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Projected land ice contributions to 
twenty-first-century sea level rise

The land ice contribution to global mean sea level rise has not yet been predicted1 
using ice sheet and glacier models for the latest set of socio-economic scenarios, 
nor using coordinated exploration of uncertainties arising from the various 
computer models involved. Two recent international projects generated a  
large suite of projections using multiple models2–8, but primarily used 
previous-generation scenarios9 and climate models10, and could not fully explore 
known uncertainties. Here we estimate probability distributions for these 
projections under the new scenarios11,12 using statistical emulation of the ice sheet 
and glacier models. We find that limiting global warming to 1.5 degrees Celsius 
would halve the land ice contribution to twenty-first-century sea level rise, relative 
to current emissions pledges. The median decreases from 25 to 13 centimetres sea 
level equivalent (SLE) by 2100, with glaciers responsible for half the sea level 
contribution. The projected Antarctic contribution does not show a clear response 
to the emissions scenario, owing to uncertainties in the competing processes of 
increasing ice loss and snowfall accumulation in a warming climate. However, under 
risk-averse (pessimistic) assumptions, Antarctic ice loss could be five times higher, 
increasing the median land ice contribution to 42 centimetres SLE under current 
policies and pledges, with the 95th percentile projection exceeding half a metre 
even under 1.5 degrees Celsius warming. This would severely limit the possibility of 
mitigating future coastal flooding. Given this large range (between 13 centimetres 
SLE using the main projections under 1.5 degrees Celsius warming and 
42 centimetres SLE using risk-averse projections under current pledges), 
adaptation planning for twenty-first-century sea level rise must account for a 
factor-of-three uncertainty in the land ice contribution until climate policies and 
the Antarctic response are further constrained.

Land ice has contributed around half of all sea level rise since 1993, and 
this fraction is expected to increase1. The Ice Sheet Model Intercom-
parison Project (ISMIP6)2,3 for Coupled Model Intercomparison Pro-
ject Phase 6 (CMIP6)13 and the Glacier Model Intercomparison Project 
(GlacierMIP)4 provide the Intergovernmental Panel on Climate Change 
(IPCC) with projections of Earth’s ice sheet and glacier contributions to 
future sea level. Both projects use suites of numerical models5–8,14,15 and 
greenhouse gas emission scenarios9,11 as the basis of their projections, 
and various treatments are considered for the interaction between the 
ice sheets and the ocean16–19. So far, the projects have provided 256 
simulations of the Greenland ice sheet, 344 simulations of the Antarctic 
ice sheet, and 288 simulations of the global glacier response to climate 
change5–8 (see also Extended Data Table 1). Although these simulations 
and the associated advances20,21 represent unprecedented effort, their 
computational expense and complexity has meant that they (i) focus 
primarily on previous-generation emissions scenarios (Representa-
tion Concentration Pathways9, RCPs) developed for the IPCC’s Fifth 
Assessment Report, not the more diverse and policy-relevant Shared 
Socioeconomic Pathways (SSPs)11,22 that underpin the IPCC’s Sixth 
Assessment Report, (ii) are driven mostly by a relatively small number 

of older generation global climate models developed before CMIP610, 
and (iii) have incomplete and limited ensemble designs.

To address these limitations, we emulate the future sea level contri-
bution of the 23 regions comprising the world’s land ice (see Extended 
Data Table 2) as a function of global mean surface air-temperature 
change and as a consequence of marine-terminating glacier retreat in 
Greenland and ice shelf basal melting and collapse in Antarctica. The 
ensembles of ice sheet and glacier models are emulated all at once for 
each region, using their simulations as multiple estimates of sea level 
contribution for a given set of uncertain input values, and we incorpo-
rate the ensemble spread through the use of a ‘nugget’ term in Gaussian 
process emulation23,24. Gaussian process regression requires minimal 
assumptions about the functional form, and provides uncertainty 
estimates for the emulator predictions25; most previous emulator-type 
approaches for sea level rise use parametric models, where the func-
tional form is assumed26–30. We then use the emulators to make proba-
bilistic projections for the glacier and ice sheet sea level contributions 
under five SSPs and under an additional scenario reflecting current 
climate pledges (nationally determined contributions, NDCs)12 made 
under the Paris Agreement. Most projections presented are for the 
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year 2100, but we also estimate a full timeseries by emulating each 
year from 2016 to 2100. The details of our emulation approach are 
described in Methods.

Response to temperature and parameters
Most land ice regions show a fairly linear relationship of increasing 
mass loss with global mean surface air temperature. Figure 1 shows 
the temperature dependence of the sea level contribution at 2100 
for the ice sheets and peripheral glaciers (Fig. 1a–f) and eleven other 
glacier regions: four with large maximum contributions (Alaska, 
Arctic Canada North and South, Russian Arctic: Fig. 1g–j), two with 
nonlinear temperature dependence, giving near or total disappear-
ance at high temperatures (Central Europe and Caucasus: Fig. 1k, 
l), and the three regions comprising ‘high mountain’ Asia (Central 
Asia, South Asia (West) and South Asia (East); Fig. 1m–o), which are 
important for local water supply31. Values of ice sheet parameters 
are fixed at two possible values for Greenland glacier retreat and 
Antarctic basal melting, with no Antarctic ice shelf collapse; only 
simulations using these values are shown. The ensemble designs are 
not complete—for example, many fewer ice sheet simulations were 
performed under RCP2.6 than under RCP8.5—so some of the appar-
ent patterns in the simulation data are artefacts of the gaps, which 
the emulator is intended to account for.

Greenland and the glaciers, which are dominated by surface melt-
ing5,6,8, show clear dependence on temperature. Fourteen of the 19 
glacier regions show approximately linear relationships, and five are 
nonlinear (Fig. 1f, k, l; also Western Canada and US, and North Asia, 
which have weaker nonlinearity: not shown). By contrast, East Ant-
arctica (Fig. 1c) shows a slight decrease in sea level contribution with 
temperature: snowfall increases, because warmer air can hold more 
water vapour, and this dominates over the increase in mass loss owing 
to melting7,8. Finally, West Antarctica and the Peninsula (Fig. 1b, e) show 
little detectable temperature dependence, owing to an approximate 
cancellation across varying climate and ice sheet model projections of 
snowfall accumulation and ice loss. Antarctic ice sheet results are dis-
cussed in detail later (see ‘Antarctic focus’).

The ice sheet contributions depend strongly on the Greenland gla-
cier retreat and Antarctic sub-shelf basal melting parameters, which 
determine the sensitivity of the marine-terminating glaciers to ocean 
temperatures (and surface meltwater runoff for Greenland). Figure 2 
shows these relationships; the Greenland parameter is defined such 
that more negative values correspond to further retreat inland.

Land ice contributions in 2100
We use probability distributions for global mean surface air tempera-
ture (Fig. 3a, Finite amplitude Impulse Response (FaIR) simple climate 
model)12 and ice–ocean parameters (Fig. 3b, c shows κ and γ (where κ 
is the Greenland glacier retreat parameter and γ the Antarctic basal 
melt parameter), which are derived from the original parameteriza-
tion studies; ice shelf collapse is assigned equal probability off/on) 
as inputs to the emulators. Time-series projections for the land ice 
contribution under all scenarios are shown in Fig. 3d, and probability 
density functions at 2100 for the Greenland ice sheet, Arctic Canada 
North, the glacier total, and West and East Antarctica in Fig. 3e–i. The 
Antarctic ice sheet total under the NDCs is shown in Fig. 3j. (‘Risk-averse’ 
projections in Fig. 3d, j are discussed later.) Density estimates are less 
smooth for the glacier and Antarctica totals than individual regions, 
because sums of regions are estimated by random sampling rather 
than deterministic integration; these samples are shown for Antarctica 
(Fig. 3j) and two of the glacier scenarios (Fig. 3g).

Our projections show that reducing greenhouse gas emissions 
from current and projected pledges under the Paris Agreement 
(NDCs) enough to limit warming to 1.5 °C (SSP1-19) would nearly 

halve the land ice contribution to sea level at 2100 (Table 1: median 
decreases from 25 cm to 14 cm SLE). This halving is not evenly dis-
tributed across the three ice sources: Greenland ice sheet mass losses 
would reduce by 70%, glacier mass losses by about half, and Antarc-
tica shows little difference between scenarios; this is not due to a 
lack of change in the Antarctica simulations themselves, but rather 
to the cancellation of mass gains and losses mentioned above, which 
varies across models.

