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1.  INTRODUCTION 

Environmental changes are putting an increasing 
pressure on the Arctic ecosystem and its endemic 
fauna (Chan et al. 2019). Changes in habitat charac-
teristics such as increased seawater temperature and 
reduced sea ice coverage influence the distribution 
of marine organisms (Poloczanska et al. 2013). Con-
sequently, the Arctic is predicted to have the largest 
species turnover, with numerous local extinctions 
and invasions (Cheung et al. 2009). In the Barents 

Sea, clear evidence of northward range expansions 
of marine species and associated ecosystem changes 
(called borealisation or Atlantification) is accumulat-
ing (Fossheim et al. 2015, Kortsch et al. 2015). The 
zooplankton community is shifting towards boreal 
taxa with a decrease in lipid-rich Arctic Calanus 
glacialis and an increase in smaller Atlantic C. fin-
marchicus (Aarflot et al. 2018, Dalpadado et al. 2020). 
Large predatory boreal fish species such as Atlantic 
cod Gadus morhua and haddock Melanogrammus 
aeglefinus are expanding their distribution ranges 
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advection of boreal taxa into the polar region or may be indicative of ongoing borealisation in the 
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marine food webs.  
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northward, leading to a changing food web that 
increasingly resembles that of sub-Arctic ecosystems 
(Renaud et al. 2012, Fossheim et al. 2015, Frainer et 
al. 2017). The changes in prey composition and 
abundance and the increased competition with and 
predation by boreal species are expected to disrupt 
the trophic interactions among organisms in the 
 Arctic marine ecosystem (Pecuchet et al. 2020). 
Improving our understanding of the Arctic marine 
food web and its response to potential changes in 
environmental conditions is necessary to foster eco-
system-based management of Arctic marine regions, 
for which detailed baseline information as well as 
spatio- temporal monitoring are key elements. 

The polar cod Boreogadus saida (Lepechin, 1744; 
Gadidae), an abundant marine fish in both open and 
ice-covered waters of the Arctic Ocean (Benoit et al. 
2008, David et al. 2016), plays a key role in the Arctic 
marine ecosystem. As a primary forage species, it 
channels nearly 75% of zooplankton production and 
sea ice algae-derived carbon to marine mammals 
and seabirds (Welch et al. 1992, Hop & Gjøsæter 
2013, Kohlbach et al. 2017). Good knowledge of the 
polar cod diet is necessary to assess its ecological 
function and might be used to monitor changes in 
prey availability. Furthermore, the diet of key species 
might provide valuable information for investigating 
ecological aspects such as behaviour, energy intake 
and habitat use (Chipps & Garvey 2007, Braga et al. 
2012). Polar cod is a largely opportunistic pelagic 
feeder (Ajiad & Gjøsæter 1990, Christiansen et al. 
2012). Prey composition of similar-sized individuals 
varies among regions and along depth gradients, 
indicating regional differences in prey availability 
(Gray et al. 2016, Majewski et al. 2016). Because 
larger fish are capable of eating larger prey, the diet 
of polar cod becomes more complex with increasing 
body size (Gray et al. 2016). Besides variability 
depending on region, depth stratum and body size, 
polar cod diet varies interannually (Craig et al. 1982, 
Gray et al. 2016). Generally, previous findings sug-
gest that the main food items of polar cod include 3 
groups of crustaceans: amphipods, copepods and 
krill (Lønne & Gulliksen 1989, Ajiad & Gjøsæter 
1990, Orlova et al. 2009, Kohlbach et al. 2017). It is 
unknown how recent changes in the Arctic zoo-
plankton communities (Møller & Nielsen 2020) are 
affecting the polar cod diet. 

Traditionally, the most commonly used method for 
fish diet analysis is visual identification of the stom-
ach contents. Advantages of this approach are the 
quantification of prey items, the ability to determine 
the age of (some) prey items and the low cost of sci-

entific equipment, whereas drawbacks are the 
requirement of expert taxonomic knowledge and 
high labour intensity (Graham et al. 2014, Jaku -
bavičiūtė et al. 2017). In addition, digested prey 
items are often not accurately identified (Hyslop 
1980). Without consideration of the digestion level, 
the stomach contents may not accurately reflect spe-
cies composition, abundance and size of the prey 
consumed (Scholz et al. 1991, Buckland et al. 2017). 
Moreover, species-specific digestion rates may influ-
ence the perceived prey composition in the stomach 
(Sutela & Huusko 2000), and classifying remains as 
unidentifiable is highly subjective (Baker et al. 2014). 
Unidentifiable prey items have been reported in 
most polar cod diet studies (Ajiad & Gjøsæter 1990, 
Renaud et al. 2012, Cusa et al. 2019), up to nearly 
22% of the total dry weight of polar cod stomach con-
tents (Lønne & Gulliksen 1989). A promising method 
to overcome some of the limitations of visual prey 
identification is molecular identification, such as 
DNA metabarcoding. This method uses short genetic 
fragments and high-throughput sequencing for high-
resolution taxonomic identification of prey items, 
including digested ones (Taberlet et al. 2012, Clarke 
et al. 2017). Disadvantages of metabarcoding in diet 
studies are its semi-quantitative nature where the 
number of ingested animals and biomass per stom-
ach are unknown, the lack of knowledge about size 
or developmental stage of the prey, the potential to 
detect secondary prey and a limitation in taxonomic 
scope to known reference sequences (Amundsen & 
Sánchez-Hernández 2019). However, the frequency 
of occurrence (FOO) of prey items per sampling sta-
tion or area can be calculated based on the presence/
absence of prey taxa in metabarcoding data and thus 
provides a good measure to compare with results 
from visual analysis (Jakubavičiūtė et al. 2017, 
Bachiller et al. 2020). In addition, the total number of 
prey taxa and the taxonomic resolution of both meth-
ods are comparable with each other as well as with 
 literature data. Such a comparative framework is ex -
pected to largely compensate for the inherent biases 
of both methods and hence provide a more accurate 
and comprehensive picture of the diet. 

Here, we present an analysis of the summer diet of 
polar cod in the northern Barents Sea off the Sval-
bard Archipelago using visual stomach analysis and 
subsequent metabarcoding with stomach contents 
from the same specimen. We hypothesise that mor-
phological and molecular diet analyses will reveal 
similar prey spectra in terms of richness and diver-
sity, but we expect a higher taxonomic resolution (i.e. 
more species-level prey assignments) when using 
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metabarcoding particularly due to the identification 
of digested soft-bodied animals. We compare the 
results from both methods with an extensive litera-
ture review of the polar cod diet in the Barents Sea. 
Lastly, we provide guidelines on how to optimally 
integrate visual and molecular diet analysis. 

