMSE only

yields results greater than or equal to zero. A RMSE of zero means that there are no

di↵erences between the time series and that they are identical. This usually never occurs,

but values close to zero are desired. The unit is always the measure in which the data

between which the error is calculated. Since in this thesis, the errors between time series

of temperature data are used and these are present in the unit deg. Celsius, this is also

the unit of the RMSE.

This procedure was also applied to each cell of the data sets presented here. Since the goal

of the adjustment procedures is, among other things, to minimize the mean temperature

di↵erences between Tsim,p and Tobs,p, the RMSE applied to the adjusted time series should

have lower values.

The root mean square error results applied to the full 10950 days in each data set are shown

in Table 5.6. Again, the bias-adjusted results give better results than the unadjusted data.

The RMSE of the bias-adjusted data sets is always lower, though sometimes just barely,

than between the observed values and the raw model output.

Method Oslo Bremerhaven Zurich Milan Lyon Europe

No Correction 5.7899 4.4331 5.2652 4.5349 5.1652 4.4775
DM 5.0387 3.5868 5.0884 3.7486 4.8362 4.0144
LS 5.5607 4.3442 5.2626 4.2224 5.0159 4.1473
VS 5.1653 3.7602 5.1482 3.8262 4.9237 4.0526
QM 5.3905 4.1039 5.2137 3.9995 5.0723 4.1189
QDM 5.3838 4.1261 5.2101 4.0278 5.0537 4.1247

Table 5.6.: RMSE between observed, modeled and bias-adjusted daily mean 2m air temperatures
in deg. Celsius in Europe (1981-2010)

It is striking that the application of the linear scaling method resulted in the lowest
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improvement of the RMSE. The Europe column represents the unweighted mean of all

cells in the respective data sets, i.e. the mean of the RMSE, which are shown in Figure

5.9 later. Thus, the bias adjustments have been able to reduce the root mean square error

by almost half a degree on average.

This improvement is not as big compared to the e↵ects on the MBE. This is because

the methods mainly try to reduce the deviations in the mean, whereby the adjustment

of particularly high deviations between individual days of two time series are also only

shifted or scaled by one mean value in the scaling-based methods.

(Tab. 5.7) The consideration of the minimal and maximal values of the RMSE must not

be omitted, because this shows that the procedures not only reduced the mean, but also

the minimal and maximal value of the respective RMSE.

No Cor-
rection

DM LS VS QM QDM

Minimum 0.9408 0.8439 0.9345 0.7989 0.9095 0.9027
Mean 4.4775 4.0144 4.1473 4.0526 4.1189 4.1247
Maximum 10.0985 9.7370 9.2791 9.9495 9.5632 9.5497

Table 5.7.: Minimum, mean and maximum RMSE of daily mean 2m air temperatures in deg.
Celsius in Europe between observed, modeled and bias-adjusted data sets (1981-2010)

As shown in the investigation of the mean bias error, the deviations vary strongly when

the months are considered separately. (Tab. 5.8) The root mean square error is lowest in

the summer months, as is the mean bias error. This trend exists in the raw model output

as well as in the bias-adjusted data sets. In addition, the procedures have also provided a

reduction in the mean RMSE in each month.

Month No
Correction

DM LS VS QM QDM

Jan 5.6292 5.3975 5.3522 5.3173 5.3896 5.3926
Feb 5.5929 5.2358 5.3333 5.3286 5.2984 5.3062
Mar 5.1347 4.6726 4.8115 4.7661 4.7774 4.7866
Apr 4.6180 3.9216 4.2694 4.0751 4.2539 4.2607
May 3.9217 3.3390 3.5568 3.3806 3.5241 3.5247
Jun 3.5838 2.9580 3.1486 3.0194 3.1090 3.1131
Jul 3.3868 2.7406 2.8641 2.7250 2.7852 2.7961
Aug 3.3092 2.7806 2.8629 2.7049 2.7553 2.7596
Sept 3.4400 2.9240 3.1280 2.9506 3.0365 3.0415
Oct 3.8842 3.4766 3.6951 3.5046 3.6508 3.6560
Nov 4.5311 4.1306 4.2907 4.2145 4.2977 4.3023
Dec 5.0957 4.8345 4.8370 4.8685 4.8514 4.8539

Table 5.8.: Mean RMSE per month based on daily mean 2m air temperatures in Europe in deg.
Celsius (1981-2010)

In contrast to the mean bias error, the di↵erences between the scaling-based techniques
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(DM, LS, and VS) are clearly visible, but the distribution-based procedures, QM, and

QDM now have very similar values.

Figure 5.8.: Mean RMSE per month based on daily mean 2m air temperatures in Europe (1981-
2010); dotted lines indicate the mean

Figure 5.8 serves as an illustration of the values of Table 5.8 and shows how similar the

values of the root mean square error of the di↵erent matched data sets are. The reduction

in error compared to the unadjusted values is also evident here. Especially in summer,

the methods presented in Chapter 4 could provide minimization of the squared deviations.

This means that the adjusted time series have smaller temperature di↵erences from the

observed temperatures in summer than in winter. This has already been the case in the

unadjusted data, but these di↵erences could be reduced, even if in the winter months

there are still sometimes particularly high-temperature di↵erences, which result in a high

RMSE.

This means at the same time that the MPI-ESM1-2-HR can either represent warm 2m air

temperatures better than the colder ones or that in the winter months the model follows

di↵erent or shifted trends, which did not occur in the observed time series. The delta

method has the best values here from February to June, but these also hardly di↵er from

those of the variance scaling method and the other methods.

Once the values of RMSE between observed and modeled, or adjusted, time series have

been calculated for each grid cell of the data presented in Chapter 3, this can also be

presented as a contour plot. In this case, there is no consideration between land and sea

regions separately, since only positive values are produced by squaring the errors, and their

range of values maps well to land and sea masses.

Figure 5.9 shows the RMSE of each grid cell, calculated based on daily mean 2m air

temperatures over the period from 1981 to 2010 between observed and modeled or bias-

adjusted time series. Contrary to expectations, the RMSE is significantly lower in the

North Atlantic than on the landmass of the mapped region, although the highest di↵erences

for the mean bias error can be found in the North Atlantic (cf. Fig. 5.4).
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Figure 5.9.: RMSE between observed, modeled and adjusted daily mean 2m air temperatures in
Europe (1981-2010)

It can be seen that in the North Atlantic the unadjusted data show a RMSE of 2.5°C
to 4°C, which was significantly reduced in the bias-adjusted time series. The highest

di↵erences can be seen in the northwest of Russia and eastern Europe, although the MBE

there shows quite small deviations in the adjusted time series (cf. Fig. 5.5). This means

that the temperatures are on average similar to those of the observed time series, but

individual deviations are very high. These strong deviations only come to light through

squaring during the calculation of the RMSE. Overall, there is hardly any change in the

root mean square error in this region. High values can also be seen in Greenland, but since

the MBE has already shown high di↵erences there, this was to be expected.

To find out exactly in which regions the root mean square error has improved or worsened,

the corresponding matrix of RMSE values of the adjusted time series is subtracted from

the matrix of unadjusted data, which has the RMSE values of each cell (cf. Fig. 5.9

upper left “No Correction”). Thus, it can be determined exactly where the procedures

have caused a change in the values compared to the raw model output.

(Fig. 5.10) As noted previously, di↵erences in the North Atlantic have reduced by nearly

4°C in the region from 35°N to 49°N, 45°W to 25°W. Reductions are also evident above

Iceland and Russia. This has also been shown in the mean bias error. O↵ the coast of
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Greenland, however, minimally higher discrepancies have now appeared. Since the mean

bias error even showed a sign change of the mean di↵erences there, there seems to have been

a change in the trends between the control and the adjusted period. As already mentioned

for the MBE, this may be due to climate change and the changing temperatures in this

region.

Figure 5.10.: Change of RMSE between bias-adjusted and modeled data based on daily mean 2m
air temperatures in Europe (1981-2010)

Figure 5.9 has suggested that the RMSE has hardly changed in Russia. Now it turns out

that it has become minimally worse in the linear and variance scaling methods, although

the mean bias error has shown relatively good values there. The delta method, as well as

the quantile and quantile delta mapping, have also caused a minimal deterioration of the

RMSE in this region.