Average rates of mass loss for each ice sheet and the glacier total are 
within 1–2 cm per century of those of the 2013 IPCC Fifth Assessment 
Report (AR5)26 and the updated assessment for RCP2.6 in the 2019 IPCC 
Special Report on the Oceans and Cryosphere in a Changing Climate 
(SROCC)1 (see  Methods section ‘Comparison with IPCC assessments’). 
However, the SROCC revised the projection for Antarctica under RCP8.5 
up to 11 cm per century, close to the upper end of our 66% interval for 
SSP5-85 (though our projections may omit a commitment contribu-
tion of up to about 2 cm per century; see Methods). Our results are 
therefore closer to the 2013 IPCC assessment than to the 2019 assess-
ment with respect to the magnitude and unclear scenario dependence 
for Antarctica. Our 66% uncertainty intervals are narrower than the 
IPCC 66% (SROCC) and ≥66% (AR5) uncertainty intervals, as would be 
expected from the latter being open-ended, except those for Greenland 
under SSP1-26: too few Greenland simulations were performed under 
low scenarios (RCP2.6, SSP1-26) to constrain the emulator variance  
(see Fig. 1a; Methods section ‘Parameter interactions’).

Emulation enables us to additionally assess the sensitivity of projec-
tions to uncertainties in their inputs as well as their robustness. If we 
use CMIP6 global climate models for the projections (Extended Data 
Fig. 3), instead of FaIR, we find a slight increase in sea level contributions 
owing to the larger proportion of models with high climate sensitiv-
ity to carbon dioxide32,33: the 95th percentile increases by 7 cm under 
SSP5-85. We estimate the potential impact of reducing uncertainty 
with future knowledge by using fixed values for temperature, or for 
the ice sheet retreat and basal melt parameters: the width of the 5–95% 
ranges reduce by up to 13% and 17% respectively (tests 2–4 in Meth-
ods section ‘Sensitivity tests’; Extended Data Table 3, Extended Data 
Fig. 4). In other words, the ice–ocean interface is a similar magnitude, 
or larger, contributor to uncertainty in these projections as global 
warming under a particular emissions scenario. When we assess the 
robustness of the projections to different selections and treatments 
of the ice sheet simulations, we find this makes very little difference 
(tests 2–4 in Methods section ‘Robustness checks’; Extended Data 
Table 4, Extended Data Fig. 5).

Antarctic focus
No clear dependence on emissions scenario emerges for Antarctica. 
This is partly due to the opposite scenario dependencies of the West 
and East Antarctica regions (Fig. 3f, g). But the average response to 
emissions scenario for each region is also small. A key reason is the 
wide variety of changes in the atmosphere and ocean in the global 
climate models. Figure 4 shows ice sheet model simulations where 
both the high- and low-emissions scenario were run (two climate mod-
els for Greenland, three for Antarctica). For the Greenland ice sheet, 
all simulations predict increased mass loss under higher emissions 
(Fig. 4a, red shaded region). For Antarctica, the picture is more com-
plex, and mostly clustered according to the climate model. Many West 
Antarctica simulations show the same straightforward response as 
Greenland (Fig. 4b), particularly those that do not use the ISMIP6 basal 
melting parameterization (see Methods). However, the West Antarctica 
simulations driven by CNRM-CM6-1 show the reverse, where mass gain 
through snowfall accumulation increases more under high emissions 
than mass loss (which is predominantly ocean-induced). (Note that 
fewer simulations were driven by IPSL-CM5A-MR and CNRM-CM6-1 than 
by NorESM1-M, so their spread is necessarily smaller). East Antarctica 
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Fig. 1 | See next page for caption.
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and the Antarctic Peninsula mostly show this latter response, though 
some simulations show other combinations: more mass loss under 
low emissions than high, or mass loss under low emissions and mass 
gain under high.

It is challenging to evaluate which of these three climate models, or 
others used by ISMIP6, are most reliable for Antarctic climate change. 
Ocean conditions and accumulation show large spatio-temporal vari-
ability and are sparsely observed; models imperfectly represent impor-
tant processes, and it is unclear whether the newer CMIP6 models have 
improved relative to CMIP519,34–37. Most of the climate models were from 
CMIP5, including NorESM1-M and IPSL-CM5A-MR, and were selected 
by their success at reproducing southern climatological observations 
(while also sampling a range of future climate responses)21. NorESM-1M 

has a lower-than-average atmospheric warming, hence less snowfall, 
whereas IPSL-CM5A-MR has a higher-than-average atmospheric warm-
ing (particularly for East Antarctica)21. The newer CMIP6 models, includ-
ing CNRM-CM6-1, were selected only by their availability. Changing 
the selection or treatment of Antarctica simulations—for example, 
using subsets of climate models, or rejecting simulations with net mass 
gain early in the projections—do not result in any substantial scenario 
dependence (see tests 7–10 in Methods section ‘Robustness checks’; 
Extended Data Table 4, Extended Data Fig. 5).

Uncertainty about the scenario dependence of Antarctic projections 
is not new. The IPCC Fifth Assessment Report (2013) stated “the current 
state of knowledge does not permit a quantitative assessment”26 of the 
dependence of rapid dynamical change on scenario. Some studies that 
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Fig. 2 | Ice sheet mass loss strongly depends on ice–ocean parameters.  
a–d, Projections of sea level contribution from 2015–2100 as a function of 
Greenland glacier retreat parameter (κ; a), and Antarctic basal melt parameter  
(γ; metres per year, m a−1) for West Antarctica (b), East Antarctica (c), Peninsula 
(d). Solid line shows emulator mean estimate using fixed global temperature 
(projected by the global climate model most used for simulations, under RCP8.5), 

and shaded regions show the mean ± 2 s.d. Symbols show ice sheet models forced 
by this climate model for which simulations for at least three (Greenland) or four 
(Antarctic) melt parameter values were available: circles use the ISMIP6 
parameterization for the ice–ocean interface; crosses use other representations, 
and are assigned ensemble mean values of the parameter; triangles show the 
Greenland ice sheet model for which two additional values of κ were run.

Fig. 1 | Ice sheet and glacier mass loss generally increases linearly with 
global mean temperature. a–o, Projected mass changes from 2015–2100 in 
sea level equivalent (SLE) as a function of global mean surface air temperature 
change over the same period for Greenland ice sheet (a); West and East 
Antarctic ice sheets (b, c); Greenland peripheral glaciers (d); the Antarctic 
Peninsula and Antarctic peripheral glaciers (e, f); four glacier regions with large 
maximum sea level contributions (Alaska, Arctic Canada North and South, 
Russian Arctic; g–j); two regions with nonlinear temperature dependence and 
total or near-total disappearance projected at high temperatures (Central 
Europe and Caucasus; k, l); and three regions comprising high mountain Asia 
(m–o). Central solid lines show the emulator mean, and shaded regions the 
mean ± 2 s.d. For the ice sheets (a–c, e), darker shaded regions use parameter 

values fixed at their default values (Greenland glacier retreat: median; 
Antarctic sub-shelf basal melting: median of Mean Antarctic distribution; 
Antarctic ice shelf collapse off), and lighter shaded regions use alternative 
values (Greenland: 75th percentile; Antarctica: median of Pine Island Glacier 
distribution). See Methods for details. Points show ice sheet and glacier 
simulations under RCP2.6/SSP1-26 (blue), RCP4.5 (yellow), RCP6.0 (orange) 
and RCP8.5/SSP5-85 (red). Solid circles for the ice sheets use the default  
ice–ocean parameter value and open circles use the alternative value (other 
simulations are not shown). Glacier simulations are change in total volume,  
not volume above flotation; the estimated maximum sea level contribution 
(that is, current total glacier volume above flotation)44 is shown (horizontal 
dashed line).
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distribution (N = 8,200); vertical lines show the six values used for simulations: 
median (solid), 5th and 95th percentiles (dashed) of the Mean Antarctic (black) 
and Pine Island Glacier (grey) distributions (see Methods). d, Projected land ice 
contribution to sea level (in cm SLE) from 2015–2100 under the five SSPs and 
NDCs. Solid lines and shaded regions: median and 5th–95th percentiles 
(N = 11,500 per year per scenario); five-year smoothing applied, with original 
data shown as dots (interannual variation arises from annual sampling of 