2.  MATERIALS AND METHODS 

2.1.  Sampling 

Polar cod were collected in July 2017 during ex -
pedition PS106/2 of the icebreaker RV ‘Polar stern’ 

in the shallow waters of the Barents Sea using a 
bottom trawl (Table 1) (Macke & Flores 2018). For 
this study, 65 fish were collected from the catch at 
5 stations (Fig. 1) and preserved frozen at −20°C. 
Per station, a proportion of the total number of fish 
were used solely for DNA metabarcoding (n = 23), 
while 42 fish were used for visual prey item analy-
sis, after which the stomach contents were pre-
served in 96% ethanol for subsequent molecular 
analysis (n = 34). We used this setup to test 
whether prior visual analysis has a detrimental 
effect on metabarcoding results. Samples were pro-
cessed in a separate room to prevent within-labora-
tory contamination. 
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Fig. 1. Study region 
with sampling station 
codes where polar cod 
Boreogadus saida was 
collected in the north-
ern Barents Sea off the  
Svalbard Archipelago

Stn            Date          Time           Lat           Lon             Bottom          Mean TL (cm)              n            n              n           n  
                                     (h)            (DD)         (DD)          depth (m)          (min.−max.)                            (V)           (M)        (C) 
 
89-1        July 16        07:09         78.50        25.11              165         12.26 (8.60−14.60)           26          19         34 (20)      11 
90-1        July 16        09:57         78.69        24.49              132         17.01 (15.40−18.20)        10            5           7 (5)          1 
91-1        July 16        13:37         78.70        23.28              121         13.45 (10.50−15.90)        10            6         10 (9)          5 
92-1        July 17        06:24         78.69        24.50              132         15.25 (13.40−19.90)        10            6         10 (9)          5 
93-1        July 17        08:43         78.50        25.11              165         12.82 (10.50−14.10)          9            6         12 (7)          5

Table 1. Sampling details of polar cod Boreogadus saida collected during expedition PS106/2 in 2017. The total number (n) of 
fish used for the visual (V) and molecular (M) method (including biological replicates and duplicates) and the subset of stom-
achs where both methods were used on the same specimen (comparison, C) are given per station. The number between 
brackets in the molecular method represents the actual number of samples used in the final dataset after quality filtering.  

Lat: latitude; Lon: longitude; DD: decimal degrees; TL: total length



Mar Ecol Prog Ser 698: 139–154, 2022

2.2.  Visual identification 

Stomachs were extracted from 42 thawed fish. The 
stomachs were cut open, and the contents were 
rinsed into a Bogorov counting chamber using 70% 
ethanol to delay DNA degradation. Digestion rate 
was estimated on a scale from 1 (hardly digested) to 
4 (heavily digested) (Kock 1980). Recognizable food 
items in the stomach contents were identified to the 
lowest taxonomic level possible and enumerated 
using a Discovery V8 stereomicroscope (Zeiss). The 
biomass of prey items was reconstructed based on 
length−dry mass regression models to obtain an 
additional measure of the contribution of prey items 
to the diet (e.g. to avoid overemphasis of the impor-
tance of large numbers of small prey items) (Hyslop 
1980). Because of the inability to identify prey items 
to species level and/or to directly measure prey items 
due to digestion, or the lack of available regression 
models for certain species or body parts, it was not 
always possible to obtain the most precise estimate of 
reconstructed biomass from the stomach contents 
directly. In this case, length measurement of prey spe-
cies from the environment and/or regression models 
for the species or closest relative that were found in 
the literature were used to make sure that biomass 
estimates resemble the actual biomass as closely as 
possible and at least captured the relative differ-
ences in the contributions of different-sized prey. 

Whenever possible, the size of the prey items or 
body parts was measured using an AxioCam HRc 
with AxioVision40 v.4.8.2.0 software (Zeiss). Krill 
were enumerated by counting the number of eyes 
and dividing the final count by 2. Complete bodies 
were added to this number. The reconstructed bio-
mass (dry mass) was estimated by multiplying the 
number of individuals counted in a stomach by a dry 
mass estimate. The average dry mass of copepods 
was estimated using the regression model for Ca la -
nus glacialis from Ashjian et al. (2003), based on the 
average measured prosome length of specimens in 
the stomach contents, which was 3.0 mm (n = 24). 
The reconstructed biomass for amphipods was esti-
mated by multiplying the number of gammarid 
amphipods with a dry weight estimate and adding 
the number of hyperiid amphipods multiplied with a 
dry weight estimate. In 1 stomach, we were able to 
determine the length of the only gammarid amphi-
pod in the stomach by direct measurement. The 
 average dry mass of gammarid amphipods (0.42 mg) 
was based on a regression model with length and 
dry mass measurements performed on individuals of 
Apherusa glacialis caught during the same expedi-

tion (PS106/2). The average dry mass of hyperiid 
amphipods and krill was based on average dry 
weight measurements of Themisto libellula and Thy -
sanoessa inermis measured on individuals caught 
during expedition PS106/2 (n = 21 and n = 15, respec-
tively; Schaafsma et al. 2022). The only reference to 
decapod size in polar cod stomachs was given in 
Ajiad & Gjøsæter (1990), with individuals ranging 
from 25 to 60 mm. The median value of 47.5 mm was 
used to calculate the dry weight based on a length−
weight regression from Robinson et al. (2010) and a 
dry weight of 25% wet weight (Ricciardi & Bourget 
1998). The index of relative importance (IRI) per prey 
item was calculated as: 

                        IRIi = (Ai + Bi) × Fi 

where A is the abundance of prey item i in percent-
ages, B is the biomass of prey item i in percentages 
and F is the FOO of prey item i in percentages, calcu-
lated as the number of fish stomachs in which the 
prey item was present divided by the total number of 
fish stomachs with food analysed, times 100 (Pinkas 
et al. 1971). 