There are also many regions where the root mean square error has not improved at all or

only minimally. All regions shown in white and light blue in Figure 5.10, for example, show

that the di↵erences have hardly changed when particularly high deviations are taken into

account, although the mean bias error shows considerable improvements after applying the

bias adjustment procedures, especially in the north of Africa, but also in the Scandinavian

countries, southeastern Europe and south of Russia.

This shows that even if the mean bias error can be reduced by the procedures, the partic-

ularly high di↵erences between observed and bias-adjusted or modeled time series cannot
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always be reduced. Overall, a clear improvement of the RMSE in the bias-adjusted data

sets can be seen, since these techniques have significantly reduced the bias in a large part

of the regions.
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5.1.3. Variance and Standard Deviation

Among the presented, implemented, and applied methods there is also a method, which

already defines the goal, to minimize bias in variance between the modeled predicted data

and the observed time series, in its name, the investigation of the e↵ect of the methods on

the variance, as well as the standard deviation must not be missing.

The standard deviation provides information about the average deviation from the mean

and is therefore not applied to two time series, as was previously the case with the mean

bias and root mean square error, but only to one. The mean value of the entire period

under consideration is subtracted from each value in a time series. In order to take extreme

values and outliers into account, this is squared and summed up for all values determined

in this way. The squared variance determined in this way is the standard deviation.

�(Tobs,p)
2 =

1

n

nX

i=1

(Tobs,p(i)� µ(Tobs,p))
2 (5.6)

�(Tobs,p) =
q
�(Tobs,p)2 (5.7)

The variance of climate parameters is an important key figure in climate modeling, because

it can provide information about changed climatic conditions with respect to extreme and

mean values when its compared to di↵erent time series. A shift of mean and extreme

values, as well as a changed range can have a negative influence, for example, on the

development of di↵erent animal and plant species in nature.

Again, the starting point is by looking at the change in variance at the selected regions, as

well as for Europe as a whole. Now it becomes visible that the variance in the modeled data

(named “MPI-ESM” in the following) is higher than in the data provided by NOAA (i.e.

reanalysis/observational data), both at the selected locations and averaged for Europe as

a whole. Here, the procedures have mostly resulted in an approximation to the observed

data, although in some cases, for example in Lyon, it can be seen that this is not always

the case. In Bremerhaven, the linear scaling procedure produced even higher variance.

Data set Oslo Bremerhaven Zurich Milan Lyon Europe

NOAA 8.1226 6.2084 7.3259 7.4992 6.8820 6.6020
MPI-ESM 9.4526 6.7231 7.6931 8.4285 6.9570 7.0263
DM 8.6472 6.2939 7.3974 7.8512 6.9015 6.7419
LS 8.9411 6.7365 7.5529 8.1257 7.0270 6.8420
VS 8.6845 6.3448 7.4695 7.8915 6.9528 6.7900
QM 8.6782 6.3081 7.4622 7.8178 6.9742 6.7716
QDM 8.6715 6.3430 7.4653 7.8916 6.9524 6.7840

Table 5.9.: Variance of observed, predicted and bias-adjusted daily mean temperatures in deg.
Celsius at selected grid boxes in Europe (1981-2010)

Now it is known that the variance of the modeled data is on average too high and the

presented bias adjustment techniques could reduce this somewhat. Looking at Europe on
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the map, it is possible to find out in which regions the variance is higher or lower than in

the observed data.

Figure 5.11.: Di↵erence in variance between modeled and observed and bias-adjusted and observed
data sets based on daily mean 2m air temperatures in Europe (1981-2010)

(Fig. 5.11) Thus, it can be seen that above Iceland, both in the unadjusted modeled data,

as well as in all bias-adjusted data sets, a significantly higher variance can be found than

in the observed data. The bias adjustments have been able to significantly reduce the

deviation from the variance of the observed data both in the Scandinavian countries and

in northern Africa. In Russia, however, the values have again worsened minimally, as it

could also be noticed when examining the root mean square error. In the North Atlantic,

however, there is almost no change at all, because here the variance of the modeled data,

as well as in central Europe, was already quite close to the values of the observed time

series.

Not only in Figure 5.11 minimal changes can be seen. Looking at the minimal, mean

and maximal deviations to the observed data, it can be noticed that not only the mean

deviation of the variance to the observed data has decreased by the adjustment techniques,

but also the maximal and minimal values have moved somewhat towards zero:
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MPI-
ESM

DM LS VS QM QDM

Minimum -2.2077 -0.5018 -1.2392 -0.4728 -0.5497 -0.4902
Mean 0.4243 0.1400 0.2400 0.1880 0.1696 0.1821
Maximum 3.4773 2.3048 2.6475 2.7513 2.5572 2.7255

Table 5.10.: Minimum, mean and maximum deviation in variance of daily mean 2m air tempera-
tures in deg. Celsius in Europe; observed minus modeled and bias-adjusted data sets
(1981-2010)

(Tab. 5.11) Looking at the variance per month, it is surprising to see that the linear scaling

procedure has the same values for the variance per month as the modeled data, although

Figure 5.11 and Table 5.10 show that they do not have the same values everywhere. This

is because the linear scaling procedure has changed the monthly means, for example by

scaling each January by the same value. This has shifted the mean values of the months,

but not directly the monthly variance, since the extreme values of the months have also

been scaled by the same values. Although the delta method has a similar procedure, the

variance is also influenced here, since the individual values of the observed time series

from the control period have a particularly high weighting during the adjustment. In the

contour plot shown, however, the variance has not been calculated for individual months,

but over the entire period of 30 years (and then the matrix of the variance of the observed

data has been subtracted).

Month NOAA MPI-
ESM

DM LS VS QM QDM

Jan 3.6359 3.9108 3.7001 3.9108 3.8695 3.9846 3.9896
Feb 3.6724 3.8288 3.7825 3.8288 3.8394 3.8403 3.8489
Mar 3.2882 3.7003 3.5672 3.7003 3.6426 3.6493 3.6578
Apr 3.0227 3.4330 3.0470 3.4330 3.1694 3.3510 3.3595
May 2.6276 2.9007 2.5952 2.9007 2.6324 2.7860 2.7869
Jun 2.2910 2.4702 2.2126 2.4702 2.2846 2.3309 2.3341
Jul 1.9819 2.1440 1.9050 2.1440 1.9433 1.9894 1.9973
Aug 2.0195 2.1821 1.9157 2.1821 1.9561 2.0078 2.0117
Sept 2.2721 2.5947 2.3010 2.5947 2.3305 2.4012 2.4071
Oct 2.7159 3.0456 2.6767 3.0456 2.7535 2.9286 2.9351
Nov 3.1826 3.3748 3.1248 3.3748 3.2617 3.3357 3.3415
Dec 3.3978 3.5894 3.4563 3.5894 3.6448 3.6359 3.6403

Table 5.11.: Monthly mean variance of daily mean 2m air temperatures in deg. Celsius in Europe
(1981-2010)

Once again, it can be seen that the values in the summer months are significantly lower

than at the other times of the year. In addition, approximations to the observed variance

have also not occurred everywhere. Thus, it can be seen that the scaling-based procedures

in December, January, and February partially provided a greater distance from the variance

of the observed data.
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It may be noticed that the mean variance in Table 5.9 related to the whole of Europe is

significantly higher than the individual values in Table 5.11. This is because in the first

table the standard deviation is calculated by computing the distance from the mean, based

on all temperature values for the 30 years. However, this mean may be far from the values

in individual months. In the table where the variance is calculated per month, of course,

the mean of the respective month is taken to determine the standard deviation and finally

the variance. Therefore, a change in the variance of the linear scaled data can also be seen

in Figure 5.11, but not when looking at the mean of all months.

The visual representation of the Table 5.11 is provided by Figure 5.12. It should be noted

here that the variance of the modeled data is identical to those of the linearly scaled data

on average (cf. Tab. 5.11), which is why the blue line is not visible. This shows that not

only the variance scaling procedure is very close to the observed values, especially in the

summer months, but also the values of the delta method and the distribution-based bias

adjustment techniques.