emulator uncertainties). Pale solid lines: 95th percentiles of risk-averse 
projections. Box and whiskers show [5, 25, 50, 75, 95]th percentiles at 2100 
(N = 115,000 per scenario) for main projections (left) and risk-averse 
projections for Antarctica (right). e–j, Probability density functions for 2100 
estimated for: Greenland ice sheet (e), Arctic Canada North (f), total for glaciers 
(g), West and East Antarctica (h, i) for all scenarios, and total for Antarctic ice 
sheet under main and risk-averse projections for the NDCs ( j). Glacier and 
Antarctic totals are less smooth because they are estimated from a sum of 
Monte Carlo samples from each region, rather than deterministic integration 
(see Methods); these samples are shown for SSP1-19 and NDCs (N = 5,000). Ice 
sheet projections do not include the response to pre-2015 climate forcing, 
which is estimated to add less than 1 cm to the Greenland contribution and up 
to ~2 cm to the Antarctic (see Methods).
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show strong scenario dependence neglect the compensating accumula-
tion part27,38, use extreme1 ice shelf collapse scenarios25,41, or the basal 
melt parameterization uncertainty is the same order of magnitude as, 
or larger than, the scenario dependence28,39,40. To be clear, we do not 
assert that Antarctica’s future does not depend on future greenhouse 
emissions or global warming: only that the relationship between global 
and Antarctic climate change, and the ice sheet’s response, are com-
plex, only partially understood, and involve compensating factors of 
increasing mass loss and gain that result in a balance we are not yet 
confident about.

We test the sensitivity of the Antarctica projections to the basal melt-
ing parameter. The main projections combine two distributions19 for 
γ derived from observations of mean Antarctic basal melt rates or the 
ten highest melt rates for Pine Island Glacier (see Methods). Using only 
the mean distribution decreases the median to approximately 0 cm SLE 
and the 95th percentile to approximately 8 cm SLE for all scenarios; 

using only the high distribution has less effect, increasing the median to 
6 cm SLE and the 95th percentile to approximately 16 cm SLE (Extended 
Data Table 3, Extended Data Fig. 4: tests 5, 6). We also try and reproduce 
the higher projections of ref. 27 using a similar approach to sampling 
basal melt (see Methods), and find we only obtain similar projections 
when using extreme values of our parameter range (Extended Data 
Table 3, Extended Data Fig. 4: tests 7, 8). This suggests that ref. 27 could 
be interpreted as more pessimistic projections: they use values of basal 
melt sensitivity to ocean temperature consistent with those estimated 
for the Amundsen Sea region38, which is currently undergoing most 
change.

However, other factors can lead to similarly high projections. In 
particular, the sensitivity of an individual ice sheet model to the basal 
melt parameter can have a large effect. This differs widely across ice 
sheet models, and the net contribution also depends on the climate 
model (Extended Data Fig. 6). Emulator projections based on a single 
model with high or low sensitivity are shown in Extended Data Fig. 5 
(tests 4, 5; Extended Data Table 4). These also do not show strong sce-
nario dependence—just a 2–3-cm decrease under high emissions for 
the low sensitivity model, because the snowfall effect is more appar-
ent—but instead predict a high or low sea level contribution, respec-
tively, regardless of scenario (95th percentiles: 29–30 cm and 7–9 cm). 
The high sensitivity of the first model (SICOPOLIS) is probably due to 
the way that sub-shelf melting is applied: over entire grid cells along 
the grounding line, rather than just the parts detected as floating27. 
We also show results from the four most sensitive models, which are 
similarly high (Extended Data Table 4, Extended Data Fig. 5: test 6). 
We do not have sufficient observations to evaluate which ice sheet 
models have the most realistic response, nor sufficient understand-
ing to confidently predict how basal melt sensitivity might change 
in future19,35, and therefore use all models in the main projections  
(see also ‘Risk-averse projections’, below).

The ice shelf collapse scenario has little effect on our projections. 
Switching it on increases the Antarctic Peninsula and East Antarctic 
median contributions by 1 cm and 0–1 cm SLE from 2015–2100, with 
no change for West Antarctica (Extended Data Table 3, Extended Data 
Fig. 4: tests 9, 10). This is similar, within uncertainties, to the ice sheet 
simulations (Extended Data Fig. 7). The effect is small because surface 
meltwater is not projected to be enough to cause collapses until the 
second half of the century, and even then only for small number of 
shelves, mostly around the Peninsula7. Some combinations of climate 
and ice sheet models do project larger sea level contributions—in par-
ticular, 5 cm for East Antarctica from the SICOPOLIS ice sheet model 
driven by HadGEM2-ES. The HadGEM2-ES climate model projects 
extreme ocean warming in the Ross Sea21, while SICOPOLIS has one 
of the largest responses among the ice sheet models (as described 
above). If these two were found to be the most realistic models, then 
the ISMIP6 ensemble and emulator may underestimate the effect of 
ice shelf collapse by a few centimetres. Further results are in Methods 
section ‘Parameter interactions’.

Risk-averse projections
Given the wide range and cancellations of responses across models and 
parameters, we present alternative Antarctic projections we judge to 
be pessimistic but physically plausible for the use of risk-averse stake-
holders, by combining a set of assumptions that lead to high sea level 
contributions. These are: the four ice sheet models most sensitive to 
basal melting; the four climate models that lead to highest Antarctic sea 
level contributions, and the one used to drive most of the ice shelf col-
lapse simulations; the high basal melt (Pine Island Glacier) distribution; 
and with ice shelf collapse ‘on’ (that is, combining robustness tests 6, 7 
and sensitivity tests 6, 10). This storyline would come about if the high 
basal melt sensitivities currently observed at Pine Island Glacier soon 
become widespread around the continent; the ice sheet responds to 

Table 1 | Projected land ice contributions to sea level rise 
in 2100 under different greenhouse gas scenarios and 
Antarctic modelling assumptions

Main projections Risk-averse projections

50th [5th, 95th] 
percentiles 
(cm SLE)

[17th, 83rd] 
percentiles 
(cm SLE)

50th [5th, 95th] 
percentiles 
(cm SLE)

[17th, 83rd] 
percentiles 
(cm SLE)

Global glaciers

SSP1-19 7 [4, 10] [5, 9]

SSP1-26 8 [5, 12] [6, 10]

SSP2-45 11 [7, 15] [9, 13]

NDCs 13 [9, 18] [11, 16]

SSP3-70 14 [10, 19] [12, 17]

SSP5-85 16 [12, 21] [14, 19]

Greenland ice sheet

SSP1-19 2 [−6, 11] [−2, 7]

SSP1-26 3 [−4, 12] [−1, 8]

SSP2-45 5 [−2, 14] [1, 10]

NDCs 7 [0, 16] [3, 12]

SSP3-70 8 [0, 17] [4, 13]

SSP5-85 10 [2, 20] [5, 15]

Antarctic ice sheet

SSP1-19 4 [−5, 14] [−1, 10] 21 [6, 42] [12, 32]

SSP1-26 4 [−5, 14] [−1, 10] 21 [7, 43] [12, 31]

SSP2-45 4 [−5, 14] [−1, 9] 21 [7, 43] [12, 31]

NDCs 4 [−5, 14] [−1, 10] 21 [7, 43] [13, 31]

SSP3-70 4 [−5, 14] [−1, 10] 21 [8, 43] [13, 31]

SSP5-85 4 [−5, 14] [−1, 10] 22 [8, 43] [14, 32]

Land ice

SSP1-19 13 [0, 28] [6, 21] 30 [12, 56] [20, 43]

SSP1-26 16 [3, 30] [8, 24] 33 [15, 58] [22, 45]

SSP2-45 20 [7, 35] [13, 28] 38 [20, 63] [28, 50]

NDCs 25 [11, 40] [17, 33] 42 [25, 67] [32, 54]

SSP3-70 27 [13, 41] [19, 35] 44 [27, 70] [34, 56]

SSP5-85 30 [16, 46] [22, 39] 48 [30, 75] [38, 61]

Projected changes to global glaciers, Greenland and Antarctic ice sheets and land ice total 
from 2015–2100 in sea level equivalent (cm SLE) for five SSPs and predicted emissions under 
the 2019 NDCs. Ice sheet projections do not include the response to pre-2015 climate forcing, 
which is estimated to add less than 1 cm to the Greenland contribution and approximately 
2 cm to the Antarctic (see Methods). The glaciers include the Greenland and Antarctic 
peripheral glaciers; the overlap of Antarctic periphery glaciers with the ice sheet contribution 
is estimated to be less than 1 cm SLE.