2.3.  DNA metabarcoding 

DNA was extracted from 34 stomach contents after 
visual inspection and 23 additional intact stomachs 
using the NucleoSpin® Tissue kit following the stan-
dard protocol for human or animal tissue and cul-
tured cell purification according to the manufac-
turer’s instructions (Macherey-Nagel). Small-volume 
stomach contents were used entirely for DNA ex -
traction. Larger-volume stomachs were first homo -
genised using a mortar and pestle, and a subsample 
was taken before the DNA extraction. In 18 large-
volume stomachs, additional DNA extractions were 
performed on replicate subsamples (from 16 stom-
achs) and triplicate subsamples (from 2 stomachs) to 
assess the effect of subsampling. The PCR mix for 
cytochrome c oxidase subunit I (COI) amplification 
contained 1 μl template DNA, 12.5 μl MyTaq® HS 2× 
Mix (Bioline), 10.5 μl nuclease-free H2O (Sigma-
Aldrich) and 1 μl primer mix (20 μM of each primer) 
using the following primers: mlCOIintF (5’-GGW 
ACW GGW TGA ACW GTW TAY CCY CC-3’) and 
jgHCO2198 (5’-TAI ACY TCI GGR TGI CCR AAR 
AAY CA-3’) (Leray et al. 2013). Touchdown PCR con-
ditions consisted of 10 s initial denaturation at 95°C, 
30 s of annealing at 62°C and 60 s elongation at 72°C 
for 16 cycles, with annealing temperature dropping 
every cycle by 1°C, followed by 25 cycles with 
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annealing temperature at 46°C. Two negative con-
trols were included in all PCR runs to detect cross-
contamination. PCR amplicons were cleaned using 
CleanPCR beads (CleanNA, GC Biotech) following 
the manufacturer’s instructions with a bead:template 
ratio of 0.8:1. The PCR mix for the indexing PCR con-
tained 9 μl template DNA, 10 μl MyTaq® HS 2× Mix 
and 0.5 μl forward and 0.5 μl reverse indexing 
primer. PCR conditions consisted of an initial denatu-
ration of 1 min at 95°C; followed by 15 cycles of 
denaturation for 15 s at 95°C, 15 s of annealing at 
51°C and 10 s of extension at 72°C; finishing with a 
final extension of 5 min at 72°C. The PCR amplicons 
were cleaned using the CleanPCR beads and then 
quantified using the Quant-iT Picogreen® kit (Thermo 
Fisher). PCR products with at least 20 ng DNA were 
pooled and paired-end sequenced with a MiSeq 3v 
600-cycle kit on a MiSeq Sequencing System 
 (Illumina) at the Genomics Core of the KU Leuven 
(Belgium). 

2.4.  Filtering and taxonomy assignment 

Raw reads were demultiplexed using the bcl2fastq 
v.2.16 tool integrated in the Illumina platform. The 
data were processed in R v.3.5.3 (R Core Team 2019) 
using R package DADA2 v.1.16 (Callahan et al. 
2016), which creates amplicon sequence variants 
(ASVs), a higher-resolution alternative to operational 
taxonomic units (OTUs). ASVs resolve differences in 
sequence variants up to 1 single nucleotide. Raw for-
ward and reverse reads were filtered and trimmed 
with the filterAndTrim function using the following 
parameters: maxEE = 1 (maximum number of ex -
pected errors allowed in a read), maxN = 0 (removes 
reads with ambiguous nucleotides), trimLeft = 30 
(removes first 30 bp of each read) and truncLen = 
290250. Filtered and trimmed reads were merged 
using the mergePairs function. Chimeric sequences 
were removed with the removeBimera Denovo func-
tion. The following criteria were used for taxonomic 
assignment in the Barcode of Life Data System 
(BOLD; Ratnasingham & Hebert 2007) v.4: (1) a taxon 
was assigned if the barcode matched a single locally 
occurring taxon in the databases with ≥97% se -
quence similarity level; and (2) if the barcode 
matched more than 1 taxon with ≥97% sequence 
similarity level, a taxon was assigned at the genus 
level. We excluded species that were identified as 
highly likely within-laboratory contaminations (i.e. 
study species from the home laboratory with South-
ern Hemisphere and North Sea distribution). 

2.5.  Data analysis 

Taxa seen at least twice in at least 1% of the 
sequenced samples were retained. Samples with 
less than 20 reads in total were discarded from the 
final dataset following recommendations by Mc -
Murdie & Holmes (2013). Sequence reads were ana-
lysed based on FOO and relative read abundance 
(RRA). FOO was estimated as the percentage of 
stomachs in which a taxon was present. To simplify 
interpretation of the data, food items were classified 
into 10 taxonomic groups to compare both methods 
based on the presence of food items or taxa. To in -
vestigate whether metabarcoding results are af -
fected by prior microscopic visual analysis of the 
stomach contents or not, we performed the Wil -
coxon rank-sum test (Mann-Whitney) to test if the 
species richness (observed numbers of ASVs), Shan-
non-Wiener index and Simpson and Chao1 diversity 
indices (Spellerberg & Fedor 2003, Gotelli & Colwell 
2011) differed between samples used with or with-
out prior visual handling using the R package phy-
loseq (McMurdie & Holmes 2013). The Shannon-
Wiener index combines species richness and their 
relative abundances and helps to compare diversity 
between communities. The Simpson diversity index 
indicates species dominance by considering the 
number of species and their relative abundances. 
The Chao1 diversity index represents the number of 
observed ASVs and an estimate of the number of 
unobserved ASVs. To test whether there was an 
effect of DNA degradation during visual identifica-
tion on the DNA samples, we tested if the observed 
diversity indices were significantly different be -
tween samples with or without prior identification 
using the Wilcoxon rank-sum test and Bonferroni 
correction. 

3.  RESULTS 

3.1.  Diet composition using microscopic analysis 
of stomach contents 

A total of 16 taxa (1 class, 2 subclasses, 4 orders, 3 
families, 3 genera and 3 species) from 3 different 
phyla were identified based on morphological traits. 
The stomach contents were numerically dominated 
by euphausiids (krill) in 48% of the stomachs investi-
gated and occasionally by copepods (9.5%) and 
amphipods (4.8%). Reconstruction of the mass of the 
food items (excluding parasites) showed that krill 
also dominated the stomach contents in terms of 
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 biomass, except for at Stn 90-1 (Table 2). Two indi-
viduals at this station contained large decapod 
remains, which impacted the reconstructed weight 
distribution. Most krill parts were unidentifiable, but 
those that could be classified belonged to Thysa-
noessa inermis or T. longicaudata (1 stomach). Most 
amphipods were hyperiids (24% of the stomachs), 
which in 2 stomachs were identified to the genus 
Themisto and in 1 stomach to the species Themisto 

libellula. In 2 stomachs, amphipods were identified 
as gammarids, of which 1 belonged to the family 
Oedicerotidae. Most fish stomachs from Stn 91-1, 
and 1 fish stomach from Stn 90-1, contained rela-
tively high numbers of copepods, although their con-
tribution to the total biomass was relatively small. 
These copepods mainly consisted of Calanus spp. 
The importance of prey items in the diet of polar cod 
varied per station according to the IRI (Table 2). Two 
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(a)                                                                        
Stn               n                  TL                      TL range               Weight                    SCW            Mean degree       No. of RFI  
                            (mean ± SD; cm)     (min.−max.; cm)   (mean ± SD; g)     (mean ± SD; g)       of digestion      (mean ± SD) 
 