Figure 5.12.: Mean variance per month based on daily mean 2m air temperatures in Europe (1981-
2010); dotted lines indicate the mean

Here, the delta method performs best, because the mean-variance is closest to that of the

observed time series. Overall, it is again evident that the highest approximation to the

observed values takes place in the summer months, whereby the linear scaling procedure

has not caused any change on the monthly level but has had an e↵ect on the variance of

the entire observation period.

Not only the mean bias error and the root mean square error have improved significantly

by applying the bias adjustments, but also the variance in the bias-adjusted data sets is

now closer to the values of the observed time series. This improvement of the variance

is, as in the previous studies, especially found in the summer months, but the procedures

did not have such a strong influence on the North Atlantic as was the case in the mean

bias and root mean square error. This is because the model there has a similar variance

to that of the observed data, resulting in only minimal changes for this region. The

Scandinavian countries and the regions near the Caspian Sea have benefited the most

from the adjustment of the variance because there the di↵erence to the observed time

series has been reduced by up to 2°C so that there is hardly any di↵erence anymore.
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5.2. Change in Quantiles and Distribution

The mean bias error has shown that the mean values of the modeled time series adjusted

with the help of the adjusting procedures are significantly closer to the observed data than

the raw model output. However, mean values alone cannot be used to assess whether errors

are also present at the extremes and whether these have been minimized by the procedures.

Also, the investigation with the help of the root mean square error has shown that the

results must not necessarily improve by the application of the adjustments. Therefore, two

di↵erent approaches are now used to investigate the distributions and extremes.

In statistics, so-called quantile-quantile plots (Q-Q plots) can be used to check whether

two samples or time series, have similar or even identical distributions. Here, the quantiles

of the first data set are mapped against the quantiles of the second data set, so that the

data points are shown, if they are identical, representing a diagonal with a 45° angle. This
does not usually occur. For this reason, this reference diagonal is additionally mapped for

support, to assess whether the time series have a similar distribution and how they di↵er

from each other. Also, with Q-Q plots it is easy to see how the extreme values in the

1% and 99% quantiles behave, or if one distribution is very similar to the other, but their

values are shifted slightly in one direction or the other (e.g.: If the time series have the

same distribution, but one of them is shifted in the positive or negative direction).

Due to the large number of methods and the size of the data, there is an enor-

mous range of visualization possibilities. For this reason, it was initially decided to

create the Q-Q plots based on the entire time period of the respective data sets.

Figure 5.13.: Q-Q plot of daily mean 2m air tem-
peratures in Bremerhaven (1981-
2010)

This means that the quantiles of the ob-

served data, as well as those of the mod-

eled and adjusted time series, are plotted

against each other over the full 30-year pe-

riod between 1981-2010. It is also possible

to make seasonally separate observations

by, for example, plotting the quantiles of

a given season against each other for each

of the locations defined in Table 5.1. This

will be shown later.

With the help of these Q-Q plots, it is now

possible to find out how the bias adjust-

ment techniques have a↵ected individual

quantiles. (Fig. 5.13) For the location Bre-

merhaven it can be seen that the predicted

data of the model have a similar distribu-

tion as the observed data, but on average

they have too cold values. This can be seen from the fact that the gray circles lie below

the diagonally dashed line. It can also be seen here that the temperatures adjusted using

the quantile delta mapping still have values that are slightly too cold, but show a high

degree of similarity to those of the observed time series, especially in the middle quantiles.
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In fact, the 1% quantile is no longer too cold after the adjustment procedure, as it was in

the modeled data, but is now above the black dashed 45° reference line, suggesting that

this quantile is too warm in the adjusted time series compared to the observed data.

Figure 5.14.: Q-Q plot of daily mean 2m air tem-
peratures in Oslo (1981-2010)

Similar results are seen for Oslo (Fig. 5.14)

and Milan (Fig. 5.15). Again, the mod-

eled temperatures of the 1981-2010 time

series are slightly too cold on average.

In both cases, the QDM-adjustment has

ensured an approximation of the quan-

tiles, although it is again noticeable that

the 1% quantile in the QDM adjusted

data is now depicted slightly too warm.

This points out a weakness of the bias ad-

justments, because if the temperatures in

the modeled data of the control period may

have been too cold and they are therefore

mapped slightly warmer by applying the

procedures, this quantile may deteriorate

if the distribution of the historical observa-

tions does not also have the same relationship to the predicted time series in the future

period.

Figure 5.15.: Q-Q plot of daily mean 2m air tem-
peratures in Milan (1981-2010)

(Fig. 5.16) In Zurich and Lyon, there is

hardly any change in the quantiles, since

the temperatures in the modeled time se-

ries already have very similar distributions

to those of the observed time series. In

Zurich, for example, the MBE has wors-

ened minimally (cf. Tab. 5.3), this is not

seen in the Q-Q plot, but the quantiles in

both Lyon and Zurich have become some-

what more similar to those of the obser-

vations. Again, it can be seen that the

1% quantile has changed from too cold to

too warm. The 99% quantile, on the other

hand, has become closer to that of the ob-

served time series in all Q-Q plots shown.

Overall, the adjusted time series of the se-

lected locations are still slightly too cool. This is shown by the fact that the quantiles

of the bias-adjusted time series (red triangles) are almost always below the reference line.

At the locations where the predicted data were significantly below this line, there was the

greatest change, although the symmetry of the presented quantiles was mostly maintained.

84



5.2. Change in Quantiles and Distribution

Figure 5.16.: Q-Q plot of daily mean 2m air temperatures in (A) Zurich and (B) Lyon (1981-2010)

Of course, it is also exciting to see how the quantiles behave or have changed not only over

the entire time period, but how they behave in individual seasons. For reasons of space,

the Q-Q plots for the winter and summer months can be found in the appendix (cf. Fig.

A.5f.).

(Fig. A.5) In December, January and February, except for Zurich (D), a change in the

quantiles in can always be seen, with the largest change also taking place between the 5%

and 95% quantile. The quantile delta mapping has been able to bring the quantiles close

to the 45° reference diagonal, in Lyon (E) even slightly above it.

Not only in winter but also in summer months, the modeled time series are colder than

the observed ones in almost all quantiles. The bias adjustment techniques have been

able to reduce this di↵erence. However, the procedures did not always provide better

results. Figure A.6 compares the distributions of the quantiles of the summer months

June, July, and August between 1981 and 2010. In Oslo (Fig. A.6 (B)), the quantiles

of the predicted time series are quite similar to those of the observed ones. When the

quantile delta mapping was applied, this deteriorated significantly in the middle quantiles.

This indicates that the observed and modeled time series for the control period for the

Oslo site have a larger di↵erence in the quantiles than in the 1981-2010 period, prompting

the procedure to project these di↵erences onto the predicted time series to compensate for

the discrepancies. These deviations between modeled and observed values are now not as

large, so the application of the adjustment technique provides for an even larger bias.

Overall, the Q-Q plots show that the 1% and 99% quantile have a particularly high

distance from the remaining quantiles. The symmetry was changed minimally so that

an approximation to the reference diagonal can be achieved. The quantile delta mapping

almost always changed the distribution of the modeled quantiles for the better. These

investigations can also be carried out for the other methods, but since this would go

beyond the scope, selected figures can be seen in the appendix (cf. Fig. A.8↵.). Overall,

these provided very similar results to the quantile delta mapping technique.
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Apart from the investigation of the quantiles with the help of Q-Q plots, the changes in

the distribution are also to be emphasized, because not only the distribution-based bias

adjustment techniques have been able to influence the distributions, but also the scaling-

based methods have caused changes in the mean values, as well as in all quantiles.

The Q-Q plots have shown that the quantiles of the selected time series, could be adjusted

to those of the observed data. For this reason, the probability density functions are now

plotted based on the whole region of Europe, to find out whether the distributions were

indeed approximated to those of the observed time series not only in the selected regions

but also with respect to the whole region.

Figure 5.17.: Probability density functions of daily mean 2m air temperatures in observed, modeled
and bias-adjusted data sets in Europe (1981-2010)

(Fig. 5.17) The probability density functions over the entire period from 1981 to 2010

inclusive of the observed and modeled, as well as bias-adjusted time series show that the

modeled data do not di↵er that much from the observed data. Again, the modeled data

have much colder values than the observed data set. This was also noticeable in the

quantile-quantile plots, furthermore, it is now also visible that the adjusted time series not

only seem to have identical distributions when looking at the 30 years as a whole but that

they also do not lie so far into the negative range. This could also be shown in the Q-Q

plots, since there the too cold 1% quantile was somewhat too warm after the application

of the bias adjustment procedures compared to the observed values. So this particular

behavior is not only found at the selected sites.