80 | Nature | Vol 593 | 6 May 2021

Article

these with extensive retreat and rapid ice flow, and atmospheric warm-
ing is sufficient to disintegrate ice shelves, but does not substantially 
increase snowfall. The risk-averse projections are more than five times 
the main estimates: median 21 cm (5–95% range 7 to 43 cm) under the 
NDCs (Fig. 3j), and essentially the same under SSP5-85 (Table 1; regions 
shown in Extended Data Fig. 4, test 11), with the 95th percentiles emerg-
ing above the main projections after 2040 (Fig. 3d). This is very similar 
to projections25 under an extreme scenario of widespread ice shelf col-
lapses for RCP8.5 (median 21 cm; 5–95% range 9 to 39 cm). The median 
is higher than ref. 27 for RCP8.5, though the 95th percentile is smaller. No 
models that include a representation of rapid ice cliff collapse through 
the proposed ‘Marine Ice Cliff Instability’41 mechanism participated 
in ISMIP6. This hypothesis is the process with the largest estimated 
systematic impact on projections: it could increase projections by tens 
of centimetres if both the mechanism and projections of extreme ice 
shelf collapse are found to be robust25,42.

Our risk-averse Antarctica projections increase the total land ice 
sea level contribution to 42 cm (5–95% range 25 to 67 cm) SLE under 
current policies and pledges (NDCs), and to 30 cm (5–95% range 12 to 
56 cm) SLE even under SSP1-19. This means that plausible modelling 
choices for Antarctica could change the median land ice contribu-
tion by more (17 cm SLE) than the difference between these emissions 
scenarios (12 cm SLE). This ambiguity limits confidence in assessing 
the effectiveness of mitigation on the response of global land ice to cli-
mate change. When combined, the effects of uncertain emissions and 

Antarctic response lead to a threefold spread in median projections of 
the land ice contribution to sea level rise, ranging from 13 to 42 cm SLE 
over 2015–2100, implying that flexible adaptation under substantial 
uncertainty will be essential until either can be further constrained.

Not all modelling uncertainties could be systematically assessed 
here. Aside from the ice-cliff instability hypothesis, these include 
ice sheet basal hydrology and sliding; glacier model parameters, 
ice–water interactions and meltwater routeing; model initialization; 
and the use of coarse-resolution global climate models (and a single 
high-resolution regional climate model for the Greenland ice sheet). 
The probabilities we present are therefore specific to our ensembles, 
and adding new climate and ice sheet models, or exploration of new 
parameters, could shift or broaden their distributions43. However, 
our projections demonstrate the importance of systematic design 
to assess as many uncertainties as feasible, and represent the current 
state-of-the art in estimating the land ice contribution to global mean 
sea level rise.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-021-03302-y.
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Fig. 4 | Climate and ice sheet projections show a wide range of responses to 
greenhouse gas emissions scenario. Sea level contribution at 2100 under high 
greenhouse gas emissions scenarios (RCP8.5 or SSP5-85) versus low scenarios 
(RCP2.6 or SSP1-26), categorized by climate model forcing (NorESM1-M and 
IPSL-CM5A-MR use RCPs; CNRM-CM6-1 use SSPs), without ice shelf collapse.  
a, Greenland. b, West Antarctica. c, East Antarctica. d, Antarctic Peninsula.  

Filled circles show ice sheet models that use the ISMIP6 parameterizations  
of the ice–ocean interface, and open circles show models that use their own. 
Simulations in the red shaded regions have more mass loss under high emissions 
(RCP8.5/SSP5-85) than low (RCP1-26/SSP1-26); those in the green shaded regions 
have more mass gain under high emissions scenarios than low. Two regions with 
other possible combinations are also labelled.
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Methods

Simulations
Ice sheet and glacier model simulations. Ice sheet and glacier simula-
tions are from the Ice Sheet Model Intercomparison Project for CMIP6 
(ISMIP6)2,3 and GlacierMIP4 Phase 2. Most are published elsewhere5–8. 
Additional ice sheet simulations were included in this analysis (Ex-
tended Data Table 1) as follows, where the names are group/model: 
22 new Greenland experiments using [5th, 95th] percentile values of 
the retreat parameter under different climate model forcings with 
IMAU/IMAUICE1, and 113 Antarctic experiments with CPOM/BISICLES 
(N = 16), ILTS_PIK/SICOPOLIS (N = 31), JPL1/ISSM (N = 10), LSCE/GRISLI 
(N = 30) and NCAR/CISM (N = 26). Eight of the new Antarctic simula-
tions were previous experiments described in ref. 7 using a new model 
(CPOM/BISICLES), and the rest (105) used 37 new combinations of 
previous uncertainties for additional exploration of basal melt (29) and 
ice shelf collapse (5) under different climate model forcings, and the 
interaction of ice shelf collapse and basal melt (3). CPOM/BISICLES is 
described in the ISMIP6 Antarctic initialization study15: here the B vari-
ant is used, but with minimum resolution 1 km rather than 0.5 km. All 
ice sheet projections are calculated relative to a control simulation 
with constant present day climate (see Methods section ‘Comparison 
with IPCC assessments’ for an estimate of the ‘committed’ contribu-
tion this removes).

The glacier regions are listed in Extended Data Table 2 and all 
simulations are described in ref. 5. Greenland ice sheet projections 
have the peripheral glaciers (region 5) masked out, so there is no 
double-counting. The Antarctic periphery glaciers (region 19) are 
located only on the surrounding islands, not on the mainland ice sheet; 
ice sheet models include some of the larger islands, so there is some 
overlap in area, but the effect of this is estimated to be small (see Meth-
ods section ‘Comparison with IPCC assessments’ for an estimate of this 
and other limitations).

All projections are calculated as annual global mean sea level contri-
butions since 2015, converting mass (for the glaciers) or mass above 
flotation (for the ice sheets) to sea level contribution using 362.5 Gt per 
mm SLE.

Global climate model simulations. For building the emulator, we 
use projections of annual global mean surface air temperature change 
since 2015 from the CMIP5 and CMIP6 global climate models used 
to drive the ice sheet and glacier models. If multiple realizations  
(different initial conditions) for a model were available, we use the mean 
of these. Data from 1850–2100 were downloaded from the JASMIN/
CEDA archive and ESGF on 7 November 2019 and 4 December 2019; 
the CMIP6 snapshot was updated 28, 29 July 2020. The global mean 
temperatures used for the projections are described in the section 
‘Sea level projections’ below. 

Emulation
An emulator is a fast statistical approximation of a computationally 
expensive simulator. This can be used to predict the simulator response 
at untried input values—to explore the uncertain input space far more 
thoroughly—for sensitivity analysis, to adjust the chosen inputs, and 
to estimate probability distributions. We construct statistical models 
of the simulated ice sheet and glacier sea level contribution as a func-
tion of the global mean surface air temperature of the driving climate 
models—and also different representations of the ice sheet–ocean 
interface—to make projections under new emissions scenarios that 
incorporate these uncertainties, as well as those arising from the dif-
ferent structures of the climate and ice sheet models (and the emula-
tors themselves).

Typically emulation is performed for one model at a time25, but here 
we emulate each multi-model ensemble all at once. This is made possible 
by the systematic design of the ISMIP6 and GlacierMIP projects, which 

explore uncertainties in global climate change and three ice–ocean 
parameters simultaneously, and by our approach of applying emulation 
to multiple models rather than (as is usual) one. The three ice–ocean 
parameters control: (1) how much Greenland marine-terminating gla-
ciers retreat (κ) with increasing local ocean temperatures and meltwater 
runoff; (2) how much Antarctic ice shelf basal melting (γ) increases 
with increasing local ocean temperature; and (3) an on/off scenario 
of Antarctic ice shelf collapse (C), which can increase glacier flow into 
the ocean when atmospheric temperatures rise.

We predict the 23 land ice regions separately—the Greenland ice 
sheet, the West and East Antarctic ice sheets and Antarctic Peninsula, 
and 19 glacier regions—so the spatial distribution of meltwater can be 
used in regional sea level projections.

