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A B S T R A C T   

Warming induced shifts in tundra vegetation composition and structure, including circumpolar expansion of 
shrubs, modifies ecosystem structure and functioning with potentially global consequences due to feedback 
mechanisms between vegetation and climate. Satellite-derived vegetation indices indicate widespread greening 
of the surface, often associated with regional evidence of shrub expansion obtained from long-term ecological 
monitoring and repeated orthophotos. However, explicitly quantifying shrub expansion across large scales using 
satellite observations requires characterising the fine-scale mosaic of Arctic vegetation types beyond index-based 
approaches. Although previous studies have illustrated the potential of estimating fractional cover of various 
Plant Functional Types (PFTs) from satellite imagery, limited availability of reference data across space and time 
has constrained deriving fraction cover time series capable of detecting shrub expansion. We applied regression- 
based unmixing using synthetic training data to build multitemporal machine learning models in order to esti-
mate fractional cover of shrubs and other surface components in the Mackenzie Delta Region for six time in-
tervals between 1984 and 2020. We trained Kernel Ridge Regression (KRR) and Random Forest Regression (RFR) 
models using Landsat-derived spectral-temporal-metrics and synthetic training data generated from pure class 
spectra obtained directly from the imagery. Independent validation using very-high-resolution imagery sug-
gested that KRR outperforms RFR, estimating shrub cover with a MAE of 10.6% and remaining surface com-
ponents with MAEs between 3.0 and 11.2%. Canopy-forming shrubs were well modelled across all cover 
densities, coniferous tree cover tended to be overestimated and differentiating between herbaceous and lichen 
cover was challenging. Shrub cover expanded by on average + 2.2% per decade for the entire study area and +
4.2% per decade within the low Arctic tundra, while relative changes were strongest in the northernmost regions. 
In conjunction with shrub expansion, we observed herbaceous plant and lichen cover decline. Our results 
corroborate the perception of the replacement and homogenisation of Arctic vegetation communities facilitated 
by the competitive advantage of shrub species under a warming climate. The proposed method allows for 
multidecadal quantitative estimates of fractional cover at 30 m resolution, initiating new opportunities for 
mapping past and present fractional cover of tundra PFTs and can help advance our understanding of Arctic 
shrub expansion within the vast and heterogeneous tundra biome.   

1. Introduction 

The Earth system as a whole has been severely altered by human 

activity, largely at unprecedented scale and magnitude as well as at risk 
of irreversible change (IPCC, 2021). The Arctic, in particular, has 
experienced extensive environmental change, warming at more than 
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twice the rate of the planetary average due to Arctic amplification 
(Serreze and Barry, 2011; Post et al., 2019). There is pan-Arctic evidence 
that sea ice and snow cover extent are declining (IPCC, 2021), perma-
frost is warming and degrading (Biskaborn et al., 2019), hydrological 
regimes are changing (Liljedahl et al., 2016), tundra fire frequency and 
magnitude are increasing (Hu et al., 2015) and plant phenology and 
composition are shifting (Myers-Smith et al., 2019; Bjorkman et al., 
2020). The latter includes extensive tundra shrubification, comprising 
an increase in biomass, cover, and abundance of Arctic shrub species 
(Tape et al., 2006; Frost and Epstein, 2014; Myers-Smith et al., 2019). 
This in turn modifies tundra ecosystem functioning, including energy 
exchanges, nitrogen cycling, carbon storage and fluxes, as well as 
biodiversity (Myers-Smith et al., 2011). Shrubification, however, has 
proven to be heterogeneous across the pan-Arctic (Myers-Smith et al., 
2015a), arising from a complex interaction between climate regime and 
site-specific factors such as active layer thickness, soil moisture condi-
tions, local topography, disturbance events, and herbivory intensity 
(Martin et al., 2017; Mekonnen et al., 2021). This process is thus not 
uniform across the pan-Arctic, with some regions exhibiting little to no 
change in shrub abundance (Jorgenson et al., 2015). Since studies on 
shrub cover changes are predominantly local, there remains substantial 
uncertainty on the explicit spatial patterns of shrub cover dynamics 
across larger scales, while a sound understanding of the dynamics of 
vegetation composition and structure remains indispensable in order to 
assess carbon fluxes and climate feedback (Loranty et al., 2011). 

Remote sensing offers a unique approach to effectively monitor the 
vast and remote landscapes of the Arctic tundra biome (Beamish et al., 
2020), particularly with long and dense time series of medium resolu-
tion imagery provided by the Landsat archive free of charge (Wulder 
et al., 2019). Most prominently in Arctic contexts, trend analyses based 
on spectral features and vegetation indices, such as the Normalized 
Difference Vegetation Index (NDVI), were used to reveal patterns of 
spectral greening and browning (Beck and Goetz, 2011; Ju and Masek, 
2016; Berner et al., 2020), or have been used specifically to identify 
landscape dynamics and disturbances, often associated with permafrost 
degradation (Nitze and Grosse, 2016; Fraser et al., 2014b; Nitze et al., 
2018; Nill et al., 2019). These satellite-based records suggest that a large 
proportion of the northernmost landscapes has become greener since the 
early 1980s, indicated by positive trends of remotely sensed vegetation 
indices (Myneni et al., 1997; Beck and Goetz, 2011; Park et al., 2016). 
Since vegetation indices serve as proxies of photosynthetic activity, 
spectral greening trends have been attributed to increases in plant 
productivity, height, and biomass (Berner et al., 2020), for instance by 
linking spectral greening to regional evidence of vegetation change 
(Fraser et al., 2014a; Frost et al., 2014). Regionally, greening has pre-
dominantly occurred in the shrub and graminoid tundra north of the 
Taiga-Tundra Ecotone (TTE) (Bonney et al., 2018; McManus et al., 
2012), with strong variability on the local scale related to site-specific 
factors controlling shrub growth (Seider et al., 2022). However, spec-
tral indices are limited in their expressiveness, since they do not repre-
sent measurements of biophysical properties, nor are derived greening 
and browning trends associated with unique landscape conditions and 
dynamics (Myers-Smith et al., 2020). Accordingly, index-based ap-
proaches do not allow disentangling the contribution of distinct pro-
cesses such as shrub growth to observed greening patterns from other 
vegetation types (Andreu-Hayles et al., 2020; Myers-Smith et al., 2020; 
Mekonnen et al., 2021). 

Remote sensing imagery has also facilitated mapping Arctic land 
cover (Bartsch et al., 2016; Beamish et al., 2020), ranging from pan- 
Arctic scale using coarse resolution sensors like the Advanced Very 
High Resolution Radiometer (AVHRR) (Raynolds et al., 2019), to con-
tinental and regional efforts based on Landsat (Schneider et al., 2009; 
Wang et al., 2020). Contrary to spectral indices, land cover classifica-
tions provide thematic information, however, they are constrained by 
the observational unit of a pixel which almost exclusively represents an 
integrated signal of several distinct surface materials (Keshava and 

Mustard, 2002). Since the tundra biome comprises a heterogeneous 
mosaic of various vegetation types at relatively fine scales (Beamish 
et al., 2017), classification approaches are inherently limited in 
capturing this sub-pixel heterogeneity (Lantz et al., 2010b). Further-
more, a large variety of spatio-temporal processes, including the 
expansion of shrub species, often appear within specified class bound-
aries rather than constituting a discrete shift to different land cover types 
(Macander et al., 2017; Suess et al., 2018). 

In contrast, estimating continuous cover fractions of distinct surface 
types at the sub-pixel level can be considered more appropriate at 30 m 
Landsat scale. Fractional cover is commonly retrieved by either Spectral 
Mixture Analysis (SMA) or by regression-based unmixing. SMA ap-
proaches such as Multiple Endmember Spectral Mixture Analysis 
(MESMA) rely upon pure endmember spectra representing full coverage 
of a class and solve a system of linear equations through inversion 
techniques in order to disentangle the mixed-pixel problem into class 
fractions (Settle and Drake, 1993; Keshava and Mustard, 2002; Roberts 
et al., 1998). In contrast, regression-based unmixing utilizes class-wise 
regression models trained on a great range of fraction values between 
0% and 100%. While both approaches allow for incorporating inter- and 
intra-class spectral variability, MESMA deploys a multitude of single 
linear mixing models and subsequent model selection on a per-pixel 
basis (Roberts et al., 1998), whereas regression-based unmixing allows 
for building single global models per target class. Furthermore, 
regression-based unmixing enables the use of flexible machine learners, 
capable of handling a complex feature space and characterised by a good 
predictive performance (Okujeni et al., 2013). Variants of regression- 
based unmixing are thus widely used in the realm of fraction cover 
mapping, including the characterization of urban and rural land cover 
(Okujeni et al., 2013, 2018; Schug et al., 2018; Priem et al., 2019; Schug 
et al., 2020), forest cover (Hansen et al., 2013; Senf et al., 2020), 
Mediterranean shrublands (Suess et al., 2018; Higginbottom et al., 
2018) and Arctic land cover in particular (Olthof and Fraser, 2007; Beck 
et al., 2011; Macander et al., 2017; He et al., 2019). 

Although the spectral similarity as well as the fine-scale heteroge-
neous nature of Arctic plant communities complicate the process of 
disentangling different land cover types (Beamish et al., 2017), previous 
studies successfully retrieved fractional cover of major vegetation types 
for a single point in time based on training data obtained from very- 
high-resolution (VHR) imagery or field surveys. Olthof and Fraser 
(2007) used Landsat-7 imagery to retrieve fractional cover of five 
different land cover types for different sites in northern Canada, by 
incorporating IKONOS VHR satellite imagery to calibrate and validate 
their regression models. Similarly, Beck et al. (2011) used IKONOS and 
SPOT imagery in combination with Landsat data and Random Forest 
(RF) regression modeling to map shrub fractional cover for the North 
Slope of Alaska around 2000. Fraser et al. (2011) related the regression- 
tree models developed by Olthof and Fraser (2007) to trends observed of 
the NDVI and Tasseled Cap transformations in order to predict expected 
changes in fractional cover. They associated large scale patterns of 
greening with an increase in vascular plant cover. Macander et al. 
(2017) mapped a large variety of Plant Functional Types (PFT) for Arctic 
Alaska using multi-seasonal Landsat imagery and field observations 
obtained between 2012 and 2014 for training and validating their 
models. He et al. (2019) deployed a similar approach with field data 
from 2012, 2016 and 2017, but focused on three major cover compo-
nents, namely woody, herbaceous, and nonvascular plants. Riihimäki 
et al. (2019) constrained their analysis to green vegetation cover, but 
deployed a multi-sensor approach to up-scale binary classifications of 
vegetation cover obtained from VHR drone imagery to fractional cover 
at 3 m (PlanetScope), 10 m (Sentinel-2) and 30 m (Landsat-8) resolution. 
However, due to the limited availability of field observations in the 
poorly accessible tundra (Beamish et al., 2020), explicitly assessing 
shrub cover dynamics beyond spectral indices across space and time 
remains challenging (Frost et al., 2014). 