89-1             19         12.35 ± 1.68              8.60−14.60         13.42 ± 5.39           0.14 ± 0.18                3.81              0.79 ± 1.36 
90-1              5          16.70 ± 1.13            15.40−18.20         29.96 ± 4.32           1.92 ± 1.08                2.50            91.10 ± 173.4 
91-1              6          13.80 ± 2.15            10.50−15.90         18.39 ± 7.04           0.39 ± 0.32                2.83            11.67 ± 9.93    
92-1              6          15.73 ± 2.18            14.00−19.90                NA                   2.36 ± 1.36                2.83            13.33 ± 4.41    
93-1              6          12.87 ± 1.47            10.50−14.10         14.96 ± 4.89           0.18 ± 0.13                3.00              2.33 ± 1.21 
Total            42         13.27 ± 2.18              8.60−18.20         16.73 ± 7.91           0.64 ± 0.99                3.23            15.11 ± 61.43 
 
(b) 
Stn                                  Krill                         Amphipods                    Decapods               Copepods                 Parasites 
 
Mean no. of RFI (n ind.−1) 
89-1                           0.63 ± 1.12                    0.11 ± 0.32                            0                      0.05 ± 0.23               0.79 ± 1.23 
90-1                           9.60 ± 8.29                    0.60 ± 0.89                    0.90 ± 1.34            80.00 ± 178.89           1.60 ± 2.07 
91-1                           2.68 ± 2.80                    1.83 ± 3.13                            0                      7.17 ± 7.25               0.67 ± 0.82 
92-1                         10.00 ± 2.3                      3.33 ± 3.93                            0                              0                       0.50 ± 1.22 
93-1                           1.83 ± 1.33                    0.50 ± 0.55                            0                              0                       0.67 ± 1.63 
Total                         3.50 ± 4.92                    0.93 ± 2.13                    0.11 ± 0.51            10.57 ± 61.66             0.81 ± 1.33 
 
Mean estimated reconstructed biomass (mg ind.−1) 
89-1                         15.71 ± 27.76                  2.28 ± 6.84                            0                      0.02 ± 0.10                     NA 
90-1                       238.80 ± 206.32              13.01 ± 19.40              347.91 ± 518.63        34.04 ± 76.11                   NA 
91-1                         66.33 ± 69.77                36.22 ± 59.43                          0                      3.05 ± 3.08                     NA 
92-1                       248.75 ± 58.86                65.21 ± 68.91                          0                              0                             NA 
93-1                         45.60 ± 33.06                10.85 ± 11.88                          0                              0                             NA 
Total                       87.06 ± 122.26              18.62 ± 39.79               41.42 ± 198.10          4.49 ± 26.24                    NA 
 
%FOO 
89-1                               35.30                            11.80                                 0                            5.90                        52.90 
90-1                              100.00                            40.00                             40.00                       20.00                        60.00 
91-1                               66.70                            50.00                                 0                          83.30                        50.00 
92-1                              100.00                            83.30                                 0                              0                           16.70 
93-1                               83.30                            50.00                                 0                              0                           16.70 
Total                              65.00                            37.50                              5.00                        17.50                        45.00 
 
IRI 
89-1                            5901.27                           305.96                               0                            39.95                       NA 
90-1                            5483.25                           122.90                         2235.36                   1882.59                       NA 
91-1                            5711.39                         2500.65                               0                        5359.68                       NA 
92-1                         15 422.96                        3814.20                               0                              0                             NA 
93-1                         13 279.94                        2032.04                               0                              0                             NA 
Total                           5238.78                           691.12                           140.15                   1276.51                       NA 

Table 2. (a) Summary of stomach contents of polar cod Boreogadus saida based on visual identification per station. n: total 
number of individuals; TL: total length; SCW: stomach content weight; RFI: recognizable food items in the stomach. (b) Stom-
ach content information per station and for the total number of investigated fish stomachs. Data include details on morpholog-
ical measurements for krill, amphipods, decapods, copepods and parasites (limited to the mean no. of RFI); mean estimated 
reconstructed biomass; frequency of occurrence expressed as per cent (%FOO); and index of relative importance (IRI). For  

station codes, see Table 1. NA: not available
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stomachs from Stn 89-1 were empty. Differences in 
the number of recognizable food items were found 
between stations as well as in the degree of digestion 
and mean stomach content weight (Table 2; Fig. S1 
in the Supplement at www.int-res.com/articles/suppl/
m698p139_supp.pdf). Four individuals from Stn 89-1 
and 1 from Stn 93-1 contained pieces of what looked 
like fish skin tissue (Fig. S2). Trematode parasites 
occurred regularly in stomachs from all stations 
(Table 2). One nematode parasite was observed in a 
fish caught at Stn 93-1. 

3.2.  DNA metabarcoding of stomach contents 

Illumina MiSeq sequencing provided 2011892 
paired-end reads and 709 ASVs of the COI gene. Of 
those, 48868 and 375951 reads were discarded be -
cause of possible within-laboratory contamination 
and no database matches, respectively. Additionally, 
Boreogadus saida reads were excluded from the full 
dataset (1169492 reads), as this is likely host-specific 
DNA. Although cannibalism is possible (Bain & Sek-
erak 1978), we were not able to distinguish between 
polar cod DNA as prey or as host. Limanda sp. and 
Merlangius sp. ASVs were detected in 1 negative 
control and subsequently removed from the entire 
dataset (29394 reads). One sample was removed 
due to high levels of indisputable within-laboratory 
 contamination (>75% reads). Seven samples were 
removed due to the low number of total reads (<20 
reads). 