The distribution functions of the bias-adjusted data sets cannot be di↵erentiated here,

since their values are much too close to each other, but it can be clearly seen that they

show higher similarity to the observed distribution function than the time series of the

unadjusted modeled data set. This similarity can be observed especially in the warm

value range between 23 - 30°C where the distributions are almost identical.

Since the distribution of temperatures for Europe over the entire adjustment period have

also shown that the adjustment procedures have brought about a significant improvement,

it is now necessary to investigate whether these also show such a high degree of similarity

seasonally. For this purpose, the distribution functions have again been calculated based

on daily mean values for all data sets, but these are now listed seasonally separately.
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(Fig. 5.18) Also when looking at the distribution functions seasonally separated, it can be

seen that the modeled data in any case have a similarity to the observed time series, but

it is also noticeable that the modeled data in each season have much colder values than it

is the case in the observed time series. These too cold temperatures have not only been

changed in the winter months, but also at all other times of the year by the adjustment

procedures, so that they are now even more similar to the distribution functions of the

observed time series.

Figure 5.18.: Saisonal probability density functions of daily mean 2m air temperatures in observed,
modeled and bias-adjusted data sets in Europe (1981-2010)

Furthermore, it is again noticeable here that the methods achieved very similar results over-

all. The scaling-based methods cannot be di↵erentiated here, because the delta method,

the linear as well as the variance scaling method are so similar to each other that they

cannot be distinguished in this presentation. The distribution-based bias adjustment tech-

niques have also produced extremely similar distributions, so that although a distinction

from the scaling-based methods can be seen here, but the distribution functions of the QM

and QDM-adjusted time series can hardly be distinguished from each other.

Not only the particularly low quantiles, but also in the medium and high value range all

methods were able to produce an approximation to the distribution of the observed time

series, so that here one can clearly speak of a minimization of the bias in the distributions.

In the summer months, in which the modeled data not only have the smallest deviations

from the observed data in MBE, RMSE and variance, the probability density functions

are also most similar, so that here the bias-adjusted time series have even produced almost

identical distributions to the observed data.
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Both the quantile-quantile and distribution plots have shown that the application of the

bias-adjustment techniques has always caused changes. For example, the mean quantiles

of the adjusted time series in the Q-Q plots show significantly higher similarities with the

observed time series than the raw data of the model. It should also be emphasized that not

only the particularly cold values of the selected regions in the Q-Q plots often become too

warm, but this behavior could also be observed in the distributions of the temperatures

over Europe as a whole, as well as in the seasonal observation. This is a clear sign that

in the control period the di↵erence between the modeled and observed quantiles in the

low-value range was higher than is the case in the period from 1981 to 2010, which now

produces somewhat too warm values in these quantiles.

In the Q-Q plots, an approximation to the reference diagonal can almost always be demon-

strated when observing the individual sites. This approximation to the observed data also

emerged from the distributions shown, so that it is possible to speak here of a clear im-

provement in the distribution properties caused by the applied bias adjustment techniques,

even if it is remarkable that the procedures achieved such very similar results.
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5.3. Correlation and minimal Correlation Maps

The final part of the analysis of the results deals with correlations. Correlation allows

making statements about the dependencies and similarities of two time series. This sta-

tistical method can also be used to determine the relationship of two time series based

on the relative movements of their values. Thus a value can be generated, which states

whether these time series behave similarly or even opposite to each other. This value is

called the correlation coe�cient, also known as the Pearson correlation coe�cient. The

correlation coe�cient can take a value from the rational numbers, in the range of -1 to 1,

where a value of -1 means that the time series have perfectly opposite movements. A value

of 1 means that the time series perform exactly the same movements. Here, the values of

the time series do not have to be the same or identical (like it was with the MBE and

RMSE), but it is about the percentage intensity of each movement. Therefore, a value of

0 means that the time series or samples have nothing to do with each other.
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where:

x = First time series as 1D sequence

y = Second time series as 1D sequence

To calculate the correlation coe�cient two time series are needed. These can be from the

same data set, for example, if the correlation between two di↵erent locations within the

observed data is to be determined, or it is to be found out how the correlation behaves

between a time series from the modeled data and a time series of the same grid box from

the observed data. In addition, the correlation can also be formed for specific periods, for

example by using the entire observation period of 30 years for the calculation, or whether

the correlation is formed separately for each year to find out how they have evolved and

behaved over a longer period of time. It is important that x and y, as well as the parameters

for the calculation of the MBE and RMSE, have the same length.

Similar to the first part of the evaluation, the starting point is by looking at how the

correlations between the predicted and adjusted data relate to the observed time series.

This provides an initial overview of whether and how the bias adjustment procedures have

had an impact on the general correlations. In addition, it can be used to determine the

degree of similarity between the model-generated data and the observed time series.

The correlation coe�cients are determined based on the entire time frame of 30 years, i.e.

10950 daily values between observed and modeled or bias-adjusted data sets are shown

in Table 5.12. It is noticeable that these correlation coe�cients have hardly changed. At

all selected locations, as well as averaged over the entire region, the correlations between

the modeled and observed as well between the bias-adjusted and observed time series have

changed only minimally.
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Method Oslo Bremerhaven Zurich Milan Lyon Europe

No Correction 0.8076 0.7840 0.7558 0.8627 0.7381 0.7805
DM 0.8250 0.8416 0.7620 0.8824 0.7553 0.7925
LS 0.7954 0.7834 0.7511 0.8576 0.7416 0.7823
VS 0.8169 0.8268 0.7589 0.8783 0.7482 0.7872
QM 0.8001 0.7910 0.7525 0.8653 0.7335 0.7785
QDM 0.8002 0.7902 0.7529 0.8649 0.7347 0.7784

Table 5.12.: Correlation coe�cients based on daily mean 2m air temperatures at di↵erent locations
between observed, modeled and bias-adjusted data sets (1981-2010)

So do the bias adjustments a↵ect the correlations of the data only minimally? For this,

it is worthwhile to also look at the minimum and maximum correlation coe�cients that

occurred. These were determined in the same way as for the MBE and RMSE, by

determining the correlation over 30 years to the observed data for all 5550 grid cells. The

values in the table below correspond to the unweighted minimum, mean and maximum:

No Cor-
rection

DM LS VS QM QDM

Minimum 0.3230 0.4498 0.3757 0.4246 0.3390 0.3397
Mean 0.7805 0.7925 0.7823 0.7872 0.7785 0.7784
Maximum 0.9565 0.9592 0.9531 0.9611 0.9578 0.9578

Table 5.13.: Minimum, mean and maximum correlation coe�cient of daily mean 2m air tempera-
tures between observed, modeled and bias-adjusted data in Europe (1981-2010)

In Table 5.13 it is shown that the minimum correlation coe�cients have increased after

applying the procedures. This means that individual sites, which in the modeled data

had only slightly similar relative movements as in the observed data, are now in the

bias-adjusted time series somewhat more similar to the movements in the observed data.

However, since this does not provide any information about the times at which the corre-

lations were particularly high or low, it is worth taking a closer look at individual selected

locations in the following.
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5.3.1. Change in Correlation between di↵erent Locations

Since the correlations between observed and modeled, as well as bias-adjusted time series

based on daily values, have not changed much, it is now appropriate to look at the

correlations within a data set, because this allows to determine, for example, whether

the correlations between Oslo and Zurich in the bias-adjusted data are still the same as

they were previously in the modeled data, or whether they have diverged from the modeled

values. If this is the case, it is important to find out how much this change in correlation

is and whether these values have moved closer to or away from those of the observed data.