Accordingly, we address this research need and map the past and 
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present fractional cover of Arctic shrubs and five other land cover types 
within the greater Mackenzie Delta Region of the Western Canadian 
Arctic. We introduce the concept of regression-based unmixing of syn-
thetically generated training data to the realm of Arctic land cover 
mapping. The method originally developed by Okujeni et al. (2013) 
relies upon class-wise endmember spectra to generate synthetic 
continuous training data. This allows for creating a broad range of 
training fractions that can be used in combination with image features 
and regression modeling to predict the fractional cover of various sur-
face components (Okujeni et al., 2013). Since the pure endmember 
spectra can be obtained directly from the imagery (image endmembers), it 
offers great potential for mapping the vast and poorly accessible land-
scapes of the tundra biome. By explicitly integrating image spectra over 
the entire observational period, we create class-wise multitemporal 
regression models that enable retrieving fractional cover for six aggre-
gated time periods between 1984 and 2020. Specifically, we addressed 
the following research questions:  

1. How accurately can Arctic shrub and other land cover fractions be 
mapped using Landsat and regression-based unmixing of synthetic 
training data?  

2. What are the spatio-temporal patterns of land cover fractions within 
the greater Mackenzie Delta Region?  

3. Does the approach explicitly capture shrub expansion in the area 
since the mid-1980s? 

2. Study area 

Our study area is situated in the greater Mackenzie Delta Region of 
the western Canadian Arctic (Fig. 1). It stretches from the outskirts of the 
Brooks Range in the west (140◦W) to the lowlands of the Tuktoyaktuk- 
Peninsula in the east (130◦W), and from the subarctic Richardson 
Mountains and Anderson Plain in the south (67◦N) to the coastal tundra 
at the Beaufort Sea (70◦N). The study area thus encompasses an area of 
143,100 km2 at the transition of subarctic taiga and low arctic tundra, 
almost exclusively underlain by continuous permafrost. The subarctic 
divides into the ecozones of the mountainous Taiga Cordillera in the 
west and the low-lying Taiga Plains in the central and eastern section of 
the study area. The Mackenzie River forms an alluvial plain consisting of 
several meandering channels which - bound by the Richardson Moun-
tains and Caribou Hills - empty into the Beaufort Sea (Goulding et al., 
2009). The low Arctic tundra predominantly features subtle topography 

Fig. 1. Map of the Mackenzie Delta Region in the Western Canadian Arctic (a). Overlain are the three major ecoregions (white, Ecological Stratification Working 
Group (1996), https://sis.agr.gc.ca/cansis/nsdb/ecostrat/gis_data.html, accessed 2022-01-07), the validation sites with available drone and 
airborne imagery (yellow) and the locations of the endmember pixels. Large-scale patterns of vegetation communities and land cover following topography and 
latitude include elevated grounds with graminoids and barren surfaces (b), wetland complexes with sequences of sedges, deciduous shrubs/trees and coniferous 
spruces in the delta (c-d), shrub dominated tundra (e) intermixed with herbaceous vegetation and non-vascular lichens (f), as well as herbaceous and non-vascular 
dominated polygonal tundra (g) (Image courtesy to T. Ullmann and J. Kunz). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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with rolling hills, numerous depressions filled with thermokarst lakes 
and wetlands, as well as hummocky and polygonal terrain in the 
northern parts (Burn and Kokelj, 2009). The Yukon Coastal Plains in the 
west are further characterised by well-drained upland tundra land-
scapes, punctuated with erosion valleys leading towards the coastal 
wetlands. The climate of the Mackenzie Delta Region can be described as 
cold and dry with a pronounced seasonality of temperature and pre-
cipitation. Notable differences arise from the latitudinal position, 
topography, and proximity to the coast (Burn and Kokelj, 2009). 
Accordingly, mean annual air temperatures and precipitation 
(1981–2010) drop from − 7.3◦C and 297.7 mm in Fort McPherson in the 
south to − 10.1◦C and 160.7 mm in Tuktoyaktuk at the coast (Environ-
ment Canada, 2021). Climate also determines the large scale prevalent 
composition and structure of vegetation communities, where the dense 
coniferous forests of the boreal south are gradually replaced by shrub 
tundra communities with increasing latitude (Timoney et al., 1992). The 
region has warmed by >2.5 ◦C since 1970 (Burn and Kokelj, 2009), 
which presumably has caused an extensive greening of the surface 
driven by the expansion of - predominantly deciduous - shrub species 
(Lantz et al., 2010a; Fraser et al., 2014a; Nill et al., 2019). 

To characterise the patterns and dynamics of the vegetation cover, 
we differentiated among four different Plant Functional Types (PFTs) 
that in their various combinations make up the vegetation communities 
found in the study area. Grouping species into PFTs allows to abstract 
from the species level to a more general framework while accounting for 
similar ecological functions and environmental responses to change 
within the groups (Chapin et al., 1996). Accordingly, we identified the 
following classes:  

1. Shrub – comprises deciduous woody vegetation and evergreen 
shrubs. Shrubs are common throughout the study area, dominating 
in the lake rich lowlands, along streams and rivers, and as pioneer 
species in alluvial settings or following wildfire disturbance (Burn 
and Kokelj, 2009; Moffat et al., 2016; Lantz et al., 2010a). This class 
consists mostly of the genera willow (Salix), birch (Betula) and alder 
(Alnus). We did not differentiate between tall deciduous shrubs and 
deciduous trees, as – from a remote sensing perspective – they are 
spectrally identical and the tree-shrub differentiation is gradual and 
subject to definition. Furthermore, we focused on the shrub domi-
nated low Arctic landscapes where a cover expansion is driven by 
species not reaching the height of trees. Patches of tall shrubs are 
often formed by green alder (Alnus viridis) which commonly grow a 
few meters apart on undisturbed sites while they form a dense cover 
in combination with willows (e.g. Salix pulchra, 1d–e) after fire 
events (Lantz et al., 2010a). Willows also prevail in riparian land-
scape settings (Grünberg et al., 2020). In the shrub tundra, dense 
canopies of low statue shrubs (20–50 cm) are often formed by 
American dwarf birches (Betula glandulosa) accompanied by shorter 
ericaceous shrubs of the genera Rhododendron and Vaccinium (Lantz 
et al., 2010a; Grünberg et al., 2020) (Fig. 1f).  

2. Coniferous – encompasses mostly black spruce (Picea mariana) and 
white spruce (Picea glauca) trees (Lantz et al., 2010a). Dominating in 
large parts of the boreal south, their presence declines with latitude 
until they are only found as isolated patches on favourable grounds 
(Scott and Hansell, 2002). In the delta, the thermal regime permits 
the treeline to stretch further north and spruces typically establish on 
grounds that were elevated above the annual flooding level (Burn 
and Kokelj, 2009) (Fig. 1c). With time, the vegetation community 
consisting of spruces, alders, and bearberries, develops towards an 
open spruce forest with a thick lichen and moss layer (Pearce et al., 
1988).  

3. Herbaceous – includes graminoids, forbs and ferns. They form an 
integral part of shrub tundra formations and the understory vege-
tation in open spruce forests. Sedges (mostly Carex spp. and Erio-
phorum spp.) populate poorly drained areas while drier parts are 
favourable for grasses (Burn and Kokelj, 2009). Accordingly, 

wetlands are often dominated by tussock-forming sedges while 
grasses populate well-drained hilltops (Fig. 1b, d, g).  

4. Lichen – represents the only separated nonvascular component. The 
most abundant species are Cladina rangiferina and Cladina stellaris 
(Fraser et al., 2014a). They are mostly inter-mixed within shrub 
tundra (Fig. 1f) or build a thick layer with mosses in open spruce 
woodlands (Fraser et al., 2014a; Pearce et al., 1988). Although li-
chens are often grouped together with mosses as non-vascular PFTs, 
they differ substantially in their spectral appearance, complicating a 
combined classification. Apart from that, we could not delineate pure 
moss pixels as this class is generally mixed with all other cover types. 
Generally, lichens and mosses are virtually ubiquitous in the land-
scape and thus likely to be particularly included in our herbaceous 
class. 

Complementing the four PFTs, we further included two non- 
vegetation classes: 

5. Barren – encompasses rock outcrops, open-soil (e.g. alluvial and 
coastal sandbars) and artificial built-up surfaces such as roads. 

6. Water – describes all varieties of open water bodies, including deep 
lakes and sediment-rich streams and rivers. Although permanent water 
bodies were masked prior to the analysis of six the time frames, we 
included this class to account for its spectral influence in regions such as 
wetlands or small streams within mixed pixels. 

3. Methods 

The estimation of Landsat-based multitemporal land cover fractions 
comprised a sequence of methodological building blocks (Fig. 2). First, 
we created a wide array of image features from preprocessed Landsat 
Collection 2 image time series for each of six time intervals. These in-
tervals were 1984–1990, 1991–1996, 1997–2002, 2003–2008, 
2009–2014 and 2015–2020. Second, we developed an image endmem-
ber library by identifying pure, temporally stable land cover pixels and 
extracting their band-wise spectral reflectance from the image features. 
Third, we generated synthetic training data based on the endmember 
library which served as input for the class-wise regression models. Then, 
the final fraction cover maps for each cover class, target time frame and 
regression algorithm were derived by averaging the prediction results of 
twelve individual model runs. We assessed the reliability of our results 
by validating the predictions for the most recent 2015–2020 interval 
using manually derived reference fractions based on the visual inter-
pretation of VHR airborne and drone imagery obtained during field 
campaigns in 2018/2019. Following the validation, we assessed the 
spatial patterns and temporal dynamics of the land cover fractions in the 
Mackenzie Delta Region. 