3.3.  Remarks on molecular taxonomic assignment 

Misidentified, mislabelled or otherwise erroneous 
sequences or specimen details are present in BOLD 
(Christiansen et al. 2018), which may prevent correct 
taxonomic identification even if the sequence is pres-
ent in the data. Here, we used tree-based classifica-
tion and common sense to improve taxonomic identi-
fication in cases where BOLD did not provide 
unambiguous identification likely due to doubtful 
database entries. T. inermis barcodes, even with a 
100% identity match, were not distinguishable from 
a single barcoded specimen (AB-2009) classified as 
Thysanoessa sp. in BOLD. We suggest reclassifying 
the unidentified Thysanoessa specimen as T. iner-
mis. Barcodes belonging to the genus Pleuronectes 
had 4 options for the species-level identification 
(Pleuronectes platessa, Pleuronectes sp. SH-2018, 
Pleuronectes sp. and Platichthys flesus). Tree-based 

classification assigned all barcodes to the species 
level of P. platessa. Individuals belonging to the 
genus Balanus could not be classified at the species 
level. Two Liparis species (L. liparis and L. bathy -
arcticus) were assigned to the species level after 
tree-based identification in BOLD. Two species were 
classified in BOLD by their formerly accepted names: 
the temperate amphipod Deflexilodes tenuirostratus 
(first classified as Monoculodes tenuirostratus) and 
the chaetognath Parasagitta elegans (first assigned 
as Sagitta elegans). 

3.4.  Molecular replication of subsamples 

One subsample represented the entire stomach 
contents in most samples. In larger-volume stom-
achs, biological replicates (15 sets of 2 subsamples) 
and triplicates (2 sets of 3 subsamples) were taken 
to test the representativeness of subsamples. The 
taxon composition between subsamples was com-
pared after applying 2 filtering criteria: filter taxa 
recorded twice in at least (1) 1% of the samples and 
(2) 5% of the samples. In both datasets, the taxon 
composition between subsamples was identical for 3 
of 17 replicate sets (Table S1). When retaining taxa 
seen twice in at least 1% of the samples, 5 of 14 sets 
had 1 or 2 missing taxa. When retaining taxa seen 
twice in at least 5% of the samples, 4 of 14 sets had 
1 or 2 missing taxa. Missing taxa often contained 
less than 20 reads. When discarding amplicon se -
quence variants with less than 20 reads, 6 sets had 
identical taxonomic composition, and an additional 
8 sets had 1 or 2 taxonomic mismatches for the 1 
and 5% datasets. Incomplete taxon composition 
between subsamples likely resulted from insuffi-
cient homogenisation of the stomach contents. Be -
cause most missing taxa were represented by a low 
number of reads and to avoid introducing bias in 
large-volume stomachs without biological repli-
cates, only the first replicate and second triplicate 
were arbitrarily kept for subsequent dietary analy-
ses. A total of 50 samples remained for subsequent 
analyses. 

3.5.  Diet composition using DNA metabarcoding 
of stomach contents 

After retaining taxa observed twice in at least 1% 
of the samples, the final dataset contained 38 species 
belonging to 7 phyla, 10 classes, 15 orders, 27 fami-
lies and 35 genera, identified by 216 unique ASVs of 
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the COI gene (Table S2). In the more stringent 
 dataset wherein taxa seen twice in at least 5% of the 
taxa were kept, 3 phyla, 5 classes, 8 orders, 13 fami-
lies, 16 genera and 17 species were found based on 
52 unique ASVs. In both datasets, the same 11 spe-
cies were detected with more than 1% relative abun-
dance (Apherusa glacialis, C. glacialis, C. hyper-
boreus, Eualus gaimardii, Gammarus wilkitzkii, L. 
fabricii, Onisimus litoralis, P. platessa, Sabinea sep -
temcarinata, Semibalanus balanoides, T. inermis). 
We continued our dietary analyses with the least 
stringent dataset (retaining taxa observed twice in at 
least 1% of the samples) and report all taxa (includ-
ing taxa with <1% RRA) in Table S2. 

Based on all ASVs, polar cod prey on a broad 
 species spectrum, of which amphipods (37.7% RRA) 
were the dominant food item, followed by krill 
(20.9%), fish (Perciformes, Pleuronectiformes and 
Scorpaeniformes; 13.6%) and decapods (9.4%; 
Table 3). In terms of FOO, all stations had high 
 numbers of amphipods and krill and relatively high 
values of copepods, decapods, fish and barnacles 
(Table 3). Six other taxonomic groups (chaetog-

naths, pteropods, polychaetes, isopods, sea cucum-
ber order Dendrochirotida and hydrozoans) were 
detected at some stations (Table 3). At the species 
level, the most common prey item in terms of RRA 
was the amphipod A. glacialis (27.2%), followed by 
the krill T. inermis (20.3%), the gelatinous snailfish 
L. fabricii (11.3%) and the decapod E. gaimardii 
(8.1%; Table S2). Besides A. glacialis, 12 other 
amphipod species were identified as prey, of which 
7 were not yet documented as polar cod prey in the 
Barents Sea literature (Table S2). Stns 89-1 and 90-1 
differed in observed ASV diversity (p = 0.045) and 
in Chao1 (p = 0.045), Shannon (p = 0.006) and Simp-
son (p = 0.018) diversity indices. No differences in 
these alpha diversity measures were present be -
tween the other stations (Fig. S3). A total of 16 spe-
cies and 1 genus were retrieved in 1 stomach, and 
14 of those were represented by less than 20 reads 
(Table S3). The total number of different consumed 
prey species was weakly positively correlated with 
the size of polar cod (R2 = 0.09, p = 0.04), indicating 
an increased diversity of the diet composition with 
size (Fig. S4) 
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(a)                                                                                                                                                                        
Stn                             n                     TL (mean ± SD; cm)          TL range (min.−max.; cm)        Weight (mean ± SD; g) 
 
89-1                          21                           12.36 ± 1.80                             9.00−14.60                              13.44 ± 5.44 
90-1                           5                            17.38 ± 0.34                            16.80−17.70                             34.70 ± 6.01 
91-1                           9                            13.78 ± 1.59                            11.60−15.90                             18.05 ± 5.53 
92-1                           8                            15.41 ± 2.13                            13.40−19.90                             24.30 ± 5.81 
93-1                           7                            12.79 ± 1.34                            10.50−14.10                             15.27 ± 4.45 
Total                         50                           13.69 ± 2.32                             9.00−19.90                              18.39 ± 8.49 
 
(b) 
Stn             Krill     Amphi-     Deca-     Cope-       Fish       Barna-   Chaeto     Ptero-      Poly-         Iso-     Dendro-   Hydro- 
                                  pods       pods       pods                         cles       gnaths      pods     chaetes     pods    chirotida   zoans 
 