Figure 5.19.: Correlation coe�cient per year based on daily mean 2m air temperatures in Zurich
and Bremerhaven (1981-2010); horizontal lines represent the mean

Figure 5.19 shows the correlation coe�cients per year between Zurich and Bremerhaven

in the years 1981 to 2010 inclusive. Here, in the years 1981 to 1983, a high similarity

between the values of the quantile mapping and linear scaling procedures, as well as the

predicted data, can be seen. After that, similar but not as much excursive movements

can be obtained. The data adjusted by the linear scaling technique has the lowest values

overall here, but its movement is similar to those of the predicted, as well as the QM-

adjusted values. The variance scaling method shows the highest correlation coe�cients.

The correlation of temperatures adjusted by the delta method seem to follow a di↵erent

pattern than the values of the other two scaling-based methods.

All methods clearly changed the correlations between Bremerhaven and Zurich, but the

mean deviations are minimal and it is di�cult to say whether the variance scaling method

or the delta method produced the better results. Because the mean of the VS-adjusted

time series is highest, but the movements of the DM-adjusted data seems to represent the

intensities of the movements better. The linear scaling method performs worst, as shown

in Figure 5.19, and is the only method that shows the correlations even worse than the

predicted time series.
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Figure 5.20.: Correlation coe�cient per year; based on daily mean 2m air temperatures in Zurich
and Oslo (1981-2010); horizontal lines represent the mean

(Fig. 5.20) Again, it can be seen that the methods presented in Chapter 4, have had an

impact on the correlations. The linear and variance scaling methods have very similar be-

havior here as the modeled unadjusted time series. The distribution-based bias adjustment

techniques, quantile and quantile delta mapping again show an almost identical behavior

and the delta method seems to follow a di↵erent structure, however, it can be seen here

as well that the methods show very similar values on average, even if they have a higher

range and partly significantly lower values, than the correlation coe�cients of the observed

time series.

Figure 5.21.: Correlation coe�cient per year; based on daily mean 2m air temperatures in Zurich
and Lyon (1981-2010); horizontal lines represent the mean

(Fig. 5.21) In the correlations between Lyon and Zurich it can be seen particularly well

how strongly the values di↵er between the methods. Except for the delta method, all other

techniques show a very similar symmetry. The mean value of the delta method is much

closer to the observed data than the other methods. However, since Zurich and Lyon are

very strongly positively correlated, the deviations are minimal compared to Figure 5.20.

The correlation coe�cient of the modeled time series drops relatively sharply in 1997. This

can always be seen with the exception of the DM-adjusted data in all bias-adjusted data

sets.
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Figure 5.22.: Correlation coe�cient per year; based on daily mean 2m air temperatures in Milan
and Lyon (1981-2010); horizontal lines represent the mean

(Fig. 5.22) Milan and Lyon also correlate very strongly with each other, the symmetry of

the methods is again very similar, and the delta method again stands out for its di↵erent

behavior. Again, the mean correlations of the time series adjusted using the delta method

for these sites are much closer to those of the observed correlations coe�cients than the

rest of the methods.

To investigate the influence of the bias adjustments outside of central Europe, the cor-

relations between Bremerhaven and Iceland were determined (cf. Fig. 5.23). Here the

correlation coe�cients are not as strongly positive as seen in the previous figures, but it

can also be seen that the procedures have also a↵ected the correlations. In this case, the

mean of the correlations of the predicted time series is significantly away from that of the

observed time series. The procedures were able to reduce this deviation. It is interesting

that the adjustments again show a similar symmetry, but this time also the delta method

does not behave so di↵erently compared to the other methods. Possibly this is since the

values are not so strongly positively correlated this time.

Figure 5.23.: Correlation coe�cient per year; based on daily mean 2m air temperatures in Bremer-
haven and Iceland (1981-2010); horizontal lines represent the mean

Except for the delta method, the correlations between the presented sites are quite similar

to those of the modeled unadjusted time series. This will be because the linear and

variance scaling method projects the long-term monthly means and resp. variance onto

the predicted values. The delta method, on the other hand, adds the di↵erence between
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the long-term monthly means of the modeled data from the control and scenario period

to the historical observations, whereby, as addressed in Section 4.1 and 4.8, the historical

observed temperature value at the corresponding index is the determining factor for the

final bias-adjusted value.

Of course, many more examples can be added here, because, with 5550 grid cells within

one data set, a multitude of comparisons can be made. However, since it could be seen

that the bias adjustment techniques had an influence on the data, another approach is

taken in the last part of this analysis, which also deals with correlations, but in a slightly

di↵erent way.
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5.3.2. Minimal Correlation Maps

One method for determining dependencies and contrasting behavior of di↵erent regions is

the creation of minimal correlation maps. These are matrices or contour plots that can be

used to determine which regions and areas exhibit opposite behavior to each other. This is

achieved by determining for each grid cell in a data set the correlation coe�cient to every

other grid cell. However, only the minimum value is of interest here.

Assume that there is a matrix A, which has the three dimensions longitude, latitude, and

time. This matrix is a data set that represents, for example, the observed temperatures

for the region of Europe over 30 years. To determine the minimal correlation map (i.e.

minimal correlation matrix R) for this data set, for each time series Ai,j (i.e. 1D sequence

at a specific longitude and latitude) the correlation coe�cient to every other time series

in matrix A is determined, but only the minimum value is remembered. If r(A0,0, A0,1) =

�0.45 and r(A0,0, A0,2) = �0.59 is determined afterwards, only the new, lower value is

relevant. This is repeated for all further spatial dimensions until the minimum correlation

coe�cient of A0,0 has been determined. Then this procedure is repeated for A0,1, A0,2 up

to An,m.

The following equations describe this procedure, but the correlation coe�cient of a time

series to itself is also formed, which does not a↵ect the final result:

A =
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777775
(5.9)

rmin(A0,0) = min(r(A0,0, Ai,j) for i = 0, ..., n. for j = 0, ...,m.) (5.10)

Ri,j = rmin(Ai,j) (5.11)

where:

n = Number of longitudes

m = Number of latitudes

Ai,j = 1D sequence of temperature values at a specific latitude and longitude

R = Minimal correlation matrix with same spatial resolution as A

Each cell of the two-dimensional matrix R contains a correlation coe�cient, which indicates

the minimum correlation of this cell to another cell in the same data set. This makes it

possible to detect regions and areas that are slightly, negatively, or even strongly negatively

correlated to each other. These relationships between regions that are strongly opposed to

each other, so-called teleconnections, have already been addressed in an article by Wallace

and Gutzler, 1981 by focusing on certain patterns, such as the North Atlantic Oscillation,

North Pacific Oscillation and others, to study them using the sea level pressure of the

northern hemisphere during the winter months.
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In this article, regions that are strongly negatively correlated to each other have been

marked with the help of lines to highlight the dependencies of these regions. This is

also shown in the following, but only where the minimum correlation coe�cients are

significantly below zero. As in other contour plots, same color labels, map regions in a

certain range of values. For example, regions whose grid cells have a minimum correlation

coe�cient of -0.3 or even lower may be shown very darkly. In order to distinguish these

regions from the less strongly negatively correlated regions, it is necessary to perform

a grouping or summary using a threshold. Only in this way it is possible to find out

which non-contiguous regions have minimum correlation coe�cients below or equal to the

threshold and are related to each other (e.g. if the center of one of these regions correlates

strongly negatively with another region and at the same time surrounding cells of this

center correlate positively with the center). The determination of such a threshold depends

on the range of values of R, therefore it cannot be defined in general. The determination

of the threshold is justified at the appropriate place.

Thus, it can be determined which regions have negative correlations and with which other

regions this correlation relationship is established. Furthermore, it can be compared

whether these relationships exist not only in the observed data, but also whether they

are represented in a similar way in the modeled time series and if not, whether the bias

adjustment techniques have had an influence here.

The use of correlation matrices, which were determined based on strong positive correla-

tions, does not make sense, because almost all cells are strongly positively correlated with

their surrounding neighboring cells so no usable results can be obtained.

Since the data sets used here cover a period of 30 years, there is su�cient statistical

significance, since the variability is no longer so strongly influenced by individual values

due to the large time span.

In the following, the minimal correlation maps are determined and shown based on monthly

means, daily means for the winter months, and for the summer months of the period from

1981 to 2010 inclusive. Here, the scales of the color bars are adjusted, so that these three

di↵erent perspectives each have their own ranges of color spectra.