3.1. Image processing 

3.1.1. Landsat data 
We retrieved all available Landsat Thematic Mapper (TM), Enhanced 

Thematic Mapper (ETM+) and Operational Land Imager (OLI) Collec-
tion 2 Level-1 images between 1984 and 2020 with a maximum cloud 
cover of 70% from the United States Geological Survey (USGS) using the 
USGS/EROS machine-to-machine API (https://m2m.cr.usgs.gov/, 
accessed 2021-02-09). Collection 2 marks the second major collection of 
the Landsat archive which most notably comes with an improvement in 
the absolute geometric accuracy of the image data (U.S. Geological 
Survey, 2021). We incorporated all scenes between April and October 
into the search, covering early-spring to end-of-autumn resulting in a 
total of 10,640 Landsat scenes covering 36 Worldwide Reference 
System-2 (WRS-2) path/rows (Fig. 3). The high-latitudinal location of 
the study area results in significant overlap between the individual WRS- 
2 paths of the satellites, which in turn improves acquisition frequency 
and counteracts the high incidence cloud cover and generally short 
seasonal window suited for optical remote sensing in Arctic 
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environments. However, the number of per-pixel clear-sky-observations 
(excluding cloud, cloud shadow, snow, and saturated pixels) is hetero-
geneous across space and differs between the six target time intervals 
(supplementary materials A). 

For preprocessing the level-1 imagery as well as for the creation of 

the higher level image products, including analysis-ready-data, we 
applied the Framework for Operational Radiometric Correction for 
Environmental monitoring (FORCE) (Frantz, 2019). Preprocessing the 
level-1 imagery to level-2 data encompassed masking clouds, cloud 
shadows and snow or ice, and correcting radiometric effects including 
atmospheric, topographic, BRDF and adjacency effect correction (Frantz 
et al., 2016). The needed auxiliary data encompassed the 30 m resolu-
tion Copernicus Digital Elevation Model (GLO-30) and a pre-compiled 
water vapor database during atmospheric correction (Frantz et al., 
2019). FORCE allowed for the efficient handling of large data volumes 
through the creation of data cubes after reprojecting the imagery into a 
common coordinate system. Here, we used the EPSG:3573 coordinate 
system with an adjusted central meridian to match the center location of 
the study area. 

Our analyses covered the six aggregated time periods 1984–1990, 
1991–1996, 1997–2002, 2003–2008, 2009–2014 and 2015–2020. For 
each of these intervals, we collapsed all available clear-sky-observations 
(CSOs) at the pixel-level into a single (artificial) year, maintaining the 
day-of-year (DOY) position in time of the respective observations (sup-
plementary materials B). We deemed this necessary given the compa-
rably sparse intra-annual observation density in the earliest two 
decades, while a high observation density greatly improves the quality 
and consistency of image features derived from the time series. Unlike 
for aggregated time periods, the quality and accuracy of predictions 
from single years would be largely governed by the respective data 
availability. However, our approach of multi-annual time series aggre-
gation implies that abrupt land surface change triggered by disturbance 
events is smoothed. While detecting such events at scales smaller than 
six years is thus impossible from our data, long-term effects of distur-
bance are nevertheless captured. Importantly, the key process of interest 
in our study - shrub expansion - develops gradually and does not 
necessarily require annual assessments for monitoring. With a distance 
of on average six years between the aggregated periods, we ensured that 
changes in shrub abundance are still captured at relatively fine temporal 
scale. 

In order to ensure a consistent, gap-free time series in which po-
tential noise of remaining image artifacts (e.g. cloud remnants) is sup-
pressed, while the spectral-temporal variability of the time series is 
maintained, we interpolated the aggregated level-2 time series into an 
equidistant (8-day) smoothed time series using an ensemble of Radial 
Basis Function (RBF) kernels with varying widths of the Gaussian bell 
(σ= 8, 16 or 32 days) (supplementary materials B) (Frantz, 2019; 
Schwieder et al., 2016). Larger widths lead to stronger smoothing and 
reduce the chance of gaps in the time series. Smaller widths result in a 
smoothing much closer to the actual raw time series, but the chance of 
data gaps increases. By deploying an ensemble of RBF kernels with 
varying widths, each kernel was weighted in proportion to the prevalent 
data density of the raw time series, resulting in an adaptive degree of 
smoothing based on actual data availability. 

3.1.2. Spectral-temporal metrics 
The processed level-2 imagery then served as input within the 

Fig. 2. Methodological workflow for estimating fractional cover based on 
Landsat imagery and regression-based unmixing of synthetically generated 
training data. 

Fig. 3. Number of Landsat scenes with <70% cloud cover between 1984 and 2020. Seasonal windows are grouped together and dashed vertical lines indicate borders 
between the six target time intervals. See supplementary materials A for pixel-wise maps of clear-sky-observations. 
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higher-level processing suite of FORCE to derive Spectral-Temporal- 
Metrics (STM) for each time interval. STMs constitute a dimension-
ality reduction by calculating pixel-wise statistics (e.g. mean, standard 
deviation) of individual bands that preserve or may even amplify the 
variance of the image time series and highlight seasonal characteristics 
of different land cover types (Müller et al., 2015). STMs were retrieved 
for an array of various temporal, spectral and statistical combinations: 
First, we considered three intra-annual time intervals: The entire season 
(DOY 91–305), as well as the first- (DOY 100–200) and second-half 
(DOY 200–300) of the season. The underlying assumption of such a 
differentiation is that differences in phenology between the cover types 
become amplified by targeting distinct phenological windows (He et al., 
2019; Macander et al., 2017; Okujeni et al., 2021). Second, a wide range 
of input spectral bands, indices and transformations were included. This 
encompassed the original six Landsat spectral bands (BLU, GRN, RED, 
NIR, SW1, SW2), the Tasseled Cap components greenness (TCG), 
brightness (TCB) and wetness (TCW) (Crist, 1985), the Normalized 
Difference Vegetation Index (NDVI) (Tucker, 1979), the Normalized 
Difference Moisture Index (NDMI) (Gao, 1996) and the modified 
Normalized Difference Water Index (MNDWI) (Xu, 2006), as well as the 
Normalized Burn Ratio (NBR) (Key and Benson, 2006) and the Enhanced 
Vegetation Index (EVI) (Huete et al., 2002). Third, we calculated a set of 
11 statistical metrics, namely the minimum, several quartiles (10th, 
25th, 50th, 75th, 90th), the maximum, mean, standard deviation, range, 
and the inter-quartile range. In total this comprised an initial set of 462 
STMs per target time interval. We visually assessed the initial predictor 
pool and removed all features exhibiting noisy patterns in any of the 
target intervals. The noise could mostly be attributed to image artifacts 
introduced by unmasked (cirrus) cloud remnants, thus statistical metrics 
highlighting spectral extremes and ranges (e.g. maximum, range) were 
excluded most frequently. Ultimately, this reduced the dimensionality to 
90 bands (supplementary materials C). 

3.2. Fraction cover modeling using regression-based unmixing 

We deployed regression-based unmixing to map the cover fractions 
of shrubs, coniferous trees, herbaceous plants, lichens, water and barren 
surfaces for each time interval. Regression-based unmixing combines 
training data representing continuous fractions of the cover types with 
spectral bands or image features in order to build class-wise regression 
models (Okujeni et al., 2013; Schug et al., 2020). We introduced the 
concept of regression based-unmixing using synthetically-generated 
training (hereafter: synthmix) developed by Okujeni et al. (2013) to 
the realm of Arctic land cover mapping. This allowed for efficiently 
acquiring representative training fractions solely based upon the con-
struction of a spectral library containing image-based spectral signatures 
of pure surfaces. Using synthmix, continuous land cover fractions were 
generated synthetically by combining the pure spectral signatures, or 
endmembers, of the library in a linear fashion (Okujeni et al., 2013). 
Based on the synthetic training data, we trained class-wise regression 
models and predicted fractional cover into space for each of the time 
intervals. To include a wide array of mixtures and improve prediction 

accuracy, we repeated this process twelve times and obtained the final 
fraction cover maps using ensemble averaging. 

3.2.1. Spectral library development 
We identified pure image endmembers at Landsat 30 m pixel scale 

for all six target classes (Fig. 1). The goal was to create a multi-annual 
endmember library consisting of pure surfaces representative for the 
entire study period (1984–2020), thus enabling the model's applicability 
across time and accounting for the temporal spectral variability of the 
classes. The latter may arise from shifts in climatic conditions and 
phenology as well as differences among the Landsat sensors (Suess et al., 
2018; Okujeni et al., 2021). Endmember candidates had to comply with 
certain criteria: First, we used Landsat time series and linear trend 
analysis of selected bands and indices to identify pixels exhibiting 
spectral stability, thus showing no obvious signs of disturbance or 
gradual processes such as greening and browning. Second, VHR imagery 
was used to visually interpret characteristics of the surface cover 
regarding structure, texture and colour. This was combined with drone 
and airborne imagery to better understand the expression of certain 
surface types in the relatively coarser Google/ESRI images. Third, we 
used STMs describing the median of the spectral bands for the six target 
intervals to calculate a multi-temporal Pixel Purity Index (PPI) (Chang 
and Plaza, 2006). The PPI is a data-driven technique to highlight pure 
pixels in the input imagery, while pure is defined as a multi-dimensional 
data point being at the borders of the feature space (Chang and Plaza, 
2006). In summary, the median image stack was transformed using 
Minimum Noise Fraction (MNF) which essentially yields the Principal 
Components with steadily increasing noise levels (Green et al., 1988). 
From this, we randomly generated 5000 vectors in this feature space 
(skewers) on which the MNF-transformed data points were projected, 
each time highlighting and flagging the most distant 0.5% data points. 
Finally, we created a heat map of the number of times a pixel was 
flagged as extreme and thus potentially pure. 

Based on these three main criteria, we compiled the locations of 
endmembers for the spectral library while accounting for intra-class 
spectral variability. Accordingly, we sampled point locations scattered 
throughout the study area (Fig. 1), while refraining from selecting pixels 
within the extent of drone and airborne imagery used for validation. 
Endmember pixels of each class were labeled as 100% surface cover 
although it could not be ruled out that a small remaining fraction was 
influenced by other cover types. In consideration of the observation- 
scale (30 m × 30 m), the small-scale heterogeneity of tundra vegeta-
tion communities, and the fact that ambiguities were greatest between 
non-shrub classes (e.g. pure herbaceous without lichen or moss cover), 
we, like previous studies, regarded this as an acceptable limitation of the 
approach (Suess et al., 2018; Okujeni et al., 2021). 

In total, we identified 287 pure pixel locations, summing to 67 for 
shrub, 68 for coniferous, 41 for herbaceous, 22 for lichen, 41 for water, 
and 48 for barren/built-up. Since the STM spectrum at each endmember 
location was extracted for all six target time intervals, this yielded a final 
endmember library with 1722 entries. Exemplary spectra showing the 
median STM for the entire season are shown in Fig. 4. 