We choose and evaluate emulator structures using the year 2100 
(Extended Data Table 2; Extended Data Figs. 1, 2). Global mean surface 
air temperature projections are taken from the FaIR simple climate 
model12, because it can explore uncertainties more thoroughly than 
the relatively small CMIP6 ensemble of (computationally expensive) 
general circulation models. We use the same global mean temperature 
value across all land ice sources for each individual estimate: in other 
words, we include any co-dependence arising from global temperature. 
Full details are described in the following sections.

Global mean surface air temperature. Previous sea level emulation 
studies26,27,29,30 have typically used global mean temperature as the main 
input, rather than regional climate variables. We follow this approach 
for several reasons: to include correlation of land ice regions induced 
by global climate change (that is, no need to assume/estimate their cor-
relations, or to treat them as independent), and to have a larger sample 
of climate change projections. Using regional climate variables would 
improve the signal-to-noise ratio for the emulator, but would restrict us 
to using computationally expensive general circulation models from 
CMIP5/6, for which there only a few tens of models. The simple climate 
model FaIR can be used to explore uncertainties in each scenario thor-
oughly, using the latest assessments of equilibrium climate sensitivity.

Global mean temperature is the only regressor for the glacier regions. 
For the ice sheets, there are additional terms derived from the ISMIP6 
parameterizations of ice–ocean interactions.

Ice sheet model parameters. The Greenland glacier retreat param-
eter κ (Fig. 3a; units km (m3 s−1)−0.4 °C−1) is a scaling coefficient relating 
marine-terminating glacier retreat to ocean temperatures and meltwa-
ter runoff16,17, where larger negative values indicate greater retreat of the 
glacier terminus in response to warming. This is a continuous variable, 
but most simulations use one of three values: the default, which is the 
median of the distribution in the parameterization17, κ50 = −0.17, and 
the quartiles κ25 = −0.37 and κ75 = −0.06. One model uses 5th and 95th 
percentile values, κ5 = −0.9705 and κ95 = 0.0079. For ice sheet models 
that did not use this parameterization (N = 29 simulations)6, we assign 
the mean value from the other simulations to minimize the impact on 
the emulator (κ = −0.2073). One of these models (BISICLES) also ran 
‘high’ and ‘low’ retreat experiments by doubling and halving the ocean 
thermal forcing, to which we assign the κ25 and κ75 values.

The Antarctic sub-shelf basal melt parameter γ (Fig. 3b; units of 
metres per year, m a−1) is the ‘ocean heat exchange velocity’ scaling 
coefficient relating sub-shelf basal melting to ocean temperatures18,19. 
Two alternative distributions for γ were derived in the parameteri-
zation19: the first from mean Antarctic melt rates, and the second 
from the 10 highest observations of melt rate at the grounding line 
of Pine Island Glacier, where melt rates are currently highest. The 
values of γ estimated from Pine Island Glacier are an order of mag-
nitude larger, and the two distributions do not overlap. This is a con-
tinuous variable, but most simulations use one of three values: the 
default, which is the median of the mean Antarctic distribution, Mean-
Ant50 = 14,477, and the 5th and 95th percentiles, MeanAnt5 = 9,619 and  
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MeanAnt95 = 21,005. Further simulations used the same percentiles from 
the Pine Island Glacier distribution: PIG50 = 159,188, PIG5 = 86,984 and 
PIG95 = 471,264. Some models7 used an alternative variant of the param-
eterization in which only local ocean temperatures were used, rather 
than a combination of local and regional, which uses a different tuning 
for γ. However, the values used are also the 50 [5, 95]th percentiles 
of those distributions, so we consider them equivalent. For ice sheet 
models that did not use this parameterization (N = 62 simulations), we 
again assign the ensemble mean value (γ = 59,317).

The Antarctic ice shelf collapse parameter C is a switch that indicates 
whether a scenario of ice shelf collapse was used, which can lead to gla-
cier speed-up. A timeline of collapses was derived according to the pres-
ence of surface meltwater on ice shelves above a threshold (725 mm a−1) 
for 10 years, estimated from surface air temperature projections45 in the 
global climate model driving the ice sheet model (mostly CCSM4). This 
method does not predict whether meltwater may be efficiently drained 
from the surface for a given ice shelf46, thus avoiding collapse. We use 
values of 1 or 0 indicating whether the scenario is implemented or not.

Gaussian process emulation. Gaussian process emulation47 is 
non-parametric, treating the simulator as an unknown mathematical 
function of its inputs. We use the R package RobustGaSP48 for its nu-
merically robust parameter estimation49. There are 23 emulators for 
the 2100 projections (Greenland ice sheet, three Antarctic ice sheet 
regions, and 19 glacier regions) and 1,955 emulators for the full land ice 
time series (23 regions for each year from 2016 to 2100). An alternative 
to predicting each year separately would be to model the temporal cor-
relation explicitly, but we prefer to use the simpler method, with fewer 
judgments, and allow temporal correlation to emerge.

Nugget. We use a ‘nugget’ term to incorporate simulations from each 
multi-model ensemble. The nugget is usually zero for deterministic 
models—the emulator predicts each simulation in the ensemble exactly, 
that is, the regression curve goes through all points—or a very small 
value, to improve numerical stability or other properties23,24. Here we 
allow the emulator to estimate the nugget, and treat each multi-model 
ensemble as a set of outputs from a single stochastic simulator or set 
of noisy observations. This approach has previously been used for 
emulating stochastic simulators50 and for emulating climate models 
accounting for internal variability, other inert inputs (uncertainties not 
explicitly modelled in the emulator), and approximations of the model 
outputs51–56. Our method is similar to the use of ‘emergent constraints’ 
for climate models43,57, seeking relationships between past and future 
simulations across multi-model ensembles to constrain them with 
observations, but here the predictors are inputs to the models rather 
than their outputs for the past.

This approach does not require the simulations to be normally 
distributed but does assume they are independent, which has been a 
long-standing difficulty of interpreting multi-model climate ensem-
bles. But with ice sheet models, although model names may be the 
same across groups, each one has a very different set up, including 
physics approximations, parameterizations, tuning, grid resolution, 
and—in particular—initialization methods, which have been shown 
to produce very different results even for simulations produced by 
the same group6,7,14,15,58–60. For glacier models, their structures are also 
vastly different, ranging from simple scaling parameterizations to 
dynamic physical models5. We test two approaches to account for any 
model dependence: a dummy variable (see below) and random effects 
(Methods subsection ‘Antarctic cross-check model’).

Statistical model. Let y denote the simulated global mean sea level 
contribution for given region and year (in cm SLE), and x the simulator 
inputs (see below). Following ref. 23, we write the simulator as a func-
tion y = f(x), for which the Gaussian process emulator is described by 
a mean function:

E f h β[ ( )] = ( ) ,Tx x

where h(x) is a vector of regression functions, β the corresponding 
regression coefficients, and where superscript T indicates the trans-
pose; and a covariance function, with variance σ2 and correlation func-
tion c(x, x′):

x x x xf f σ c νICov[ ( ), ( ′)] = ( ( , ′) + ),2

whereν is the nugget term and I the identity matrix. So the prior for f(x) 
follows a normal distribution:

∼x x x xp f β σ δ ν N h β σ c νI( ( )| , , , ) ( ( ) , ( ( , ′) + )),2 T 2

where x are whichever model inputs are used for a given region, δ are 
the correlation lengths of the covariance function, and σ2ν is the vari-
ability not explained by the inputs. Parameters (β, σ2, δ, ν) are estimated 
from the simulation data.

The inputs x used in the regression functions are global mean tem-
perature change, T, and, for the ice sheets, the ice–ocean parameter 
values (κ for Greenland; γ, C for Antarctica), plus a dummy variable 
denoting whether Greenland models used the retreat parameteriza-
tion. These are discussed in the next section. All inputs are rescaled to 
have zero mean and unit variance.

Mean functions. The Gaussian process mean function describes the 
large-scale response of the simulator to its inputs, usually specified as 
a linear trend with the remainder described by a zero-mean Gaussian 
process.