Minimal correlation based on monthly means

Since the scaling-based methods (DM, LS, VS) adjusted the modeled data set based on

long-term monthly means, the first interest here is what such a minimal correlation map

(i.e., minimal correlation matrix) looks like when it is determined based on monthly means.

This means that for each month between 1981 and 2010, the mean is calculated so that

30 · 12 = 360 temperature values for each time series are used to determine the minimum

correlation coe�cient to each other grid box. The following table lists the minimum, as

well as mean and maximum values of these minimal correlation matrices determined in

this way:
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NOAA MPI-
ESM

DM LS VS QM QDM

Minimum -0.0321 0.3517 0.3512 0.3323 0.3613 0.0430 0.0506
Mean 0.2102 0.5489 0.5515 0.5068 0.5533 0.2506 0.2525
Maximum 0.4135 0.7381 0.7489 0.6589 0.7339 0.4467 0.4598

Table 5.14.: Minimum-, mean- and maximum-minimum correlation based on monthly mean 2m air
temperatures in Europe (1981-2010)

From Table 5.14 it is clear that the modeled, as well as the time series adjusted by

the scaling-based methods, have significantly higher correlations overall. Not only the

minimum correlation of, for example, 0.3512 in the delta method is significantly higher

than in the observed time series, but also the maximum and mean values are significantly

higher. The quantile and quantile mapping perform best here and have roughly similar

values to that of the observations. This is due, to the fact that these two methods were

not applied to time series grouped into months and their distribution-based adjustment

approach.

Figure 5.24.: Minimal correlation maps of the observed (NOAA) and modeled (MPI-ESM) data
set based on monthly mean 2m air temperatures between 1981 and 2010

Figure 5.24 plots the minimum correlation maps of the observed/reanalysis data provided

by NOAA and the raw model output of the 2m air temperatures from the MPI-ESM1-2-

HR, respectively, for the 1981-2010 time period. Here the correlations were determined

based on monthly means, as described before, by determining the correlation coe�cient

from each grid box to each other, but only the lowest value is saved at the corresponding

position (i.e. index). This now allows revealing in which regions negative, neutral or even

positive minimum correlations exist. In this example, in the observed data the minimum

correlation is about -0.03, which means that some regions have no relationship to other

regions, because their temperatures follow di↵erently, but not opposite trends.

In these figures, no teleconnections are shown, because teleconnections are characterized

by an opposite correlation ratio, but in none of the correlation matrices calculated on a

monthly mean basis, particularly negative correlations occur. The lowest values occur in

the observed time series in the North Atlantic. Since these values are close to zero, this
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means that there are places to which this region is neither really positively nor negatively

correlated. It can be seen that the modeled data has much higher values than the observed

data set. This suggests that the monthly mean temperatures in the modeled data are much

too correlated. However, the distance between the minimum- and maximum-minimum

correlation coe�cients is almost identical. The modeled data also have the lowest minimum

correlations in the North Atlantic, but this region correlates positively with other regions,

rather than not at all.

Figure 5.25.: Minimal correlation maps of LS- and VS-adjusted data set based on monthly mean
2m air temperatures between 1981 and 2010

(Fig. 5.25) The linear and variance scaling procedures also have significantly higher

minimum correlation values (cf. Tab. 5.14), similar structures to the modeled data (cf.

Fig. 5.24) can also be seen for both. This is not unusual because these procedures have

directly a↵ected the monthly means, for example, by subjecting each January to the same

influence (cf. Section 4.2f.), which has hardly a↵ected the correlations here.

Figure 5.26.: Minimal correlation map of DM-adjusted
data based on monthly mean 2m air tem-
peratures between 1981 and 2010

The same applies to the time series ad-

justed using the delta method. Here,

the monthly means were also changed,

but not based on the di↵erence in the

data of the control period, but on the

di↵erence between the historical mod-

eled data and the scenario time series.

For this reason, even with the delta

method, the minimum correlations are

hardly distinguishable from those of

the modeled data.

The minimal correlation maps of the

quantile and quantile delta mapping adjusted data sets look clearly di↵erent, because

there is a very high similarity, with those of the observed data (cf. Fig. 5.24, left)). This

is a massive improvement in the correlations based on monthly means compared to the

unadjusted modeled data set. There is a very high similarity, not only in the Atlantic

and Greenland but also in the Scandinavian countries, as well as in North Africa. Here,
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the distribution-based bias adjustments have achieved significantly better results than the

scaling methods.

Figure 5.27.: Minimal correlation maps of QM- and QDM-adjusted data set based on monthly
mean 2m air temperatures between 1981 and 2010

It has been shown that the minimum correlations based on monthly means of the modeled

data are significantly higher than is the case in the observed time series. This suggests

that not only are there many more regions that are positively correlated with each other

but also that unrelated regions nevertheless exhibit at least rudimentary similar behavior

in the modeled data. This could not be eliminated by the scaling-based bias adjustment

techniques, but both the quantile mapping and the quantile delta mapping could provide

an enormous improvement. With the QM- and QDM-adjusted data sets it is now possible

to map these minimal correlations based on monthly means very similarly compared to

the observed time series.

Minimal Correlation based on daily mean Temperatures in Winter

As in the article of Wallace and Gutzler, 1981, the minimal correlations of the winter

months are now formed. However, here this is calculated based on daily mean 2m air

temperatures, this means that for (31 + 31 + 28) · 30 = 2700 values of each grid box the

correlation coe�cient to each other grid box is determined to find the minimum value.

(Tab. 5.15) The minimum, mean and maximum values of the modeled data are very

similar to those of the observed data, therefore it is not surprising that the values of the

bias-adjusted data sets also show quite similar values.

NOAA MPI-
ESM

DM LS VS QM QDM

Minimum -0.4111 -0.4108 -0.4112 -0.4430 -0.4090 -0.4057 -0.4064
Mean -0.2410 -0.2507 -0.2555 -0.2678 -0.2533 -0.2484 -0.2491
Maximum 0.0114 -0.0379 -0.0510 -0.0072 -0.0591 -0.0319 -0.0343

Table 5.15.: Minimum-, mean- and maximal-minimum correlation based on daily mean 2m air
temperatures in winter months in Europe (DJF, 1981-2010)
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In the time series of the winter months between 1981 and 2010, significantly lower cor-

relation coe�cients can be seen overall than was previously the case with the matrices

calculated on monthly means. This is mainly because seasonality plays a particularly im-

portant role when looking at minimal correlation maps based on monthly means, because

this occurs at almost all locations and thus ensures, at least, a minimal correlation close

to zero. These seasonal temperature changes are now no longer so strongly present since

the focus is only on the winter months of December, January, and February. However, the

delta method has also provided a distance in the mean from the observed data, just as it

did on a monthly basis previously. The other two scaling-based methods also have worse

values on average.

Since the correlation values are now su�ciently low to speak of negative correlation ratios,

a threshold of -0.3 was defined. This is used to group regions together so that it can be

determined to which other regions negatively correlations exist. These teleconnections are

marked by red lines. A cross marks the grid cell which has the most negative correlation

within the respective region or to which another cell a negative correlation ratio less than

or equal to the threshold exists. This makes it possible to find out which regions have an

opposite behavior and at the same time to check if this can be found in the modeled and

bias-adjusted data sets as well as in the observed ones.

Figure 5.28.: Minimal correlation maps of the observed (NOAA) and modeled (MPI-ESM) data set
based on daily mean 2m air temperatures in winter months between 1981 and 2010

It can be observed that in both the modeled (Fig. 5.28, right) and the linear and variance

scaling adjusted data sets (Fig. 5.29) very similar contours can be found as in the observed

data (Fig. 5.28, left). However, the patterns of the LS- and VS-adjusted data have a

higher similarity to the raw modeled time series of the MPI-ESM1-2-HR, even if their

teleconnections (red lines) are found in approximately the same regions. Thus, winter

temperatures in Libya and Algeria are shown to correlate negatively with the Bay of

Biscay in the observed data. However, in the modeled data, as well as those of the delta

method, this correlation exists towards the Baltic Sea, and the LS- and VS-adjusted time

series have their minimum correlation towards the African countries from Ireland. There

is also an opposite behavior between the north of Europe and Greenland in all the data.
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Figure 5.29.: Minimal correlation maps of LS- and VS-adjusted data set based on daily mean 2m
air temperatures in winter months between 1981 and 2010

Figure 5.30.: Minimal correlation map of DM-adjusted
data based on daily mean 2m air tem-
peratures in winter months between 1981
and 2010

The minimum correlation matrix of

the winter months within the data

adjusted using the delta method dif-

fers somewhat from the time series ad-

justed using linear and variance scal-

ing methods, because here the corre-

lation coe�cients in northwest Europe

are somewhat lower, which is indicated

by the lighter color scheme. Here also

the connection between northern Eu-

rope and northern Africa can be seen,

but also in the European North Sea.