Fig. 4. Average endmember spectra (±1 standard deviation depicting intra-class variance) derived from all six target intervals (1984–2020) representing the median 
STM of the six spectral bands and indices for the entire season (DOY 91–305) of each class. 
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3.2.2. Generation of synthetic training data 
For each land cover class and individual model run, continuous 

training fractions were generated by creating randomized linear mix-
tures of different endmember spectra between 0% and 100%. The 
generated target class' fraction of the respective mixture represents the 
output to be estimated by the model. The process of creating linear 
mixtures is built on the physical assumption that a mixed pixel repre-
sents a linearly weighted combination of the pure spectra of its indi-
vidual components (Settle and Drake, 1993). Originally, an endmember 
library is composed of actual reflectance spectra (e.g. Landsat bands), 
but the strength of using artificial image features such as STMs has been 
demonstrated in the context of mapping urban-rural land cover (Schug 
et al., 2020) and diverse vegetation classes in California (Okujeni et al., 
2021). Accordingly, our spectra in the endmember library were 
composed of the STM values of each time interval at the 287 endmember 
locations. 

A single run of synthmix was applied for each class and model to 
generate 2500 synthetic training data points. Overall, the parameter 
setup of synthmix followed the proven strategy of previous studies 
(Okujeni et al., 2017, 2018; Schug et al., 2020), in which each synthetic 
training instance was generated as follows: First, we specified the 
possible number of unique endmember spectra that make up the mixed 
signal, each associated with a unique probability (p) of occurrence. This 
encompassed binary (p = 0.70), ternary (p = 0.25) and quaternary (p =
0.05) mixing ratios. Second, after the random choice of the mixing ratio 
(two, three or four), an endmember spectrum of the target class was 
randomly selected, followed by filling up the remaining slots (one, two 
or three) with randomly drawn spectra using the proportional occur-
rence of class entries in the database. Here, we allowed for inter-class 
and intra-class mixtures. Third, random mixing weights between 0% 
and 100% were generated, relating to the fraction of each drawn spec-
trum in the final synthetic signal. These were iteratively generated for 
each spectrum under the constraint of summing to 100%. Last, the 
synthetic feature was created by linearly weighting the input spectra 
based on the fraction weights, while the associated mixing fraction of 
the target class' spectra represented the continuous training fraction. 
The original pure endmember spectra of the target class (100% cover) 
and other classes (0% cover) were also included in the final training 
dataset. We post-processed the training data to ensure an equal distri-
bution of cover fractions. 

3.2.3. Model building 
We deployed Kernel Ridge Regression (KRR) and Random Forest 

Regression (RFR) to estimate fractional cover, thus incorporating two 
different approaches of statistical learning. For that, we used the scikit- 
learn implementations of KRR and RFR in Python. Both methods are 
frequently used in remote sensing classification and regression prob-
lems, including fraction cover mapping (Okujeni et al., 2014), stemming 
from their ability to efficiently handle a high-dimensional, diverse input 
feature space and capturing non-linearities in the data (Lary et al., 2016; 
Maxwell et al., 2018). 

We applied Bayesian optimisation using a Gaussian Process (see e.g. 
(Rasmussen and Williams, 2006)) for tuning the hyperparameters of 
KRR and RFR by making use of the scikit-optimize library in Python. This 
allows to efficiently identify optimal configurations of hyperparameters 
(Snoek et al., 2012), significantly outperforming standard methods 
including grid search (Bergstra et al., 2011; Snoek et al., 2012). For this, 
Gaussian Process Regression is used as a surrogate model to approximate 
the objective function to be minimized by iteratively sampling and 
evaluating points in the function space (Snoek et al., 2012). We chose 
the cross-validated Mean Absolute Error (MAE) as the objective function 
to be minimized by the Gaussian Process. 

RFR is comparably insensitive to parametrize and it is recommended 
to set the number of trees to a large, while computationally feasible 
number. Tuning the number of random variables considered at each 
decision node seems to have the most notable influence on model 

performance (Probst and Boulesteix, 2018; Probst et al., 2019). 
Accordingly, we set the number of trees to 1000 and tuned the number 
of random variables considered at each split (max_features), the 
maximum depth of the tree (max_depth), the minimum number of sam-
ples required to split an internal (min_samples_split) as well as a leaf 
(min_samples_leaf) node. KRR, in turn, is highly sensitive to parametri-
zation. Model building required tuning the strength of regularization α 
(equivalent to C parameter in Support Vector Machines) and the γ 
parameter of the RBF kernel specifying the distance by which single data 
points influence others. 

The entire model building process was embedded within a nested 
cross-validation (CV) scheme (see Fig. 2), which is the preferred choice 
to counteract selection bias and overly optimistic estimates of model 
performance (Hastie et al., 2009). Nested CV consists of an inner CV- 
loop responsible for hyperparameter tuning and model selection, nes-
ted within an outer CV-loop in which the expected model performance 
and building strategy can be assessed. To include a wide array of syn-
thetically generated STM mixtures and improve the predictive perfor-
mance (Okujeni et al., 2017), we repeated the modeling process twelve 
times and obtained the final fraction cover maps for each algorithm 
(KRR & RFR) using ensemble averaging. 

3.3. Validation of fraction cover maps 

We conducted an internal assessment of model performance as well 
as an independent validation of the fraction maps. First, 10-fold nested 
CV provided a baseline of expected model performance, using synthet-
ically generated test sets based on unseen endmember spectra not used 
in the respective training sets. The independent validation of the fraction 
maps was based on the visual interpretation of VHR imagery. This is a 
common validation approach in fraction cover studies (Schug et al., 
2018; Suess et al., 2018; Baumann et al., 2018; Schug et al., 2020; Senf 
et al., 2020; Cooper et al., 2020) and in our case comprised drone and 
airborne image acquisitions obtained along a latitudinal gradient in 
2018/2019, thus enabling the validation of the recent 2015–2020 pre-
dictions. We could not realize an independent assessment for each time 
interval since suitable reference imagery or extensive field observations 
are not available. We regarded the validation of the recent predictions to 
function as a surrogate assessment for the entire period, since we trained 
class-wise multitemporal models based on spectra from the entire study 
period. Thus, the spectral signals across the entire study period are in-
tegrated and noise introduced by seasonality, climate trends and sensor 
properties are factored in. The applicability of multitemporal regression- 
based unmixing models has been shown in the context of Mediterranean 
shrublands (Suess et al., 2018), urban development (Schug et al., 2018) 
and characterising forest types (Senf et al., 2020). Following the inde-
pendent accuracy assessment, we assessed the distribution of the pixel- 
wise fraction cover sum of the individual classes. As the class-wise 
models are completely independent from one another, systematic bia-
ses in single time intervals should result in mismatches between the 
distributions. 

For the independent validation we used drone and airborne imagery. 
The drone acquisitions were acquired on site in August 2018 and August 
2019, using a RGB camera mounted on a DJI Phantom 3. These acqui-
sitions differ in their spatial coverage (0.03–0.16 km2), ground resolu-
tion (0.4–8 cm) and image quality. The airborne orthophotos were 
acquired by the Modular Aerial Camera System (MACS) on board the 
Polar-5 airplane in August 2018. The MACS camera was developed by 
the German Aerospace Center (DLR), Institute of Optical Sensor Sys-
tems, Berlin, Germany (supplementary materials D). This included 
multiple images stratified throughout the study area with a ground 
resolution of 10–15 cm covering the visual and near-infrared region of 
the electromagnetic spectrum. The locations of the drone and airborne 
image mosaics are depicted in Fig. 1. 

Validation pixels were selected based on a stratified random sam-
pling approach (Olofsson et al., 2014). The strata for random sampling 
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were derived by reclassifying the fraction maps of each class into four 
bins of 25%, thus 0–25%, 25–50%, 50–75%, 75–100%. For each class- 
wise fraction bin, we randomly sampled up to 9 validation points if 
the VHR imagery actually included the respective bin range of the 
classes. To capture the full variety of surface compositions, we manually 
added 40 points. To account for spatial-auto-correlation, all points were 
sampled with at least 60 m distance from another while the large ma-
jority of points were isolated at >500 m distance. Reference fractions 
were obtained by labeling the underlying land cover class at the center 
of a cell of a 9 × 9 grid within each Landsat pixel and subsequently 
calculating the proportional prevalence of each class (Fig. 5). We 
ensured the validity of the interpreted references by cross-checking in-
dividual interpretations among three persons and removed 27 reference 
sites where the class assignment was ambiguous due to image border 
artifacts. In summary, this resulted in a final reference pool of 216 
validation pixels at 30 m Landsat scale. 

3.4. Identifying spatio-temporal dynamics of Arctic land cover fractions 

Prior to analysing the fraction cover maps, we masked permanent 
water surfaces based on a manually defined decision tree and validated 
the binary water mask using an area-adjusted stratified random sam-
pling approach (Olofsson et al., 2014) (supplementary materials E). For 
the spatial analysis, we summarised the fraction cover distribution of 
each class across three major ecozones and the six observation epochs. 
To assess the temporal development of each land cover class, we 
calculated pixel-wise rates of change based on a linear model. We 
accepted the simplification of using a linear model since we were 
interested in estimating net average rates of change between 1984 and 
2020, acknowledging that change includes non-linear surface dynamics 
and our multi-annual aggregation collapses the 1984–2020 time series 
into six observational periods. Previous work has demonstrated the 
applicability of such an approach for assessing woody cover encroach-
ment at continental scale (Venter et al., 2018). We reduced the impact of 
prediction uncertainty and spurious effect size by treating change tra-
jectories within the expected margin of error based on the class-wise 
MAEs to exhibit zero change: 

ΔFCk
− year =

{
a + b × t, if ∣ΔFCk1984− 2020 ∣ > MAEk
0, otherwise. (1)  

where FCk is the fractional cover of land cover class k, intercept a, slope b 
and t encoded as years since the first central year from the individual 
time periods (t ∈ {0,6,12,…,30}), and MAEk is the mean absolute error 
of class k retrieved from the independent validation procedure. We 
refrained from filtering criteria based on null-hypothesis significance 
testing, since b-estimates deemed non-significant based on arbitrarily set 
p-value thresholds not only included subtle estimated changes centered 
around zero effect size, but also lead to falsely rejected change trajec-
tories we consider meaningful. Based on the average rates of change, we 
then assessed fraction cover change across latitudinal gradients of the 
study region and examined temporal trajectories for a variety of surface 
conditions. 