%RRA 
89-1             8.4         38.1         8.5           9.6         26.9           7.6           0.6         0.03         0.2            0         <0.01       <0.01    
90-1           34.8         22.2         3.4           4.1           6.3         28.0           0.5           0.5           0.2            0             0             0 
91-1           22.2         53.0       11.1           9.9           3.2           0.5            0             0             0           0.01           0             0 
92-1           26.5         22.9         9.0         22.3           6.6         11.9           0.7       <0.01           0             0             0             0 
93-1           40.6         44.8       14.3         0.08           0.3           0.02          0           0.01           0             0             0             0 
Total           20.9         37.7         9.4           9.6         13.6           8.0           0.4           0.1           0.1       <0.01       <0.0        <0.01    
 
%FOO 
89-1           61.9         85.7         38.1         33.3         66.7         14.3         9.5         14.3         4.8            0            4.8           4.8 
90-1            100         100           60           40           80           100           20           20           20             0             0             0 
91-1           77.8         88.9         22.2         77.8         44.4         44.4           0             0             0           11.1           0             0 
92-1             75          87.5         37.5          50           50           50           25          12.5           0             0             0             0 
93-1           57.1         100         57.1         28.6         42.9         14.3           0           14.3           0             0             0             0 
Total           70           90           40           54           58           34           10           12             4             2             2             2

Table 3. (a) Summary of the stomach contents of polar cod Boreogadus saida based on metabarcoding per station. n: total num-
ber of individuals; TL: total length. (b) Stomach contents per station and for the total number of investigated fish stomachs. 
%RRA: relative read abundance expressed as per cent; %FOO: frequency of occurrence expressed as per cent. For station 

 codes, see Table 1
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3.6.  Comparison of visual identifi-
cation versus DNA metabarcoding 

In both methods, amphipods and 
krill were the dominating food items 
in terms of FOO, followed by cope-
pods (Fig. 2A). Metabarcoding re -
sults suggest higher FOO of amphi -
pods, copepods, decapods and fish 
than visual identification. Moreover, 
barnacles, chaetognaths and ptero -
pods were not detected visually but 
were detected molecularly in 34, 10 
and 12% of the stomachs, respec-
tively. Based on occurrence data (i.e. 
presence/absence), 56 (43 excluding 
parasites) and 90 mismatches were 
observed between the visual and 
metabarcoding methods, respectively 
(Table 4). Metabarcoding failed to 
detect parasites (13 cases) and some-
times krill, copepods, fish and am -
phipods (2 cases each) that were 
visually observed. In 1 of these 
cases, krill was visually identified as 
T. inermis. In total, at least 9 times 
more species- and genus-level as -
signments were made using meta -
barcoding compared to visual identi-
fication applied on the same stomachs 
(Fig. 2B). More specifically, 3 taxa 
were visually identified to the spe-
cies level (T. inermis, T. longicau-
data, T. libellula), whereas 28 addi-
tional taxa were identified to the 
species level based on DNA found in 
the same stomachs. Furthermore, in 
most stomachs with unidentified 
krill remains, metabarcoding con-
firmed the presence of T. inermis, 
and in stomachs with further unidentified gammarid 
amphipods, DNA analysis confirmed the presence of 
multiple species (A. glacialis, G. wil kitzkii and O. 
litoralis). Differences in the number of microscopi-
cally recognizable food items among stations seemed 
to be related to the degree of digestion. No correla-
tion between digestion and the number of detected 
taxa was found in the differences in diversity 
indices from metabarcoding (Fig. S3), suggesting 
that these are not influenced by the degree of diges-
tion of the stomach contents and/or that traces of 
DNA can still be detected after complete digestion of 
the food item. 

3.7.  Effect of pre-analysis visual enumeration on 
metabarcoding results 

There were no significant differences between 
stomach samples handled for pre-visual analysis and 
intact stomachs regarding DNA quality, quantity and 
COI amplification success. The diversity of observed 
ASVs (p = 0.005, Wilcoxon rank-sum test; Fig. 3) and 
the Chao1 (p = 0.005) and Shannon (p = 0.028) 
indices were higher in stomachs without prior visual 
analysis. However, no difference was detected for 
the Simpson diversity index (p = 0.069), representing 
the number of species detected. 
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identification and metabarcoding. Taxa found with metabarcoding in all  
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4.  DISCUSSION 

4.1.  Complementary diet analysis 

Both morphological and molecular diet analysis 
revealed amphipods, krill and copepods as frequent 
prey items of the polar cod summer diet in the 
northern Barents Sea. The molecular data provided 
a higher taxonomic resolution of the prey items (38 
taxa at species level) compared to the visual analy-
sis (3 taxa at species level). Amphipods were the 
most frequent order found by both methods. Yet, 
the most common prey item detected by metabar-
coding, the sea ice amphipod Apherusa glacialis 
(observed in 80% of the stomachs), was not visually 
detected. This observation indicates prior feeding of 
the polar cod on ice-associated biota, which were 
likely already digested by the time of sampling. In 
fact, a few days before sampling, sea ice retreated 

from the sampling area as observed on the sea ice 
portal meereisportal.de (Grosfeld et al. 2016). Meta -
barcoding might therefore provide dietary informa-
tion on a potentially longer temporal scale than 
visual analysis and reveal feeding in different habi-
tats than assumed based on visual analysis only. In 
addition, metabarcoding enables detection of easily 
degraded and unrecognizable prey items, such as 
eggs and pelagic larvae of fish, barnacles and other 
soft-bodied invertebrates (see Sections 4.2 & 4.3). 
The visual analysis, however, contributes informa-
tion on the size, life stage and biomass of prey 
items, which provides a better indication of the 
importance of prey items in the diet. The IRI, for 
example, integrates several methods of quantifying 
prey items in the stomach and indicated that krill 
was the most important food item for polar cod in 
the Barents Sea during the time of study. A com-
bined approach provides a complementary inven-
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Stn      Fish         Amphi-     Chaeto-      Cope-        Deca-         Ptero-          Fish         Krill            Para-         Poly-        Barna- 
            ID             pods        gnaths        pods          pods         pods                                              sites       chaetes          cles 
                            V     D       V     D       V     D       V     D       V     D       V     D       V     D       V     D       V     D       V     D 
 
89         129                 (X)                               (X)                                                   X       X   (X)       X                                           
            132          X     X                                                   X                                 X       X     X                                                      
            133                  X                                 X                                                   (X)             (X)                                                    
            134                                    X                                 X                                                   X       X                                           
            137                 (X)                                                                                       X                          X                                           
            139                  X                                 X                                                   X       X     X                                                      
            141                  X                         X                                                   X               X     X       X                                           
            146                  X                                                   X              (X)       X                       X                                                   (X) 
            150                  X                                                   X                                                              X                                         X 
            153                 (X)                                                   X                                 X              (X)       X                                           
            154          X     X                                                   (X)             (X)              X                          X                                           