For the glaciers, the linear regressor is simply global mean tempera-
ture in the same year (T). For the ice sheets, the additional ice sheet 
model parameters are κ for Greenland, and γ and C for Antarctica. We 
also try two types of dummy variable. The first is for the ice sheet and 
glacier model names, so these can be treated distinctly in the emulator, 
but this leads to clear overfitting (that is, the model is too flexible in 
Figs. 1, 2). The second represents whether an ice sheet model uses the 
ISMIP6 retreat or basal melt parameterization, to absorb any misalign-
ment between the imputed value and the effective value. Bayesian 
information criterion (BIC) from a stepwise model selection (testing up 
to first-order interactions) suggests this dummy variable is informative 
for Greenland, so we retain it (o, for open parameterization), but not 
for the Antarctic regions. The stepwise model selection suggests we 
could reasonably include terms for the interaction between tempera-
ture and retreat for Greenland, temperature and basal melt for West 
Antarctica, and temperature and collapse for East Antarctica, but we 
choose not to, to avoid the risk of overfitting. The selection also shows 
that collapse strongly dominates the Antarctic Peninsula response, and 
may not be needed for West Antarctica, but we retain all terms (that 
is, Ti, γ, C) because we otherwise find the covariance matrix is poorly 
conditioned. The resulting mean functions are hGrIS(x)i ~ (Ti, k, o) for 
Greenland, hAIS(x)i ~ (Ti, γ, C) for the Antarctic regions, and hGlaciers(x)i ~ (Ti) 
for the glaciers, where h ~ (a, b) means h is a linear function of a and b, 
and i is the index for the year.

Covariance functions. The covariance function describes the 
smoothness of the Gaussian process. As in any statistical modelling, 
there is a trade-off between improving accuracy and over-fitting. We 
assess this using the usual leave-one-out procedure61,62. We fit the 
emulator to all ensemble members but one, then predict the sea level 
contribution from this simulation; we repeat this for every combina-
tion, noting the emulator error (residual) and uncertainty for each 
prediction. We perform this for each of the 23 regional emulators for 
the year 2100 with five covariance functions of varying smoothness—
Matérn(5/2), which is the default in RobustGaSP, Matérn (3/2), and  
three members of the power exponential family with high, medium 



and low exponent values (α = 1.9, that is, close to a squared exponen-
tial, the default value; α = 1.0, exponential; and α = 0.1, for which the 
covariance function has a small effect so the emulator approaches 
linear regression).

For 18 of the 19 glacier regions, we use the covariance function with 
the smallest standardized Euclidean distance between the emulator 
predictions and simulations (standardized because, unlike simpler 
metrics such as root-mean-square error or mean absolute error, it does 
not penalize larger errors if the emulator uncertainty intervals are 
sufficiently large), as in ref. 25. For the Southern Andes (region 17), all 
covariance functions give identical distances, so we use the default for 
RobustGaSP. For the ice sheets, we use the covariance function that 
gives close to linear regression (power exponential, α = 0.1), rather than 
the one with the minimum Euclidean distance, for various reasons. For 
Greenland, West Antarctica and the Antarctic Peninsula, the minimum 
distance covariance functions (power exponential α = 1.0 for Green-
land; Matérn(3/2) for the Antarctic regions) result in overfitting for 
temperature (that is, too much flexibility in Fig. 1). For East Antarctica, 
the minimum distance covariance functions (Matérn(5/2)) result in an 
incorrect sign prediction under the ice shelf collapse switch. Using 
the alternative covariance function solves all of these issues and does 
not increase the standardized Euclidean distance by much: 4% for the 
Peninsula, and 0.4%–1% for the other three regions. The resulting covari-
ance function choices are given in Extended Data Table 2.

Evaluating the emulators. After selecting the covariance functions 
for each regional emulator at 2100, we evaluate the emulators fur-
ther by plotting the emulator predictions against the simulations 
from the leave-one-out procedure, and the standardized residuals 
(the difference between the emulator prediction and the simulator, 
divided by the emulator standard deviation), and calculating the per-
centage of simulations falling within ±2 s.d. (Extended Data Table 2 
and Extended Data Figs. 1, 2). We would not expect exactly 95% of the 
simulations to fall within 2 s.d., in part because the predictions are 
not independent, but very low or high values would suggest emulator 
over- or under-confidence. The region with the lowest percentage of 
predictions within the uncertainty intervals is North Asia (region 10) 
with 89%, indicating slightly too small emulator uncertainty estimates, 
and the highest is 98% (Scandinavia, region 8), indicating the reverse.

Mean absolute errors for each emulator are given in Extended Data 
Table 2 and Extended Data Figs. 1, 2: for the ice sheet regions they are 
0.28 cm (Peninsula), 1.4 cm (Greenland) and 1.5 cm (East Antarctica) 
and 2.0 cm (West Antarctica), and for the individual glacier regions 
they range from 0.0020 cm to 0.87 cm (Antarctic periphery, region 19). 
Mean absolute standardized errors are all less than 0.006.

The emulator underestimates the three to four highest West and East 
Antarctic contributions by around 10–15 cm (Extended Data Fig. 1b, 
c). The five highest of these are from the SICOPOLIS model, which has 
a much greater sensitivity to basal melting than other models (see 
main text, Methods subsection ‘Robustness checks’ and Extended 
Data Fig. 6), and use the highest value of this parameter (γ = PIG95). 
These simulations are therefore extreme: 1% of the 344 simulations, 
and the 97.5th percentile value of the basal melt parameter. There are 
process-based reasons to expect that SICOPOLIS is an upper bound or 
overestimate (see main text). When the emulator is calibrated with this 
model alone, it does not underestimate its highest contributions (not 
shown). The resulting projections under the NDC scenario are shown in 
Methods subsection ‘Robustness checks’ (test 4); the difference with the 
main projections may be interpreted as the maximum possible impact 
of this emulator underestimate, if SICOPOLIS were the sole realistic ice 
sheet model. These are lower than the ‘risk-averse’ projections, which 
are made with a subset of high sensitivity ice sheet models and other 
pessimistic assumptions (see main text).

We therefore consider the emulators to be adequate for the predic-
tions of large-scale sea level contribution presented here.

Antarctic cross-check model. We perform a cross-check for the Ant-
arctic ice sheet regions at 2100 using a linear mixed model, with the 
ice sheet model name included as a random effect to deal with any 
systematic uncertainty arising from dependence of ensemble mem-
bers. This attributes some of the uncertainty in the response to the 
ice sheet model used, and this uncertainty can then be removed from 
the predicted probability density function (PDF). We thus model the 
ensemble members as ‘similar but not identical’, using a mean func-
tion of temperature and ice sheet parameters, plus a structured error 
term that includes a systematic component according to the ice sheet 
model and a noise component to capture other sources of variability 
such as initialization.

For the mean function (also linear), we use the logarithm of γ as a 
regressor, so it is always positive. Consequently we use the geometric 
mean as the missing value, rather than the arithmetic mean. We use a 
dummy variable to denote these models, as for Greenland in the Gauss-
ian process emulator. The full global mean temperature change trajec-
tories are used instead of only the total change at 2100. To increase the 
signal-to-noise ratio, the annual means are reduced to decadal means 
(2015–2029, 2030–2039, …, 2090–2100). There are 13 distinct forcings, 
each one the product of a global climate model and a scenario, so we 
represent the forcing variables as 12 bisquare basis functions. These 
start as 13 bisquare basis functions, each one centred at one of the 
13 forcings, but one is dropped because otherwise the model matrix 
becomes rank deficient when a constant is added. The one dropped is 
the one with the smallest mean Euclidean distance to the other 12. We 
use bisquare kernels, where the standard deviation of each kernel is set 
to one-tenth of the maximum Euclidean distance between all pairs of 
forcings, to cover the forcing space with non-zero values for the forcing 
regressors. We use the same distributions for temperature, basal melt 
and collapse as the main projections, and set the dummy variable to 
represent standard parameterization models.

This emulator predicts 50 [5, 95]th percentiles for the West Antarc-
tic sea level contribution at 2100 of 2 [−4, 8] cm SLE for SSP1-26 and 
3 [−4, 10] cm SLE for SSP5-85, which are very similar to the Gaussian pro-
cess emulator predictions of 2 [−5, 10] cm SLE and 3 [−4, 11] cm SLE. We 
test the effect of changing the kernel standard deviation to one-twelfth 
or one-fourteenth of the maximum Euclidean distance; the largest 
change is a 2-cm decrease in the 95th percentile under SSP5-85. For 
East Antarctica, the emulator with random effects predicts 2 [−3, 6] cm 
SLE for both scenarios; the Gaussian process emulator predicts a small 
scenario dependence, 2 [−4, 7] cm SLE for the low emissions scenario 
and 0 [−5, 6] cm SLE for the high. For the Antarctic Peninsula, the ran-
dom effects predictions are 0 [−1, 2] cm SLE for both scenarios, and the 
Gaussian process predictions are the same. These similarities give us 
confidence that model dependence is not substantially affecting our 
projections—that is, that differences in model structure, resolution, 
calibration and initialization dominate over the similarities—although 
it would be worth investigating this in more detail.