4. Results 

4.1. Accuracy of regressed land cover fractions 

All model combinations of algorithm (KRR, RFR) and target class 
converged well to an optimal solution using Gaussian Process based 
hyperparameter tuning. Internal CV prospected potentially good pre-
dictive performance across all classes (MAEs 4.9–11.3%), while KRR 
consistently outperformed RFR in its predictive power (Table 1). The 
independently conducted accuracy assessment using 216 validation 
pixels labeled with a 9 × 9 grid revealed an overall good predictive 
capacity of the class-wise multi-temporal KRR model ensembles 
(Table 1, Fig. 6). We found KRR to outperform RFR also during the in-
dependent accuracy assessment and therefore selected the KRR models 
for our subsequent analyses. MAEs ranged between 3.0 and 11.2% 
among the target classes: For our main target class, shrubs, we found 
good agreement between predicted and observed fractions with a MAE 
of 10.6% and small prediction bias of − 1.0%, thus exhibiting a slight 
underestimation of prevalent shrub cover. Likewise, coniferous tree 
cover was mapped with a MAE of 10.6%, though with an almost 

Fig. 5. Example images showing the applied 9 × 9 point grid scheme used in combination with MACS (a & b) and drone (c & d) imagery to validate fraction cover 
predictions. 
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exclusive positive prediction bias of +10.5%. The bias was present at all 
tree cover densities. Trees were predicted by the model in tree-free 
pixels and tree cover was overestimated in pixels with partial tree 
cover. Herbaceous vegetation cover was estimated with a MAE of 11.2% 
and a moderate prediction bias of +5.4%. The deviation of the linear 
model from the optimal 1:1 line reveals an overestimation of the her-
baceous cover by the model for all ranges of fractional covers. Lichen, 
water bodies and barren surfaces were mapped with MAEs of 5.9%, 
3.0% and 7.3%, respectively. However, lichen cover was below 20% in 
most validation pixels as higher lichen coverage at the scale of 30 × 30m 
is generally rare and not covered by the available VHR imagery. On 
average, lichen cover was moderately overestimated by 5.0%. While the 
model correctly identified low water coverage pixels and most fully 
water covered pixels, it tended to underestimate medium water factions. 
In pixels with <50% barren surfaces, the model tended to overestimate 
barren cover, while it underestimated higher barren covers. 

4.2. Arctic land cover fractions across space 

The multitemporal map predictions revealed distinct regional dif-
ferences and environmental gradients of the land cover fractions across 
the greater Mackenzie Delta Region (Fig. 7 a-f; web map version at 
https://ows.geo.hu-berlin. 

de/webviewer/arctic-shrub/) See supplementary materials F for 
(separate) maps of shrub, coniferous, and herbaceous as well as lichen, 
water, and barren). To describe the spatial patterns, we refer to the most 
recent time period (2015–2020) in this section (Fig. 7f). Average shrub 
cover (including deciduous trees in the subarctic) is highest in the low 
Arctic tundra (47.2%), followed by the Taiga Plain (45.4%) and lowest 

Table 1 
Accuracy metrics for each class and model obtained from internal and inde-
pendent accuracy assessment.  

Class Model Nested cross-validation Independent validation 

MAE 
(%) 

Prediction 
bias 

MAE 
(%) 

Prediction 
bias 

Shrub KRR 6.6 ±
0.7 

− 1.0 ± 1.0 10.6 − 1.0 

RFR 8.7 ±
0.4 

− 0.3 ± 1.0 13.8 3.6 

Coniferous KRR 4.9 ±
0.4 

− 0.2 ± 0.6 10.6 10.5 

RFR 7.2 ±
0.4 

0.7 ± 0.8 17.5 16.4 

Herbaceous KRR 9.6 ±
0.8 

− 2.1 ± 1.0 11.2 5.4 

RFR 11.3 ±
0.6 

− 0.9 ± 0.6 13.0 4.9 

Lichen KRR 6.9 ±
1.7 

− 1.0 ± 2.0 5.9 5.0 

RFR 8.3 ±
1.4 

0.8 ± 2.4 11.2 9.8 

Water KRR 6.6 ±
0.8 

− 2.2 ± 1.7 3.0 − 0.3 

RFR 6.8 ±
0.4 

− 0.8 ± 1.2 5.1 1.9 

Barren KRR 6.7 ±
0.8 

− 1.6 ± 0.9 7.3 5.1 

RFR 7.3 ±
0.4 

0.0 ± 0.7 10.0 6.8  

Fig. 6. Kernel Ridge Regression (KRR) ensemble prediction versus observed fractional cover of shrubs (a), coniferous trees (b), herbaceous vegetation (c), lichens (d), 
water (e) and barren surfaces (f). 
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in the Taiga Cordillera (37.9%) (supplementary materials F, Table F1). 
Coniferous trees, in contrast, have the highest cover in the south and are 
less frequent at higher latitudes. Strong local dominance of coniferous 
trees in the boreal Taiga Plains with on average 34.6% fraction cover, 
smoothly transitioned through the Taiga-Tundra Ecotone to reach 
12.7% within the low Arctic tundra. In that regard, we emphasize the 
observed overestimation of coniferous tree cover of approximately 
+10.5% obtained from the independent accuracy assessment. Herba-
ceous vegetation favoured the elevated and northern regions of the 
study area, dominating in large parts of the lowarctic tundra (49.4%) 
and Taiga Cordillera (48.2%), whilst the plains of the boreal south 
showed a lower coverage of 30.8%. Lichen were intermixed throughout 
the study area with comparably stable cover across the regions 
(9.1–10.7%). Sub-pixel water influence (i.e., excluding masked water 
bodies), for instance in wetlands, covered on average 1.8–2.0%, while 
barren surfaces in the low-lying tundra and taiga ranged between 9.1 
and 9.8% and increased in the mountainous Taiga Cordillera to 18.1%. 

Besides large scale gradients, shrub cover was also related to more 
localized conditions. In particular in the subarctic regions, shrubs 
dominated on grounds previously disturbed by wildfire, often forming 
vast patches delineating the burn scars. Generally, previous wildfire 
disturbances were clearly demarcated from their surroundings by an 
overall increased cover of either barren, herbaceous, shrub or coniferous 
tree cover, depending on the relative time since fire occurrence. The 
dominant role of coniferous trees in the boreal parts clearly decreased 
with increasing latitude, forming low-density woodlands accompanied 
by lichens in the Taiga-Tundra Ecotone, as well as individual islands of 
forest stands within the otherwise shrub dominated tundra landscapes 
(Fig. 7i). In the delta, coniferous forest stands reached further north than 
in the surrounding landscapes, with single patches to entire forest stands 
embedded in a dense cover of shrub species (Fig. 7g). Generally, we 
found increased shrub abundance along streams and rivers. This 
included the braided river network of the low-lying Mackenzie Delta as 
well as creek and river valleys across the Yukon Coastal Plain. Well- 
drained areas with pronounced topography such as the Caribou Hills 
east of the alluvial plain and the foothills of the Brooks Range were 
characterised with an overall greater cover of herbaceous vegetation. 
This also applied for depressions featuring wetlands which were also 
almost exclusively covered by herbaceous species. Between these 
topographic and hydrological gradients, shrubs and herbaceous vege-
tation created a fine scale heterogeneous mosaic in large parts of the low 
Arctic landscapes, encompassing Richards Island, the lake rich coastal 
lowlands and large parts of the Tuktoyaktuk Peninsula (Fig. 7h). 

From a methodological perspective, the overall sum of pixel-wise 
fraction cover components often exceeded 100%. We observed this for 
each observation period independently, with overall good agreement 
between the distributions of each time interval and the potential to 
mitigate this effect when correcting the estimates using the biases from 
the independent accuracy assessment (supplementary materials G). 
However, we refrained from manipulating the estimates for subsequent 
analyses, since a correction using the biases would treat the symptoms, 
not the cause. Based on visual interpretation, we found this pattern to be 
most strongly influenced by overpredictions of the classes coniferous 
and lichen. Accordingly, falsely predicted abundance of coniferous trees 
was identified when strong shadowing effects occurred. Furthermore, 
lichen, which are commonly intermixed, appeared to be additionally 
included in the herbaceous predictions to a large degree (Fig. 7i). 

4.3. Arctic land cover fractions across time 

The temporal development of land cover fractions in the Mackenzie 

Delta Region was characterised by net increases in shrub and coniferous 
tree cover, declines in herbaceous and lichen abundance and stagnating 
barren and water surface coverage (Fig. 8, Fig. 9). Net shrub cover in-
crease averaged at +2.2% per decade for the entire study area. The di-
rection and magnitude of change, however, varied across the Mackenzie 
Delta Region (Fig. 10a). We found opposing patterns of strong shrub 
increase and decline for large parts of the subarctic Taiga Plain with a 
net increase of +1.4% per decade. Across the Taiga Cordillera, shrub 
cover increased by on average + 1.6% per decade. The low Arctic tundra 
exhibited a net decadal increase of +4.2%, where the major hotspots of 
change were situated in the eastern lake-rich lowlands towards the 
Tuktoyaktuk Peninsula (Fig. 10a). Accordingly, the net area gained by 
shrub species between 1984 and 2020 was estimated at 8187 km2, 
mostly attributed to net expansion between the taiga-tundra transitional 
zone and central low Arctic tundra (Fig. 9). However, relative to the 
initial shrub cover between 1984 and 1990, we found the strongest 
shrub cover expansion in the northernmost regions above 69.5◦ (Fig. 9). 

Simultaneous to the extensive shrubification in the form of cover 
expansion, we found herbaceous and lichen cover to decline. Herba-
ceous vegetation decreased in all three ecoregions by decadal magni-
tudes of − 4.3% in the low Arctic tundra, − 1.2% in the Taiga Cordillera 
and − 2.6% in the Taiga Plains. The latitudinal pattern of herbaceous 
cover change largely mirrored that of shrubs in opposite direction 
(Fig. 9). Lichens, which were generally less abundant, decreased the 
strongest in the low Arctic tundra and Taiga Plain by − 2.5% and − 1.8% 
per decade, respectively. With a net decadal increase of +1.9%, changes 
associated with coniferous tree cover were greatest in the southernmost 
boreal parts. We also found tree cover expansion to operate across the 
Taiga-Tundra Ecotone (Fig. 9), contributing to a net expansion of +1.0% 
in the Arctic tundra. 