90         168          X   (X)                                           X     X               X               X       X     X                                 X               X 

91         109          X                                 X     X        Xa     X                                                                                                            
            111          X     X                         X     X                                                              X     X                                                   (X) 
            112          Xa    X                         X     X                                                   X                          X                                         X 
            113          Xa    X                         X                                                                      X     X       X                                           
            114          X   (X)                         X   (X)                                                             X     X       X                                           

92           69          X     X                                 X                                                   X       X     X                                                      
              70          X     X                                 X                                                              X     X       X                                           
              71          X                      (X)              X                                                              X                                                              
              73          X     X               X               X        Xa     X                                 X       X     X                                                   X 

93         119          X     X                                                   (X)                                           X                                                              
            121                 (X)                                                                                                 X     X       X                                           
            122                  X                                                   (X)                                X       X     X                                                      
            124          X     X                                                                                X     X                          X                                           
            126          Xa    (X)                                                   X                                            X     X                                                      

Total     15           23     0         3     6       11     3       12     0         3     3       13   16       18   13       0     0         1     0        6 
 

aPrey items classified as crustaceans but reclassified as amphipods or decapods based on DNA data 

Table 4. Prey items categorised in 10 taxonomic groups based on presence/absence per method: visual (V) or DNA-based (D)  
identification. Taxa represented by >20 reads were indicated with X. (X) indicates taxa represented by <20 reads
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tory of the diet, as both methods give information 
on certain aspects of the diet, while both also have 
disadvantages. In addition, a combined approach 
can potentially provide information on different 
timescales: feeding at the time of sampling and also 
several days before, as indicated in our study by the 
presence of hard-bodied prey detected by metabar-
coding but not by visual analysis. In other cases, tra-
ditional diet analysis may also identify older prey, 
e.g. through otoliths that remain in the stomach for 
longer. Future investigations could attempt to iden-
tify the exact timescales of both methods. If a longer 
timescale is needed, stable isotope analysis can be 
added as a third complementary approach (Kohl -
bach et al. 2017, Matley et al. 2018, Bachiller  
et al. 2020). Detailed diet studies using multiple 
 methods may thus provide useful information on 
temporal changes in diet and habitat use, a more 
complete overview of the fish diet and, ultimately, 
the polar cod’s ecology and role in the Arctic eco -
system. 

4.2.  Extending the prey spectrum of 
polar cod 

The most common prey items de -
tected with both methods generally 
matched with published studies on 
polar cod diet from the Barents Sea. 
Calanoid copepods and the hyperiid 
amphipod Themisto libellula are im -
portant diet components, whose domi-
nance depends on fish size, season and 
region (Lønne & Gulliksen 1989, Węs -
ławski & Kuliński 1989, Renaud et al. 
2012, Hop & Gjøsæter 2013). Krill is 
often documented as polar cod prey 
(Renaud et al. 2012), occasionally as a 
regionally dominant food item regard-
ing biomass (Ajiad & Gjøsæter 1990, 
Orlova et al. 2009). 

In addition, to confirm these results, 
we have evidence for a wider prey 
spectrum than previously anticipated 
in terms of both prey frequency and 
new prey species. Polar cod regularly 
fed on fish, decapods and barnacles, 
which were detected with metabarcod-
ing. The consumption of fish by polar 
cod has been previously reported 
(Ajiad & Gjøsæter 1990, Eriksen et al. 
2020), but the FOO in our study (29 of 
50 stomachs across all sites) is higher 
than expected. The gelatinous snailfish 

Liparis fabricii was the most frequent fish prey (in 23 
of 50 stomachs). Data from the Canadian Beaufort 
Sea show that the majority of snailfish larvae are 
present pelagically during summer (Walkusz et al. 
2016), which may explain the high frequency ob -
served here. Decapods, the fifth most common prey 
taxon in this study, were detected in 40% of the 
stomachs and are recorded relatively regularly in the 
stomachs of polar cod (Lønne & Gulliksen 1989, Gray 
et al. 2016, McNicholl et al. 2018). Species identi -
fication, however, is often difficult. Here, Eualus 
gaimardii was the most common decapod species 
(observed in 36% of the stomachs). Although E. 
gaimardii is a benthic species, this small circumpolar 
shrimp uses the sea ice as a temporary feeding 
ground, with sympagic amphipods as the most im -
portant prey (Nygård et al. 2007). In addition, there is 
evidence that E. gaimardii fully retracts into brine 
channels of ice during stable salinity conditions 
(Nygård et al. 2007). In the East Siberian and Laptev 
seas, E. gaimardii has been documented as an impor-
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tant prey item for polar cod (Gorbatenko & Kiyashko 
2019). Furthermore, barcodes of barnacles from the 
genera Balanus and Semibalanus were observed in 
almost 40% of the investigated stomachs. Polar cod 
likely feed on the planktonic larval cirripeds, which 
spend several weeks in the water column and can be 
abundant in the area (Crisp 1962, Ehrlich et al. 2020). 

Several species identified with metabarcoding 
were unknown food items to polar cod. Various 
am phipod species have never been recorded as 
prey items before. Prey from the genera Onisimus 
and Ischyrocerus have been reported before but 
not to the species level. In addition, the species 
Deflexilodes tenuirostratus has not been docu-
mented in the study region before (Prestrud et al. 
2004, Mc Govern et al. 2018). Several of these iden-
tified am phipods were benthic, among which 3 
belonged to the Oedicerotidae. The only specimen 
from the latter family visually observed in the 
stomach contents was barcoded as Arrhis phyl-
lonyx. This species has been observed before in 
polar cod stomachs in Billefjorden, but in the 
winter season (Cusa et al. 2019). Furthermore, we 
document for the first time in the Barents Sea diet 
the polychaete genus Spio as prey. Among the fish 
species, Arctic staghorn sculpin Gymnocanthus tri-
cuspis, gelatinous snailfish L. fabricii, striped sea -
snail L. liparis, 2 temperate flatfish and the Euro-
pean plaice Pleuronectes pla tessa have never been 
identified before in the Barents Sea polar cod diet. 
European flounder Platich thys flesus is uncommon 
in the northern Barents Sea, but its presence is not 
disputed (Johannesen et al. 2021). In addition to 
these temperate fish species, the temperate−boreal 
northern krill Meganycti phanes nor vegica, first 
observed in polar cod stomachs in 2015 in the 
northern Barents Sea (Eriksen et al. 2020), was 
observed in 3 stomachs. The northern krill, increas-
ingly observed in the Arctic Ocean with the en -
hanced Atlantic water inflow, has previously already 
been suggested as a useful indicator of change 
(Buchholz & Buchholz 2010). As rising sea tempera-
tures and changes in circulation patterns in the 
Barents Sea allow boreal and sub-Arctic species to 
expand northward into areas previously occupied 
by Arctic species (Fossheim et al. 2015, Dalpadado 
et al. 2020), a shift in the prey composition of polar 
cod is expected. Although several temperate spe-
cies such as M. norvegica occur in the Barents Sea 
(Dalpadado & Skjoldal 1991, Schmidt 2010), tem-
perate species in the stomachs indicate that the 
polar cod has the potential to incorporate temper-
ate−boreal species in its diet. Overall, with a rela-