Sea level projections
We use probability distributions for global temperature and the ice 
sheet model parameters as inputs to each emulator to make the pro-
jections.

Global mean temperature projections. We use projections of global 
annual mean surface air temperature change since 2015 from the FaIR 
(Finite amplitude Impulse Response) simple climate model for the main 
projections. We take the 500-member ensemble from ref. 12: SSP1-19, 
SSP1-26, SSP3-70, SSP5-85 and a scenario estimated for the 2019 NDCs. 
We also use projections for SSP2-45 generated with the same ensemble.

Ice sheet model parameter distributions. For Greenland, we sample 
from a kernel density estimate of the original κ distribution (N = 191) 
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with the same bandwith used in deriving the parameterization16,17 
(0.0703652) (Fig. 1b). The dummy variable is always set to represent 
the standard ISMIP6 parameterization.

For Antarctica, we combine the mean Antarctic and Pine Island Gla-
cier γ distributions (N = 10,000 each), and sample from a kernel density 
estimate using three times the automatic bandwidth (Silverman’s ‘rule 
of thumb’)63 to merge and smooth them into a near-unimodal distri-
bution that we truncate at zero (Fig. 1c). For the collapse switch C, we 
sample randomly from 0 or 1 with equal probability (8% of the ISMIP6 
simulations have ice shelf collapse). The ice shelf collapse scenario does 
not include the possibility of surface meltwater draining efficiently 
from some ice shelves under certain conditions, thereby avoiding col-
lapse, so we feel this is a reasonable judgement.

Sampling. For the 2100 projections, we sample from the FaIR ensemble 
(N = 500) with replacement (N = 5,000 for main and risk-averse projec-
tions; N = 1,000 for robustness and sensitivity tests). For the full time 
series, we use the 500 FaIR projections directly without resampling. We 
make one set of emulator predictions (23 regions) for each tempera-
ture value in a given year, randomly sampling the relevant ice–ocean 
parameters (k, γ, C) once for each FaIR ensemble member.

We integrate over the uncertain inputs (temperature in a given year, 
and ice–ocean parameters) to obtain the final probability density func-
tions (PDFs). Each regional emulator predicts a Student’s t test dis-
tribution for a given set of these input values, defined by a mean and 
standard deviation; we approximate this with a normal distribution, as 
in refs. 54,56, which is accurate enough for this application. We use differ-
ent integration methods for the 23 individual regional PDFs compared 
with the regional sums (Antarctica, global glaciers, and land ice total). 
For the individual regional estimates, we use deterministic numerical 
integration (the midpoint rule: we sum the Gaussian distributions for 
each emulator prediction, then normalize). For regional sums we must 
use Monte Carlo sampling, because the three ice sources (Greenland, 
Antarctica and glaciers) have different parameters, and we also desire 
traceability of predictions to input values within a given ice source. 
We sample once from the Gaussian distribution for each emulator 
prediction, then sum the regional samples for a given temperature 
to estimate the PDF, smoothing with kernel density estimation for 
figures (again using Silverman’s ‘rule of thumb’63 for the bandwidth). 
Sampling is a more noisy method of integration than deterministic 
methods, so the PDFs for regional sums are less smooth than those 
for individual regions.

Glacier maximum cap. We apply a cap to the glacier projections using 
estimates of their maximum sea level contribution44. Glacier model 
projections often exceed this cap in some regions, if near or total loss 
is projected under high emissions, either because they report changes 
in total mass, not mass above flotation, or because of errors in initial 
mass5, or both. We restrict values to the maximum in the emulator mean 
predictions and then the PDFs (the latter exceeding the cap owing to 
emulator uncertainty).

Time-series smoothing. Interannual variability arises in the time series 
owing to sampling the emulator uncertainty for each annual regional 
prediction. We apply a five-year running mean in Fig. 3d to visualize 
the expected smoothness of sea level contributions.

Comparison with IPCC assessments
The ice sheet projections are made relative to control simulations with 
a constant recent climate. This control includes both the model drift 
and, depending on the initialization method, any background contribu-
tion arising from forcing before 2015. This background contribution 
should be added to the ice sheet projections, but is difficult to quan-
tify. Five-year mean rates of sea level contribution since 1992/3 range 
from 0.1–0.8 mm yr−1 for the Greenland ice sheet64 and 0.1–0.6 mm yr−1 

for Antarctica65, but they would decrease in the absence of forcing 
after 2014. Modelling work to quantify the background contribution 
from Greenland66 suggests a contribution of 0.6 ± 0.2 cm SLE by 2100. 
Estimates made for this study range from 0.3–0.8 cm under a range 
of retreat parameter values, κ75–κ25 (IMAU/IMAUICE1: 0.3–0.4 cm; 
CISM variant similar to NCAR/CISM: 0.4–0.8 cm). For Antarctica, the 
dynamic commitment has been estimated to be 2 cm SLE at 2100 for 
the Amundsen Sea Embayment region of West Antarctica, where most 
mass loss is currently occurring67. Part of these trends may still be due 
to residual model drift. The committed contribution could therefore 
add up to ~1 cm per century to our Greenland projections and ~2 cm per 
century to the Antarctic.

The Antarctic ice sheet models include some of the larger islands that 
are also included in region 19, potentially leading to double-counting. 
However, median projections for region 19 range from 1–2 cm under 
different emissions scenarios, and the ice sheet models are much lower 
resolution (that is, the glaciers are probably less responsive), so the 
effect is expected to be of order 0.5–1 cm SLE or less.

We average our projections over the 86 years and compare them 
with the average IPCC AR526 and SROCC1 projections over 95 years 
(the midpoints of 1986–2005 to 2081–2100) as rates of cm SLE per 
century. For the glaciers, we project 8 cm per century SLE for SSP1-26 
and 16 cm per century for SSP5-85 excluding the Antarctic peripheral 
glaciers (region 19: 1 cm and 2 cm, respectively), compared with 10 cm 
for RCP2.6 and 17 cm for RCP8.5 in AR5. For the Greenland ice sheet, 
we project 4 cm per century SLE for SSP1-26 and 11 cm for SSP5-85, 
compared with 6 cm for RCP2.6 and 13 cm for RCP8.5 in AR5. For Ant-
arctica, we project 5 cm per century SLE for both scenarios; the AR5 
projections are 5 cm per century SLE for RCP2.6 and 4 cm for RCP8.5, 
whereas those for SROCC are 4 cm per century SLE for RCP2.6 and 
11 cm for RCP8.5. The difference between scenarios for Antarctica in 
AR5 arises only from additional accumulation, because the dynamic 
contributions are assumed to be the same.

Glacier projections could be overestimated because meltwater 
routeing to the ocean is not accounted for (not all volume lost from 
the glaciers reaches the oceans), or underestimated because only one 
glacier model includes ice–water interactions (that is, frontal ablation 
of marine- and lake-terminating glaciers). For the latter, we compare 
mean projections for the GloGEM model to the emulator for RCP8.5/
SSP5-85 and RCP4.5/SSP2-45 for key regions, and find they are larger by 
less than 1 cm for Alaska and Russian Arctic (regions 1 and 9), by less than 
0.5 cm for Svalbard (7) and Arctic Canada South (4), and smaller than 
the emulator for Arctic Canada North (3). All are within the emulator 
95th-percentile estimates. We may slightly underestimate uncertainty 
in the global glacier total owing to correlated errors across models5 by 
emulating the regions independently, though there are compensating 
advantages (more accurate emulation, spatial pattern of meltwater); 
a similar argument applies to Antarctica.

Sensitivity tests
We perform a number of checks to test the sensitivity of the ice sheet 
projections to changes in the chosen inputs: predominantly the input 
distributions, but also the dataset in the final test (see Extended Data 
Table 3 and refs. 12,26,27,33,38). All results are shown for the SSP5-85 sce-
nario in Extended Data Fig. 4 under the index given (where 1 is the main 
projection); numerical values in the text refer to changes in the median 
and [5, 95]th percentile estimates for the ice sheet under this scenario 
unless otherwise stated.

