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Exercise 51 – Climate sensitivity and variability in the Stochastic Climate Model

As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)

where the air-sea fluxes due to weather systems are represented by a white-noise process with

zero average < Qnet >= 0 and �-correlated in time < Qnet(t)Qnet(t + ⌧ ) >= �(⌧ ). The

function f(t) is a time dependent deterministic forcing. Assume furthermore that f(t) = c ·u(t)

with u(t) as unit step or the so-called Heaviside step function and solve (13.51). What is the

relationship of the dissipation (through � ) and the fluctuations (through the spectrum S(!)) ?

Solution

Since Q(t) is a stochastic process, it has to be solved for the moments. Because < Qnet >=

0, < T (t) > can be solved using the Laplace transform:

< T (t) > = L
�1

{F (s)}(t) = L
�1

⇢
< T (0) >

s + �
+

c

s
·

1

s + �

�
(8.45)

= T (0) · exp(��t) +
c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim
t!1

< T (t) >=
c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< T̂ T̂ ⇤ >=
1

�2 + !2
. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

Lohmann et al., 2013 

Response too low
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·

1

s + �

�
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c

�
(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim
t!1

< T (t) >=
c

�
. (8.47)

The fluctuation can be characterized by the spectrum (exercise 50)

S(!) =< T̂ T̂ ⇤ >=
1

�2 + !2
. (8.48)

and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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by
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= ��T + Qnet + f(t) , (8.44)
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(1 � exp(��t)) (8.46)

because we have < T (0) >= T (0). As equilibrium response, we have

�T = lim
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< T (t) >=
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�
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Power spectrum

Laepple and Huybers, 2014

Current climate models seem to underestimate long-term variability
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Climate variability and sensitivity are related

Power spectrum: Holocene variability
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As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
dT

dt
= ��T + Qnet + f(t) , (8.44)
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Noise Forcing
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�
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Stochastic climate model (Hasselmann, 1976)
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by
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The fluctuation can be characterized by the spectrum (exercise 50)
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and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).
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by
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�T = lim
t!1

< T (t) >=
c

�
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S(!) =< T̂ T̂ ⇤ >=
1
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and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

Forcing
Response too low

Damping too high 
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As in exercise 50, imagine that the temperature of the ocean mixed layer of depth h is governed

by
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and therefore, the spectrum and the equilibrium response are closely coupled (fluctuation-dissipation

theorem).

Variance too low

Lohmann, 2018(Fluctuation Dissipation Theorem)
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Holocene trends
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theorem).



And1mu, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47864359

Climate variability and sensitivity are related

Damping D

Response Variation

(Fluctuation Dissipation Theorem)

D = spring constant
s = deflection
Hookes Law: F = -D s