tively constrained spatio-temporal sampling design, 
we extended the prey spectrum of polar cod con-
siderably and provide indications that integrated 
diet assessment can be a useful tool to monitor 
changes in species assemblages and potential con-
sequences for the food web. 

4.3.  Technical recommendations 

Clearly, visual and molecular diet analyses are 
beneficial for extended complementary insights on 
fish diet. Nevertheless, we documented some dis-
crepancies between visual and molecular results. 
The molecular absence of visually confirmed krill, 
copepods, amphipods, trematodes and nematodes 
might be explained by the following factors. (1) 
PCR amplification failure was caused by DNA de -
gradation. Different degradation rates might cause 
underrepresentation of certain taxa (Paula et al. 
2015). However, overall, the effects of DNA degra-
dation bias have been shown to be of minor impor-
tance in other studies (Krehenwinkel et al. 2018), 
and we would expect that visually identifiable 
remains also contain sufficient DNA for amplifica-
tion of a small fragment such as COI. (2) A consid-
erable proportion of reads (16.2%) remained un -
identified and were discarded due to the absence 
of any match in public databases. These reads 
might be valid unidentified or unknown COI genes, 
for example of parasites for which no reference 
entries exist yet or false COI reads. Such COI-like 
reads might be attributed to the amplification of 
pseudogenes or nuclear copies of non-functional or 
coding mitochondrial-derived genes (Buhay 2009). 
(3) In large-volume stomachs, subsampling may 
have caused the absence of visually identified taxa 
in molecular results. Except for parasites, which 
may be affected by PCR amplification bias and/or 
missing database entries, subsampling effects seem 
the most likely explanation for mol ecular false neg-
atives. We therefore emphasise the importance of 
proper homogenisation for re presentative results. 
Larger stomachs could be homogenised using a 
blender or vortexed with glass beads instead of a 
mortar (Roussel et al. 2005) to avoid subsampling 
effects. Another option would be to consistently 
sequence several replicates per stomach if time and 
research budget allow for that. In general, it should 
be kept in mind that metabarcoding can provide 
evidence for the presence of a species in the stom-
ach contents but not necessarily prove its absence 
when not detected. Performing visual analysis on 
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the same stomach contents prior to metabarcoding 
might also cause bias related to different DNA 
degradation rates between species. When combin-
ing both methods, we therefore  recommend keep-
ing the stomach contents on 96% ethanol during 
morphological identifications in addition to storing 
in ethanol until DNA extraction. Metabarcoding 
data here merely represent a snapshot from the 
diet composition of polar cod, albeit at high taxo-
nomic resolution. The FOO data should be inter-
preted with care because of the small  sample size 
in certain stations. 

Lastly, it is not possible to distinguish secondary 
prey, i.e. prey of prey or accidental prey consumed 
during feeding, and cannibalism among polar cod 
from true prey with metabarcoding (Sheppard et al. 
2005). Accordingly, it cannot be ruled out that plank-
tonic larval stages of barnacles, found in over one-
third of the stomachs, are secondary prey items. 
However, there are some strong indications that bar-
nacles are in fact genuine prey species of polar cod. 
Nauplii of barnacles are characterised with frontal 
horns that make them unsuitable prey for fish early 
life stages (eggs and larvae) (Walker 1973, Fossum & 
Ellertsen 1994) and presumably also smaller organ-
isms like the prey of polar cod. Furthermore, to the 
best of our knowledge, there are no records of barna-
cles as part of the calanoid copepod and krill prey 
spectrum. In contrast, there is evidence of cirripeds, 
although not common, as part of the polar cod diet 
(Bouchard & Fortier 2020). The absence of diatoms, 
an important food source for both calanoid copepods 
and sea ice-associated amphipods, but also other 
common copepod prey such as polychaete larvae 
(almost absent) and ctenophores (Poltermann 2001, 
Cleary et al. 2017) is a strong indication that second-
ary prey was not picked up to a large extent by 
metabarcoding. Regardless, several common prey 
species of polar cod share some of the prey species of 
its predator. For example, amphipods, such as T. 
libellula and T. abyssorum, feed on Calanus cope-
pods (Auel & Werner 2003, Kraft et al. 2013). Yet, the 
DNA of secondary prey likely represents a minor 
part of the total ASV reads compared to primary 
prey, due to higher levels of degradation and much 
lower biomass (Jakubavičiūtė et al. 2017). Here, 14 
species with less than 20 reads were documented, 
several of which are documented polar cod prey 
items. Additional dietary studies using both methods 
in a complementary approach, but on a larger spatio-
temporal scale, are necessary to confirm if these spe-
cies are either secondary accidental food items or an 
actual part of the diet. 

5.  CONCLUSION 

Our data reveal a diverse summer diet of polar cod 
in the northern Barents Sea. Krill, amphipods and, to 
a lesser extent, copepods are frequent prey items of 
polar cod in concordance with the available litera-
ture. Barnacle larvae and fish (eggs and/or larvae) 
are more important diet components than previously 
documented. In addition, highly digested sea ice-
associated amphipods recovered by metabarcoding 
suggest prior feeding in ice-covered waters. Unravel-
ling the diet, but also the feeding behaviour and 
ecology, of key species in marine food webs affected 
by climate change helps design appropriate ecosys-
tem-based management plans. In remote, often sea 
ice-covered and thus undersampled areas, it is even 
more important to use the full suite of available tech-
niques to elucidate trophic relationships. Our results 
demonstrate that the combination of visual and 
molecular stomach content analysis provides com-
plementary information regarding quantification, 
taxonomic resolution and temporal scale. Addition-
ally, we show that the combination of methods can 
provide powerful and complementary information on 
partially digested prey, which is needed to monitor 
rapidly changing marine food webs. 
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