There is now a relatively large region, which has a negative correlation with the North

Atlantic. These two negatively correlated regions are not found in such a form in either

the modeled or the observed data. This possibly indicates that this regions in the ob-

served data of the control period, which have a large influence on the adjusted values in

the delta method, have a fundamentally di↵erent relationship to each other. The fact that

the DM-adjusted time series has somewhat di↵erent patterns than the other methods has

also been shown in the comparisons in Section 5.2.

(Fig. 5.31) The distribution-based bias adjustment techniques also produced similar re-

sults here as the modeled and observed data. The teleconnections between North Africa

and northern Europe, as well as between northern Europe and Greenland can be seen.

Furthermore, a connection between Tehran, near the Caspian Sea and the Baltic Sea is

also present in the minimum correlation matrix of the quantile mapping, as well as in those

of the quantile delta mapping adjusted time series. Not only the teleconnections but also

the symmetry of the contours and their colorings are very similar here.
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Figure 5.31.: Minimal correlation maps of QM- and QDM-adjusted data set based on daily mean
2m air temperatures in winter months between 1981 and 2010

In all minimal correlation matrices just graphically shown, teleconnections between di↵er-

ent regions can be seen. This means that they have at least a slight negative correlation

relationship due to the threshold of -0.3. Simply put, this means that when temperatures

rise in one of these centers, temperatures fall at the other end of the teleconnection. Of

course, this does not always have to be the case and these temperatures getting warmer

and colder does not happen 1:1, but only minimally due to the low threshold, however,

there is a relationship between these regions that cannot be overlooked, which do not have

to influence each other but can provide information about what can take place at the other

end of the connection.

Minimal Correlation based on daily mean Temperatures in Summer

Finally, the minimum correlation matrices for the summer months of June, July, and

August should not be missed. As found in previous studies, both the mean bias and the

root mean square error is lowest in these months. Also, the variance of 2m air temperatures

is lowest in these months not only in the observed and modeled but also in the bias-adjusted

time series.

For the minimal correlation matrices, (30 + 31 + 30) · 30 = 2730 daily mean 2m air

temperature values of the summer months between 1981 and 2010 were used to determine

the minimum correlation from each cell to each other. The following table shows the

minimum, average, and maximum correlations coe�cients thus determined for the various

data sets.

NOAA MPI-
ESM

DM LS VS QM QDM

Minimum -0.7465 -0.8374 -0.7518 -0.8441 -0.8607 -0.8011 -0.8002
Mean -0.4008 -0.4524 -0.3935 -0.4464 -0.4526 -0.4248 -0.4247
Maximum -0.0080 -0.0625 -0.0317 -0.0293 -0.0270 -0.0378 -0.0398

Table 5.16.: Minimum-, mean- and maximum-minimum correlation based on daily mean 2m air
temperatures in summer months in Europe (JJA, 1981-2010)
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What is immediately noticeable is that the summer months are characterized by par-

ticularly negative correlations, because both the mean and the maximum values of the

minimum correlation matrices are always in the negative value range. Furthermore, the

values of the modeled data are slightly lower than the observed ones, which means that

this data set has grid cells that show a stronger opposite behavior than the actual observed

time series. A threshold of -0.7 is set for the display of teleconnections.

The linear and variance scaling procedures have provided a minimal change here, but this

is hardly worth mentioning. The minimum correlation coe�cient in both the variance and

linear scaling procedures have moved away from the minimum value in the observed time

series.

Figure 5.32.: Minimal correlation maps of the observed (NOAA) and modeled (MPI-ESM) data
set based on daily mean 2m air temperatures in summer months between 1981 and
2010

The stronger negative correlations of the modeled time series can be seen on the right in

Figure 5.32. There are clearly darker regions than in the observed values. Furthermore,

it is now noticeable that in summer almost the entire land mass has minimum correlation

coe�cients close to zero. This means that there are no to few regions to which they have

a strong negative trending behavior.

Figure 5.33.: Minimal correlation maps of LS- and VS-adjusted data sets based on daily mean 2m
air temperatures in summer months between 1981 and 2010
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On the sea mass, however, in the North Atlantic, both in the observed, as well as in the

modeled and bias-adjusted data sets, is a region that correlates strongly negatively with

the region around Pakistan. If the spatial section of the considered region were larger and

not only tailored to Europe and its surroundings, one would perhaps find that this region

is actually located rather near India, since at this time the monsoon prevails there for a

climate that is contrary to that found in the North Atlantic during the summer season.

These strong negative correlation relationships (i.e. teleconnections) of the modeled data

are also found in all bias-adjusted data sets, even if, for example, the region near the coast

of Greenland has shifted somewhat. Also, a relationship between the monsoon region and

the southern end of the Mediterranean Sea is always found.

Figure 5.34.: Minimal correlation map of DM-adjusted
data based on daily mean 2m air temper-
atures in summer months between 1981
and 2010

(Fig. 5.34) In the DM-adjusted data

set, the connection between the mon-

soon region and the coast of Green-

land is missing. This is due to the fact

that always only the three most dis-

turbing teleconnections while respect-

ing the threshold are mapped, other-

wise this would overload the figures.

However, it is also clearly seen here

that the North Pacific, as well as the

Mediterranean and even part of the

Caspian Sea have strong negative min-

imum correlations to the monsoon region. At the same time, this can also mean that the

regions which have a strong negative correlation to the monsoon region have a very positive

correlation ratio among themselves.

On the land regions, the nearly neutral minimum correlation coe�cients can be justified

by the fact that temperatures tend to become warmer in summer and, as previously noted,

have a lower variance, making them particularly di↵erent from the monsoon and sea region.

Figure 5.35.: Minimal correlation maps of QM- and QDM-adjusted data set based on daily mean
2m air temperatures in summer months between 1981 and 2010

The quantile and quantile delta mapping also provided very similar results. Here the values
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are similar to those of the modeled data and are still visibly di↵erent from the observed

values in the North Atlantic.

The minimum correlation matrix of the observed summer months between 1981 and 2010

have overall higher minimum correlation coe�cients. This resulted in only two regions,

which have a center with a correlation coe�cient less than or equal to -0.7. In addition,

there are not as negative values, near the coast of Greenland, as it is the case in the

modeled and bias-adjusted data. Also the Baltic, Mediterranean and Red Sea do not have

such strong negative correlations in the observed time series. In all minimal correlation

matrices of the summer months between 1981 and 2010 inclusive, it can be seen that the

land regions have minimal correlation coe�cients close to zero and the regions that have

strong negative correlations point towards the monsoon region of India.

The adjustment techniques have always been able to provide minimal changes, but only

in the case of the distribution-based bias adjustment techniques, as well as in the case of

the data of the time series adjusted with the help of the delta method, it has been noticed

that they have been able to bring their values closer to those of the observed time series

both in the minimum and in the maximum and the mean (cf. Tab. 5.16).

Minimal Correlation Matrices Conclusion

It was possible to prove that the bias-adjustment procedures had a clear influence on the

correlations and teleconnections within the data sets. It has been shown that the minimum

correlation matrices of the bias-adjusted data sets have very similar values, analogous to

the modeled data, except for QM and QDM while investigating the minimal correlation

matrices based on monthly means. Particularly noticeable is that when considering mini-

mum correlation matrices based on monthly means, the modeled data have far too positive

minimum correlation coe�cients compared to the observed time series. This could not be

remedied by the scaling-based techniques, but both quantile and quantile delta mapping

could provide a very good approximation to the observed minimum correlation matrix

here. This means that the scaling-based methods are much too bound to the individual

months so they cannot influence the global correlations due to seasonality.