Generally, Arctic land cover fractions were not developing uniformly 
across the study period (Fig. 8). In the low Arctic tundra, net shrub in-
crease was largely driven by strong expansion in earlier observational 
periods, while the Taiga Cordillera and Plains were characterised by 
rather continuous increments of smaller magnitude (Fig. 7a-f, supple-
mentary materials H). Mapping the proportional occurrence of overall 
shrub cover change between the first (t1–t3) and second half (t4–t6) of 
the study period (Fig. 10b), we found the major hotspots of shrub pro-
liferation during earlier timeframes to be situated in the lake-rich Tuk-
toyaktuk Coastlands and locally on wildfire disturbed grounds. From the 
lowlands towards the northernmost latitudes on the Tuktoyaktuk 
Peninsula, regions with a more balanced magnitude over time and 
greater recent expansion increased in their frequency. Similarly, the 
western coastal lowlands and foothills exhibited balanced and recent 
developments more frequently. 

Local fraction cover trajectories revealed temporal developments 
associated with specific land surface dynamics (Fig. 11, see supple-
mentary materials I for additional sites): This included forest gain in the 
subarctic characterised by gradually increasing coniferous tree cover 
(Fig. 11a), abrupt decline in tree cover accompanied by positive de-
velopments of barren, herbaceous and shrub cover following fire 
disturbance in 1999 (Fig. 11b), intensive shrubification on grounds 
burnt in 1968 (Fig. 11c) as well as vegetation development following 
lake drainage (Fig. 11d). Furthermore, other disturbances such as lake 
drainage, thaw slumps and river erosion affect shrub cover (supple-
mentary materials I, Fig. I1 i-k). Undisturbed, unchanged regions were 
characterised by stable fraction cover trajectories with generally minor 
fluctuations (Fig. 11e). Along the latitudinal gradient in the Arctic 
tundra, we identified intense shrubification in earlier periods (Fig. 11f), 
uniform expansion between the entire study period (Fig. 11g), as well as 
relatively recent emerging shrub expansion in the northernmost regions 

Fig. 7. Fraction cover maps of the main land surface classes shrubs, coniferous trees and herbaceous vegetation for the six observation periods (a–f) accompanied by 
detailed views for the recent (2015–2020) map showing a delta landscape (g) and shrub tundra (h-i). A web map version is available at https://ows.geo. 
hu-berlin.de/webviewer/arctic-shrub/. Single-class maps for all six cover types are provided in supplementary materials F. 
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(Fig. 11h), all of which associated with declines in herbaceous vegeta-
tion cover. 

5. Discussion 

5.1. New opportunities and persisting difficulties for Arctic fraction cover 
mapping 

Based on the independent accuracy assessment of our mapping re-
sults, we found that the generalized multitemporal regression models 
are well suited for deriving fractional cover of Arctic shrub species and 
other land cover classes at Landsat scale. The plausibility of the 
approach is corroborated by the predicted spatial patterns of the land 
cover classes, which correspond well to expected large- and small-scale 
ecological gradients. However, challenges regarding Arctic fraction 
cover mapping and methodological limitations propagate uncertainty 
through the modeling process and are reflected, for instance, in varying 
predictive performances among target classes. 

5.1.1. Arctic vegetation types in regression-based unmixing 
Here, we provide the first application of regression-based unmixing 

using synthetically generated training data within Arctic ecosystems, 
mapping land cover fractions solely based on pure, temporally stable 
image endmember spectra. Relying upon synthetically mixed training 
data in biomes such as the Arctic tundra opens up new possibilities, since 
field data in the Arctic is scarce and not readily obtainable. However, the 
fine-scale structural heterogeneity of Arctic plant communities (Peter-
son and Billings, 1980; Epstein et al., 2004c; Lantz et al., 2010b), in 
combination with a target resolution of 30 m, poses challenges with 
regards to the identification of pure image endmembers. While some 
classes form distinct patterns, such as a closed-canopy shrub structure, 
pure endmembers of other cover types can be difficult to obtain. 

We focused on mapping Arctic shrub species with a more readily 
identifiable closed-canopy structure, so that inter-class mixtures of non- 
shrub endmembers did not impact accurately regressing shrub cover. 
Accordingly, cover estimates of the canopy-forming shrub species were 
predicted with overall consistent accuracy (Macander et al., 2017). Non- 
vascular surface components including lichen and mosses are, however, 
seldomly found in pure isolation from other classes but rather form an 
integral part of the shrub/tussock tundra and boreal forest communities 
(Pearce et al., 1988). We anticipated these classes to be partly included 
in the herbaceous endmembers, which is perceivable in the spectral 
similarity of the endmember spectra and resultant net overprediction of 
the herbaceous fraction cover component. Similarly, coniferous tree 
stands vary in their growing density which - in combination with the 
conical shape - promotes shadowing effects and an open-canopy struc-
ture (Mcdonald et al., 1996). Based on the fact that our predictions of 
coniferous tree cover were systematically biased towards over-
estimation, we believe coniferous tree endmembers were more often 
influenced by background signals from other classes. Accordingly, we 
found areas with either pronounced topography and thus frequent 
shadowing, or surfaces exhibiting low reflectance due to the influence of 
water, as well as more open-structured woodlands to be particularly 
prone to overestimating coniferous tree cover. Simultaneously, inter- 
mixed, non-pure water surfaces exhibited pronounced under- 
estimation. This was particularly evident in the northernmost coastal 
lowlands which had experienced substantial wetting and lake-expansion 
through thermoerosion (Olthof et al., 2015), leading to falsely associ-
ated (relative) increases in coniferous tree cover (Fig. 9). This inade-
quate separation of water, shadows and dark woody vegetation has also 
been reported in previous studies on fraction cover mapping (Schug 
et al., 2020; Suess et al., 2018). A potential correction for systematic 
prediction biases could encompass an intermediate accuracy assessment 
using an independent sample of reference data, if available. However, 
the final accuracy assessment of the bias corrected results would then 
require yet another sample of reference data to counteract overly opti-
mistic accuracy estimates. 

Although the creation of a spatially and temporally representative 
spectral library is not trivial (Schug et al., 2020), we emphasize that 

Fig. 8. Area covered by the classes shrub (Sh), coniferous (Cf), herbaceous 
(Hb), lichen (Lc), water (Wt), and barren (Br) for the Low Arctic Tundra (a), 
Taiga Plain (b), and Taiga Cordillera (c) for each observation period (t1, t2, …, 
t6). Average pixel-wise decadal rates of change in fractional cover for each area 
(see Fig. 10) as well as the relative change in area covered are depicted above 
the bars. 
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identifying image endmembers for Arctic land cover types at 30 m res-
olution allows for integrating across spectrally complex tundra vegeta-
tion types. Minor remnants of other land cover classes contained within 
the identified endmember pixels are a commonly accepted limitation 
when generating training data from synthetic mixing (Suess et al., 2018; 
Okujeni et al., 2021). We further emphasize that our main target class - 
shrubs - was not impacted by these effects, exhibiting little to no sys-
tematic over- or underestimation, and that for classes where this effect 
was present (e.g. coniferous), we found this effect to be consistent 
throughout the time series (supplementary materials G). Accordingly, 
relative changes in cover fractions over time might thus still be captured 
accurately despite class-cumulative overpredictions. Furthermore, 
incorporating multi-seasonal imagery might inevitably capture some 
degree of vertical plant structure, which could translate into the sum of 
the individual cover components exceeding 100%, while reference 
fractions derived from mono-temporal VHR imagery does not incorpo-
rate this effect. Overall, the demonstrated applicability of this approach 
within Arctic tundra environments is of particular interest since field 
data are generally scarce, often clustered regionally and temporally 
confined (Beamish et al., 2020), thus permitting methodological ap-
proaches that inherently rely upon adequate availability of field obser-
vations. Accordingly, previous studies had to accept limited and 
clustered reference data (Berner et al., 2018; He et al., 2019) or spatial 
and temporal mismatches between imagery and field data (Selkowitz, 
2010; He et al., 2019; Macander et al., 2017). Using synthmix, training 
data can be spatially stratified across all scales to incorporate the het-
erogeneity of Arctic landscapes, initiating the possibility of mapping 
large parts of the Arctic at a high thematic detail despite insufficient 
field data. 

Besides the complex structural component, disentangling tundra 
vegetation types remains difficult due to the spectral similarity of Arctic 
plant communities (Huemmrich et al., 2013; Bratsch et al., 2016; 
Beamish et al., 2017). In this study, we emulated surface component 
mixtures based on the assumption of linear spectral mixing. Since light 
interactions among surface objects can be non-linear (Borel and Gerstl, 
1994; Keshava and Mustard, 2002), we expect this to impact the pre-
dictive performance of our models. However, we found our models to 
separate the target classes well, particularly in disentangling the 

heterogeneous mosaic between shrub species and herbaceous vegetation 
prevalent in large parts of the tundra biome. Our findings corroborate 
the assumption that lichens are complex to distinguish (Beamish et al., 
2020), whilst canopy-forming species are regressed with greater cer-
tainty using multi-spectral imagery (Macander et al., 2017). This stems 
from the fact that inter-class mixtures introduce ambiguity in the spec-
tral signal and ultimately increase the complexity of the regression task. 
The observed tendency of overestimating coniferous tree cover is 
therefore likely to be partially caused by low-growing evergreen woody 
vegetation, with similar spectral behaviour to coniferous trees. 

As several surface types show similar spectral properties at single 
time points, the phenological development during the season has to be 
incorporated. The importance of incorporating multi-seasonal imagery 
for disentangling spectrally similar tundra PFTs has been stated in the 
context of Arctic land cover classification and fraction cover mapping 
(Macander et al., 2017; Karami et al., 2018; He et al., 2019; Wang et al., 
2020). Particularly the value of pre- and late-seasonal information has 
been emphasized (Bratsch et al., 2016; Beamish et al., 2017; He et al., 
2019), since woody components, herbaceous vegetation and non- 
vasculars exhibit different phenologies, where structural changes 
evoked through the senescence of vascular species expose the under-
story vegetation (He et al., 2019; Macander et al., 2017). In this regard, 
we also anticipate great potential in incorporating winter-season imag-
ery for a better separation of coniferous trees protruding out the snow 
cover. However, low sun angles and ubiquitous cloud cover further 
decrease the already low observational density in the earlier timeframes, 
complicating the generation of winter-season noise- and gap-free image 
features across large-areas. 