Robustness checks
We perform a number of checks to test robustness of the ice sheet 
projections to changes in the simulation dataset (see Extended Data 
Table 4 and refs. 6,8,25,65). Results are shown for the NDCs scenario in 
Extended Data Fig. 5 under the test index given (where 1 is the main 
projection); numerical values in the text refer to changes in the median 



and [5, 95]th percentile estimates under this scenario unless otherwise 
stated. The full datasets are 256 simulations for Greenland and 344 
simulations for Antarctica.

Parameter interactions
Retreat and basal melt versus temperature. Ice sheet projection 
uncertainties are constant across scenarios. However, tests with three 
ice sheet models show that the range of projections from high to low 
values of the retreat parameter (κ95–κ5) and basal melt parameter (PIG95–
MeanAnt50) is consistently smaller under RCP2.6 than under RCP8.5, 
so the emulator uncertainty should be smaller at lower temperatures. 
The ratios of ranges, RCP2.6/RCP8.5, for each group/model + GCM are 
as follows.

Greenland. IMAU/IMAUICE + MIROC5 = 1.4097/8.3069 = 0.17; IMAU/
IMAUICE + CNRM-CM6-1 = 2.4813/9.7187 = 0.26.

West Antarctica. JPL1/ISSM + NorESM1-M = 0.40; CPOM/BISICLES + 
NorESM1-M = 0.57.

East Antarctica. JPL1/ISSM + NorESM1-M = 0.73; CPOM/BISICLES + 
NorESM1-M = 0.32.

The emulator does not have sufficient data from lower emissions 
scenarios to reduce the variance, particularly for Greenland. If other 
ice sheet models respond the same way as the above, then adding more 
simulations may reduce the uncertainty for low SSPs.

Ice shelf collapse versus basal melt. The contribution due to ice 
shelf collapse does not increase with higher values of the basal melt 
parameter in the models JPL1/ISSM and CPOM/BISICLES (0.1 cm dif-
ference for the Peninsula in BISICLES; all other regional differences 
for both models ≤0.02 cm).

Data availability
All global climate, simple climate, ice sheet and glacier model data 
used as inputs to this study are provided with the code as described 
above. Main and risk-averse projections at 2100 from the analy-
sis are provided in Supplementary Information for each of the  
23 regions, and the Antarctic, glacier and land ice sums.

Code availability
R code and input data are available at https://github.com/tamsined-
wards/emulandice. Each simulation in the sea level projections file 
has a label in the ‘publication’ column for the reference (Goelzer20206, 
Seroussi20207, Payne20218 or Marzeion20205), or ‘New’ if previously 
unpublished.
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Extended Data Fig. 1 | Emulator leave-one-out validation for ice sheets and 
eight glacier regions. a–l, Left: emulator predictions versus simulations for 
each regional sea level contribution in the year 2100, with percentage of 
predictions falling outside ±2 emulator standard deviations and mean absolute 

error in cm SLE. Right: standardized residuals (emulated minus simulated, 
divided by emulator standard deviation). Predictions falling outside ±2 
emulator standard deviations are shown in orange.
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Extended Data Fig. 2 | Emulator leave-one-out validation for 11 glacier regions. As for Extended Data Fig. 1, but for the remaining glacier emulators.



Extended Data Fig. 3 | Temperature projections for 2015–2100 from FaIR 
and CMIP6 ensembles. a, b, Global surface air temperature projections under 
different greenhouse gas scenarios (see text) from the FaIR simple climate 

model ensemble (a; N = 5,000; same as Fig. 3a), and CMIP6 global climate model 
ensemble (b; N ≈ 30 models per scenario; see Methods) sampled with a kernel 
density estimate (N = 1,000).
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Extended Data Fig. 4 | Sensitivity of ice sheet projections at 2100 under 
SSP5-85 to uncertain inputs. a, Greenland. b, West Antarctica. c, East 
Antarctica. d, Antarctic Peninsula. Box and whiskers show [5, 25, 50, 75, 95]th 
percentiles. Indices refer to test (see Extended Data Table 3). Sensitivity test 1, 
default; 2, CMIP6 global climate model ensemble projections of global mean 
surface air temperature, instead of FaIR simple climate model; 3, fixed global 
mean surface air temperature; 4, fixed glacier retreat (Greenland) or basal melt 

(Antarctica) parameter. Antarctic regions only: basal melt parameter has 
sensitivity test 5: ‘mean Antarctic’ distribution; 6, ‘Pine Island Glacier’ 
distribution; 7, uniform, high distribution; 8, uniform, very high distribution. 
Ice shelf collapse scenario: sensitivity test 9, off; 10, on. 11, Risk-averse 
projections using the high ‘Pine Island Glacier’ distribution for basal melt 
(test 6), ice shelf collapse on (test 10), and the ice sheet and climate models that 
give the highest sea level contributions (Extended Data Fig. 5; test 6, 7).



Extended Data Fig. 5 | Robustness of ice sheet projections under NDCs to 
ice sheet/climate model simulation selection and treatment. a, Greenland. 
b, West Antarctica. c, East Antarctica. d, Antarctic Peninsula. Box and whiskers 
show [5, 25, 50, 75, 95]th percentiles. Indices refer to test (see Extended Data 
Table 4). Robustness test 1, default; 2, higher-resolution ice sheet models; 3, ice 
sheet models with the most complete sampling of uncertainties (10 models for 
Greenland, four for Antarctica); 4, single ice sheet model with the most 
complete sampling of uncertainties and (coincidentally) high sensitivity to 

retreat or basal melting parameter. Antarctic regions only: robustness test 5, 
alternative single ice sheet model with nearly as complete sampling but low 
sensitivity to basal melt parameter; 6, ice sheet models with the highest 
sensitivity to basal melt parameter; 7, climate models that lead to highest sea 
level contributions. 8, ice sheet models with 2015–2020 mass change in the 
range 0–0.6 cm SLE; 9, only ice sheet models that use the standard ISMIP melt 
parameterizations; 10, higher basal melt value assigned to ice sheet models 
that do not use the standard ISMIP6 melt parameterizations.
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Extended Data Fig. 6 | Sensitivity to basal melting by Antarctic ice sheet 
and climate model. Vertical lines show ice sheet models that do not use the 
ISMIP6 basal melt parameterization, and the basal melt value they are assigned. 

Ice sheet models include the high and low sensitivity models in Extended Data 
Fig. 5: test 4 (ILTS_PIK/SICOPOLIS) and test 5 (LSCE/GRISLI).



Extended Data Fig. 7 | Effect of Antarctic ice shelf collapse by climate model. Additional sea level contribution at 2100 when using ice shelf collapse for six 
climate models, ordered by maximum impact on the Peninsula contribution. a, West Antarctica, b, East Antarctica and c, Antarctic Peninsula.
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Extended Data Table 1 | The additional 22 Greenland and 37 Antarctic ice sheet model experiments not previously described 
elsewhere

Retreat parameter values κ5 and κ95 are the 5th and 95th percentile values of the retreat (κ) distribution; basal melt parameter values MeanAnt[5,50,95] and PIG[5,50,95] are the 5th, 50th and 95th 
percentile values of the mean Antarctic and Pine Island Glacier basal melt (γ) distributions (see Methods).



Extended Data Table 2 | Emulator structure and validation

Emulator covariance functions, and the results of the leave-one-out procedure for each: the percentage of simulations that fall within the emulator 95% uncertainty intervals, and the mean 
absolute error.
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Extended Data Table 3 | Sensitivity tests

Tests of the sensitivity of the ice sheet projections to changes in the chosen inputs. The test index, name, description and impact are detailed. Numerical values refer to changes in the median 
and [5th, 95th] percentile estimates for the ice sheet under SSP5-85, unless otherwise stated; results for this scenario are shown in Extended Data Fig. 4. Refs. 12,26,27,33,38. See also Supplementary 
Information.



Extended Data Table 4 | Robustness checks

Checks performed to test the robustness of the ice sheet projections to changes in the simulation dataset. The test index, name, description and impact are detailed. Numerical values refer  
to changes in the median and [5, 95]th percentile estimates for the ice sheet under the NDCs scenario, unless otherwise stated; results for this scenario are shown in Extended Data Fig. 5.  
Refs. 6,8,25,65. See also Supplementary Information.
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