In the separate consideration of winter and summer months, the applied techniques have

produced very similar results, the minimum correlation coe�cients are particularly far in

the negative range in the summer months, since here a strong opposite behavior exists

between the Mediterranean, as well as the North Atlantic in the direction of the Near East

region. In the winter months, however, other patterns can be seen, because especially

northern Europe always shows an at least partly opposite behavior to North Africa, as

well as the coastal area of Greenland.
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6. Conclusion

In this thesis, five di↵erent methods for minimizing bias between modeled and observed

time series of air temperatures in 2m height for the European region are shown and imple-

mented both mathematically and in the programming languages Python and C++. The

mathematical foundations were derived for the scaling-based bias adjustment techniques

from the articles of Teutschbein and Seibert, 2012 and Beyer et al., 2020. For the quantile

and quantile delta mapping, the articles of Tong et al., 2021, and Cannon et al., 2015 were

followed.

All presented methods aim at minimizing deviations between observed and modeled cli-

mate time series data by determining the bias between past or present simulated and

observed data and projecting it to subsequent periods. The approaches are very di↵erent.

While the delta method focuses on the di↵erences between two modeled time series, the

linear and variance scaling methods try to apply the di↵erences in mean or even variance

between observed and modeled data on the control period. The distribution-based bias

adjustment techniques do not scale the monthly time series, but minimize deviations, by

the appropriate assignment of quantiles between the control period and the time series to

be adjusted.

In this work, observed and modeled 2m air temperatures of the 1951-1980 control period

were always used to minimize the bias between the time series of modeled and observed

data of the 1981-2010 period. Care was taken to ensure that all data sets had historical

values only to compare the influences of the procedures with existing observed data. Of

course, it is also possible to adjust modeled time series of future periods using the methods

presented here, but these could not be evaluated in such a comparative way as is the case

with the historical data, because of course no observed data sets are available for future

periods yet.

It is also possible to bias-adjust the modeled data of the control period by using only data

from the control period for the adjustment. This can lead to much better results compared

to time series of di↵erent periods, since all methods presented here assume that the bias

between modeled and observed time series remains consistent over time. Since both the

error between the modeled data (representing the same time series, because control period

equals scenario period) and the error between the observed and modeled data remains the

same, these deviations can be adjusted directly.

After the bias adjustment methods have been elaborated, presented, implemented, and

applied, the comparative analysis between the observed, modeled, and bias-adjusted time

series of the period 1981-2010 has been performed. Here it has been shown that the

methods have not only changed the mean temperatures but furthermore have provided

for lower mean bias and root mean square error. Even the variance of the modeled 2m

air temperatures of the MPI-ESM1-2-HR could be approximated to the values of the

observed time series with almost all procedures for the period 1981-2010. However, this

improvement is not always the case, because it could also be shown that the mean error
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can also increase after applying the procedures (cf. Tab. 5.3). It has been shown that the

modeled data are on average significantly colder than the observed time series and this was

already the case in the control period, which has led to the fact that all procedures have

always ensured higher mean temperatures, which has significantly reduced the deviations

in the summer months, both in terms of variance, as well as the mean value and the root

mean square error.

Despite their di↵erent approaches, all investigated methods provided similar but not iden-

tical results and these were in almost all cases significantly better than the raw model

output of the MPI-ESM1-2-HR. This has been noticed not only in the comparison of the

mean bias and root mean square error of the temperatures, but also in the investigation

of the distributions using quantile-quantile and probability density plots. Here it has been

shown that especially the mean tercile after the adjustment shows significantly more sim-

ilar values to the observed time series. However, it was possible to change the extreme

values so that these could be approximated to those of the observed data for the selected

time series. In addition, the distribution functions of the whole European region could

be approximated to those of the observed data, so that these provided almost identical

results, especially in the summer months (cf. Fig. 5.18).

The examination of the minimal correlation maps, as well as the teleconnections they

contain, has shown that the grid cells of the modeled data are much more positively

correlated with each other than the observed in the data set. These sometimes strong

di↵erences could not be eliminated by the scaling-based bias adjustment procedures, but

the distribution-based techniques were able to provide clear approximations to the ob-

served matrices. These overly strong seasonality-induced trends in the model are a perfect

example, on the one hand, of the di↵erences between the adjustment procedures, but also

of the need for bias adjustments. Teleconnections, which characterize strongly negatively

correlated grid cells and regions (Wallace and Gutzler, 1981), could be maintained by the

adjustment methods for the selected summer and winter months, so that except for the

delta method always very similar teleconnections were detected. Contrary to the assump-

tion, which was part of the motivation of this work, it could not be confirmed that the

minimal correlation matrices and their teleconnections deteriorate by the application of

the presented bias adjustment techniques.

Thus, it can be clearly stated that the applied bias adjustment techniques have had an

impact on all investigated aspects of the distributional properties, as well as their correla-

tions, although the limitations of bias adjustments are not to be disregarded, because all

scaling-based methods, as well as the distribution-based techniques assume that patterns

from past climate data also exist in present and future time periods. For example, large

time gaps between the control and the adjustment period are a source of error, since climate

itself is also subject to change. This a↵ects the simple quantile mapping for temperatures

in particular, because the results of this method are bound to the range of values of the

control period, which means that rising temperatures caused by climate change cannot be

mapped in the same way as is the case with the quantile delta mapping, which takes into

account the change between the modeled data of the control and adaptation periods. In
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addition, the presented adjustment techniques are only applied per grid box. However,

this is a problem because grid box variability is not the same as small scale variability,

since values are approximated and averaged within grid cells, but the actual climate that

occurred is much more di↵erentiated for small regions (Tong et al., 2021, Cannon et al.,

2015). Also, none of the methods presented take into account the values of neighboring

cells, leading to uncertainty as locale patterns are lost or cannot be adequately accounted

for.

The results now serve as a basis for further investigations. The data structures and

algorithms implemented in this study, which are available open source and can be used for

further development, o↵er many possibilities for extended research. The next steps cold be

to work out which method can be applied for a specific research questions, the strengths

and weaknesses of individual methods, as well as to find out under which conditions, with

which parameters and in which regions or at which times of the year methods for certain

climate variables provide particularly good or bad results.
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Appendix

A. Figures

Figure A.1.: Mean 2m air temperatures per day of the year in Europe between 1981 and 2010;
grey lines represent the daily mean 2m air temperatures of each individual year in
LS-adjusted data

Figure A.2.: Mean 2m air temperatures per day of the year in Europe between 1981 and 2010;
grey lines represent the daily mean 2m air temperatures of each individual year in
VS-adjusted data
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A. Figures

Figure A.3.: Mean 2m air temperatures per day of the year in Europe between 1981 and 2010;
grey lines represent the daily mean 2m air temperatures of each individual year in
QM-adjusted data

Figure A.4.: Mean 2m air temperatures per day of the year in Europe between 1981 and 2010;
grey lines represent the daily mean 2m air temperatures of each individual year in
QDM-adjusted data
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A. Figures

Figure A.5.: Q-Q plots of daily mean 2m air temperatures in winter months (DJF) between 1981
and 2010 in (A) Bremerhaven, (B) Oslo, (C) Milan, (D) Zurich and (E) Lyon

VI



A. Figures

Figure A.6.: Q-Q plots of daily mean 2m air temperatures in summer months (JJA) between 1981
and 2010 in (A) Bremerhaven, (B) Oslo, (C) Milan, (D) Zurich and (E) Lyon
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A. Figures

Figure A.7.: Q-Q plots of daily mean 2m air temperatures between 1981 and 2010 in (A) Bremer-
haven, (B) Oslo, (C) Milan, (D) Zurich and (E) Lyon
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A. Figures

Figure A.8.: Q-Q plots of daily mean 2m air temperatures between 1981 and 2010 in (A) Bremer-
haven, (B) Oslo, (C) Milan, (D) Zurich and (E) Lyon
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A. Figures

Figure A.9.: Q-Q plots of daily mean 2m air temperatures between 1981 and 2010 in (A) Bremer-
haven, (B) Oslo, (C) Milan, (D) Zurich and (E) Lyon

X



A. Figures

Figure A.10.: Q-Q plots of daily mean 2m air temperatures between 1981 and 2010 in (A) Bremer-
haven, (B) Oslo, (C) Milan, (D) Zurich and (E) Lyon
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