5.1.2. Multi-annual and seasonal spectral-temporal-metrics 
In this work, we built upon multi-annual and seasonal STMs for 

deriving land cover fractions. STMs frequently form the basis for 
satellite-based large area mapping (Hansen et al., 2013; Venter et al., 
2018; Pflugmacher et al., 2019), stemming from their ability of 
providing gap-free image feature across large areas and integrating 
across inter- and intra-class variabilities in phenology, differences in 
sensor properties, climate trends, and seasonal characteristics such as 
sun-angle variability (Suess et al., 2018). Previous work has shown the 

Fig. 9. Area gain (blue), loss (red) and resulting net change (grey) along the latitudinal gradient of the study area (lower x-axis) for the classes shrub, coniferous, 
herbaceous and lichen (summarised in 0.02◦ steps). The change relative to the initial class coverage is depicted in the black solid line (upper x-axis). The numbers in 
the upper left corner of the plot refer to the net absolute area change for the entire period and net absolute cover change per decade. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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applicability of STMs in quantifying fractional cover of woody features 
in tropical and subtropical regions (Venter et al., 2018; Higginbottom 
et al., 2018), for mapping urban expansion and national scale land cover 
(Schug et al., 2018, 2020) as well as for mapping Arctic plant commu-
nities (Macander et al., 2017). Here we corroborate the finding that 
regression-based unmixing using synthmix in combination with Landsat- 
derived STMs is well-suited for fraction cover mapping (Schug et al., 
2020; Okujeni et al., 2021), and demonstrate the applicability of syn-
thmix for disentangling fractions of shrubs and other cover types in 
Arctic landscapes. 

Dense intra-annual image time series are needed to capture the often 
nuanced differences in land surface phenology between land cover types 
(Schwieder et al., 2016). Previous studies in Mediterranean and 
temperate settings made use of narrow temporal windows for the deri-
vation of STMs or composites (Higginbottom et al., 2018; Schug et al., 
2020; Okujeni et al., 2021). In Arctic contexts, however, the observa-
tional density of utilizable optical imagery is restricted by a short 
growing season, low sun angles and frequent cloudiness. This imposes 
the need for rigorous preprocessing of the imagery and potentially 
integrating across seasonal imagery from multiple years in order to 

Fig. 10. Map showing the absolute decadal change in shrub cover obtained from pixel-based linear models (a), accompanied by a detailed view for parts of the 
Tuktoyaktuk Coastlands (web map at https://ows.geo.hu-berlin.de/webviewer/arctic-shrub/). Blue polygons in (a) depict scars of larger fires based 
on the National Fire Database of the Canadian Forest Service (Canadian Forest Service, 2019) and the yellow enumerated rectangles show the positions of the 
temporal trajectories depicted in Fig. 11. Subfigure (b) illustrates the complementary temporal occurrence of the change shown in subfigure (a), that is the proportion 
of the total change that occurred during each of the two periods. By comparing the magnitude of observed change during each of the two periods t1 − t3 (1984–2002) 
and t4 − t6 (2003− 2020), the map shows if changes occurred relatively equal over time (yellow) or predominantly during the earlier (blue) or later timeframes (red). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

L. Nill et al.                                                                                                                                                                                                                                      

https://ows.geo.hu-berlin.de/webviewer/arctic-shrub/


Remote Sensing of Environment 281 (2022) 113228

15

guarantee a spatio-temporal consistent quality of input features (Sel-
kowitz, 2010). Accordingly, previous work on deriving monotemporal 
fractional cover in tundra landscapes relied upon integrating several 
years (5–16 years) of imagery for creating image composites or STMs 
(He et al., 2019; Macander et al., 2017). Here, we collapsed the study 
period from 1984 to 2020 into six distinct epochs, each comprising 6 
years (7 years for 1984–1990) of image acquisitions. In combination 
with rigorous preprocessing of the Landsat imagery, fusing the obser-
vations from each 6-year epoch into an artificial single year resulted in a 
dense time series representing the intra-annual phenology of the pixels. 
Smoothing this dense time series using RBF-kernel based interpolation 
allowed for deriving virtually noise-free, high-quality STMs within 
comparably narrow windows of time. This is particularly important for 
the earlier epochs only covered by Landsat-5 with less frequent image 
acquisitions. Yet aggregating the time series into six epochs was not only 
necessary due to data availability and image quality concerns, but also 
reasonable, given that our main goal was to quantify gradual shrub 
cover dynamics over multiple decades. A similar temporal aggregation 
approach has been applied for mapping woody plant encroachment in 
Africa (Venter et al., 2018). However, restricting the temporal resolution 
to 6-year epochs implies that abrupt land surface change triggered by 
disturbance events is smoothed. If such fine temporal scales are 
required, fusing observations from Landsat and Sentinel-2 holds great 
potential for future adaptions of the approach, though this will inevi-
tably be limited to recent years (2015-). 

5.1.3. Global multitemporal regression models 
We specifically targeted the applicability of our models across time 

by building single, class-wise, multitemporal regression models, instead 
of modeling each time period separately. Thereby, inter- and intra-class 
variabilities owing to phenology, differences in sensor properties, 
climate trends, and seasonal characteristics become integrated across 
the entire study period, reducing the impact of systematic and random 
errors within single observational years and enabling the comparability 
of fractions across time (Suess et al., 2018). Compared to modeling each 
time period separately using models trained solely on data from the 
respective time steps, multitemporal modeling likely increases the 
complexity of the regression problem, since integrating across the 
aforementioned factors implies including greater variance in the data. 
However, it is a trade-off between maximising single time period pre-
diction accuracy and multitemporal applicability of the models. Since 
field observations or suitable VHR imagery are only available for the 
2015–2020 period, we utilised the independent assessment of the recent 

fraction cover predictions as surrogate for the expected overall accuracy 
of the models. We thus acknowledge that some degree of prediction 
uncertainty across the time series remains elusive. However, we 
emphasize the overall good predictive model performance on the recent, 
independently validated period, while the STM features the models were 
trained on are derived from >80% of 1984–2014 imagery (since each of 
the six periods on averages contributes 1/6 of STM in the random syn-
thetic data generation process). Furthermore, Senf et al. (2020) found 
the largest impact on prediction uncertainty to predominately originate 
from deviances in the date of image acquisition using best-available- 
pixel composites. Here, we specifically counteract the influence of sin-
gle observations and resultant single year fluctuations in the time series 
by using STMs derived from dense, multi-annually aggregated image 
time series. Accordingly, multi-decadal change originating from abrupt 
and gradual processes can be tracked in an environment with a short 
seasonal window and low intra-annual acquisition density, while the 
temporal trajectories exhibit marginal fluctuations (Fig. 11). Our results 
corroborate the suitability of multitemporal regression modeling for 
fraction cover mapping beyond Mediterranean shrub cover (Suess et al., 
2018), urban development (Schug et al., 2018) or forest cover types 
(Senf et al., 2020). 

In summary, our results demonstrate the applicability of using 
Landsat image features and regression-based unmixing of synthetic 
training data to estimate fractional cover of Arctic shrubs and other land 
cover types. Our approach differs from previous mapping exercises in 
the Arctic context which either relied upon field observations (Selko-
witz, 2010; Macander et al., 2017; He et al., 2019) or VHR imagery 
derived training data (Olthof and Fraser, 2007; Beck et al., 2011), yet we 
retrieved shrub cover at comparable good accuracy (RMSE of 14.7% 
here versus 9.4–19.0%). However, the comparability of predictive ca-
pabilities among studies suffers from differences in the validation 
strategy (e.g. fully independent; left-out samples of clustered data), class 
definitions and field data availability. Accordingly, He et al. (2019) 
found substantial discrepancies in estimated fractional cover when 
comparing their model predictions to Macander et al. (2017) and Beck 
et al. (2011) in Arctic Alaska. In this regard, our method may contribute 
to the need for more unifying and comparable approaches when aiming 
at assessing spatial and temporal developments across different regions 
of the Arctic. Ultimately, the applicability of our approach for Arctic 
landscapes will be conditioned to a large degree by the sufficient 
availability of satellite observations, with substantial discrepancies 
existing within the northern latitudes (Zhu et al., 2019). 

Fig. 11. Fraction cover trajectories for selected sites whose locations are depicted in Fig. 10a. The trajectories comprise subarctic forest gain (a), subarctic vegetation 
succession following wildfire disturbance in 1999 (b), intense tundra shrubification on grounds burnt in 1968 (c), thermokarst lake drainage (d), unchanged surfaces 
(e), as well as gradual shrub expansion along a latitudinal gradient with change during the earlier (f), the entire (g) and the later (h) observational periods. 
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5.2. Arctic fractional cover across space and time 

5.2.1. Tundra vegetation mosaics of the Mackenzie Delta region mapped 
We found the map predictions to agree well with expected large-scale 

climatic environmental gradients driven by latitude, topography and 
coastal proximity. The latitudinal decrease of coniferous tree cover 
outlines the trajectory from dense forest cover in the subarctic, that 
transitions into open-canopy forests and woodlands, to finally isolated 
patches of tree stands in the northern sections of the Taiga-Tundra 
Ecotone (Timoney et al., 1992). In parallel, shrubs and herbaceous 
vegetation increase in their dominance, characterising the transition of 
subarctic boreal forests to shrub tundra landscapes (Burn and Kokelj, 
2009; Lantz et al., 2010b). Further north, the complex vegetation mosaic 
of the shrub-tundra becomes increasingly dominated by herbaceous 
species such as tussock-forming sedges (Lantz et al., 2010b), expressed 
in parallel by the gradual decline of shrub cover on the coastal lowlands 
and the northern Tuktoyaktuk Peninsula. Lichens largely mirror the 
pattern of coniferous tree cover, which agrees with the presence of open 
lichen woodlands in large parts of the subarctic regions (Pearce et al., 
1988) as well as lichen-rocklands found on outcrops east of the delta 
(Timoney et al., 1992). 

On a finer scale, the fraction maps are able to delineate the local 
dominance of PFTs associated with specific landscape settings as well as 
the heterogeneous mosaic of plant communities, driven by landscape 
microtopography and disturbance history (Peterson and Billings, 1980). 
Accordingly, we found shrubs to be increasingly located on grounds with 
generally good nutrient availability and moist, non-waterlogged condi-
tions, as found in riparian settings (Grünberg et al., 2020; Liljedahl et al., 
2020), along hillslopes (Tape et al., 2006), and following wildfire 
disturbance (Landhausser and Wein, 1993; Lantz et al., 2010a; Gaglioti 
et al., 2021). Herbaceous vegetation, in contrast, prevailed in sedge 
dominated wetlands along the coastal lowlands and river estuaries and 
on grass-dominated hilltops (Burn and Kokelj, 2009). 

This study extents the mapping of the Mackenzie Delta Region 
beyond categorical land cover (Bartsch et al., 2019; Wang et al., 2020), 
providing a comprehensive portrayal of the large scale gradients and the 
fine-scale heterogeneous nature of Arctic vegetation types in the 
Mackenzie Delta Region. It enables incorporating a more accurate rep-
resentation of land surface conditions when modeling land-atmosphere 
interactions (Loranty et al., 2011; Muster et al., 2012) or assessing 
vegetation-permafrost dynamics (Heijmans et al., 2022). 

5.2.2. Shrub cover expansion revealed 
The results suggest widespread occurrence of expanding shrub cover, 

averaging at +2.2% per decade for the entire study area and + 4.2% per 
decade for the low Arctic tundra. Net area gained by shrub species was 
largest within the Taiga-Tundra transitional zone and southern low 
Arctic tundra while relative shrub expansion was strongest in the 
northernmost regions (>69.5◦N). From a broad-scale perspective, this 
corroborates evidence of widespread shrub expansion in the greater 
Mackenzie Delta Region (Lantz et al., 2013; Fraser et al., 2014a; Myers- 
Smith et al., 2019). Generally, shrubification has been linked to warm-
ing air temperatures, owing to the climate sensitivity of many shrub 
species (Myers-Smith et al., 2015b). Accordingly, continuously 
increasing air temperatures of >2.5 ◦C in the central Mackenzie Delta 
Region since 1970 (Burn and Kokelj, 2009), corroborates the attribution 
of warming as major underlying causal mechanism behind large scale 
shrubification in the study area (Fraser et al., 2014a). 

Our estimates of area-wide magnitude of shrub cover change are 
closely related to local evidence of shrub encroachment, acknowledging 
differences in the observed physiognomy (e.g. tall shrubs only), spatial 
scale and temporal timeframes observed. First, this encompasses regions 
outside the Western Canadian Arctic, including northern Québec 
(+4.2% dec− 1 1957–2008, Ropars and Boudreau, 2012), northern 
Alaska (+1.0–1.6% dec− 1 tall shrubs 1950s–2000s, Tape et al., 2006) 
and longitudinal gradients of northern Siberia (+1.3–6.0% dec− 1 

1960s–2000s, Frost and Epstein, 2014). Second, the expansion rates 
derived here in the low Arctic tundra correspond well to local evidence 
of shrub encroachment within the Mackenzie Delta Region, with decadal 
increases in average shrub cover of +4.5% in the upland tundra north of 
Inuvik between 1972 and 2004 (Lantz et al., 2013), as well as +5.9% 
(Fraser et al., 2014a) and + 2.3–3.5% (Moffat et al., 2016) on the 
Tuktoyaktuk Coastlands between 1980 and 2013. We mapped the 
spatio-temporal dynamics of this process at 30 m pixel resolution for an 
area of 143,100 km2, thus extending the spatial dimensions at which 
shrub encroachment can be directly quantified. 

Our results show that the dynamics of shrub expansion in this region 
have not been uniform across space and time, suggesting that shrubifi-
cation is modified by several interacting site-specific factors, including 
soil moisture regime, topography, herbivory intensity, and disturbance 
(Myers-Smith et al., 2015b; Martin et al., 2017; Mekonnen et al., 2021). 
Such local-scale heterogeneity in changing vegetation productivity has 
also been described in the Mackenzie Delta region (Seider et al., 2022). 
Our fraction maps depict clear signs of accelerated and intensive shrub 
increase on grounds previously disturbed by wildfire (Canadian Forest 
Service, 2019). In the subarctic, we found fraction cover trajectories to 
match the expected stages of secondary succession of boreal forests 
(Fig. 11a-b), initiated by burned barren ground developing into a mosaic 
of herbaceous and shrubby vegetation, followed by mostly deciduous 
shrub/tree dominance and the regrowth of coniferous trees (Viereck 
et al., 1981). Generally, the largest changes in coniferous tree cover were 
found in the southern boreal plains. While evergreen forest gains occur 
within the subarctic regions of north-western Canada (Wang et al., 
2020), the actual forest extent appears to be stationary in the region 
(Rees et al., 2020). Given the prediction accuracy of coniferous tree 
cover, the magnitude of change observed and the spectral similarity to 
other surface types, we thus anticipate that the observed coniferous tree 
gains are to some extent also reflecting increases in shrub cover and 
wetting processes, especially within the low Arctic tundra. In the tundra 
and the Taiga-Tundra transitional zone we observed a development 
towards dense shrub cover, matching the observed succession of tall 
deciduous shrub and tree species in that region (Landhausser and Wein, 
1993; Lantz et al., 2010a). Generally, fire events have shown to accel-
erate ecological processes, including shrub expansion, which in the 
absence of fire disturbance exhibit a rather lagged response to increasing 
temperatures (Gaglioti et al., 2021). There is observational evidence that 
shrub expansion, concomitant with greater fuel load, can trigger positive 
feedback of increased fire frequency and magnitude. Under continued 
warming, this process is expected to move northwards and accelerate 
the latitudinal expansion of tall shrub species into dwarf-shrub and 
tussock tundra (Gaglioti et al., 2021). 

Our results suggest that shrub expansion was often accompanied by 
declining herbaceous vegetation and lichen cover. Generally, tundra 
shrubification is largely enabled by the competitive advantage of de-
ciduous species over other PFTs in a warming environment (Chapin 
et al., 1996; Myers-Smith et al., 2011). Shrubs have shown to take 
advantage of increased nutrient availability (Bret-Harte et al., 2002; 
Chapin et al., 1996) and their relatively taller growth form entails a 
reduced interception of light for low-growing species in the understory 
(Epstein et al., 2004a; Mekonnen et al., 2018). Long-term monitoring 
and experimental studies therefore suggest that shrubification mostly 
occurs at the expense of evergreen shrubs and non-vascular lichen and 
mosses, with evidence that herbaceous graminoids are gaining biomass 
in conjunction with deciduous shrub species (Epstein et al., 2004a; 
Myers-Smith et al., 2019). In their pan-Arctic review, Elmendorf et al. 
(2012) found positive trends of graminoid cover in colder sites and 
neutral to negative trends at warmer sites, suggesting strong regional 
variability of vegetation development in response to continued warm-
ing. Experimental projections expect progressing homogenisation of 
Arctic plant communities (Stewart et al., 2018), characterised by a 
decrease of non-vasculars and graminoids in an increasingly shrub 
dominated landscape, while graminoids and non-vasculars will gain 
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biomass in the colder high Arctic regions (Mekonnen et al., 2018). Given 
the comparably warm, moist conditions within the low Arctic tundra 
landscapes of the Mackenzie Delta Region, shrub encroachment could 
well be occurring at the expense of graminoid and lichen cover. Fraser 
et al. (2014a) found increased canopy cover of erect dwarf and tall 
shrubs to be accompanied by lichen decline. On the Tuktoyaktuk Coastal 
Plain, Moffat et al. (2016) report plot-based evidence that average sedge 
cover decreased by 0.5–2.3% per decade and and lichen cover decreased 
by 0.5–3.1% per decade. Generally, these rates are in a similar order of 
magnitude with the − 4.3% in herbaceous and − 2.5% in lichen cover we 
observed. The yet apparent discrepancies corroborate our assumption 
that lichen spectra are captured within the herbaceous endmembers, 
potentially overestimating herbaceous decline. Furthermore, a top-of- 
canopy approach is inherently limited in capturing the vertical struc-
ture of vegetation and thus largely neglects understory plant 
communities. 

Extensive shrub expansion predominantly occurred in the taiga- 
tundra transitional zone and along the lake-rich coastal lowlands of 
the tundra, including the Tuktoyaktuk Coastlands and Richards Island. 
From a temporal perspective, we found shrub encroachment within 
these regions to have predominately occurred in the earlier periods 
(t1–t3, 1984–2002), developing towards rather stable shrub cover tra-
jectories in recent decades. First, this matches the expectation that 
vegetation responses to warming will onset the strongest at the transi-
tion between shrub and tussock tundra (Epstein et al., 2004b). Second, 
this is in line with the conception that shrub expansion is largely 
influenced by the prevalent moisture regime (Myers-Smith et al., 
2015a), generally favouring wetter over drier regions of the tundra 
(Tape et al., 2006; García Criado et al., 2020; Liljedahl et al., 2020). The 
landscapes east of the delta, with their rolling hills and low-lying de-
pressions featuring thermokarst lakes are thus highly suitable of facili-
tating intense shrubification. Similarly, the riparian zones at the 
foothills along the Yukon Coastal Plain in the west depict amplified signs 
of shrub encroachment. In the northernmost areas of the Tuktoyaktuk 
Peninsula and western coastal plains, the maps either depict a rather 
continuous shrub cover development (Fig. 11g) or more recent onset of 
shrub encroachment (Fig. 11h). Additionally, relative shrub expansion 
was strongest in the northernmost regions (>69.5◦N). Overall, this may 
suggest that potentially two mechanisms of shrubification have been 
operating in the Mackenzie Delta Region: (1) the lateral growth and 
recruitment between existing patches in an already shrub dominated 
landscape and (2) the range expansion of shrubs into formerly low- 
statured tundra communities (Myers-Smith et al., 2011). Although a 
gradual latitudinal expansion appears coherent with the climate sensi-
tivity of shrub growth, and further corroborates projected advancements 
of shrub species under changing climatic gradients (Epstein et al., 
2004a), evidence for Arctic latitudinal shrubline advance is currently 
insufficient (Myers-Smith and Hik, 2018). Following thorough calibra-
tion to field-based evidence in Alpine regions where shrubline advance 
has been explicitly studied (Myers-Smith and Hik, 2018), our method 
could help illuminating our understanding of northwards directed shrub 
proliferation. 

6. Conclusion 

In this study, we assessed the suitability of regression-based unmix-
ing using synthetic training data for disentangling the fine-scale het-
erogeneous mosaic and temporal development of Arctic vegetation 
types. We illustrate the potential in deriving fractional cover of various 
surface types at a high level of detail using machine learning in com-
bination with multi-temporal synthetic training data and Landsat-based 
image features. Despite a wide array of persisting complexities and 
uncertainties, our approach creates new opportunities for mapping the 
vast and remote landscapes of the Arctic tundra independent of sparsely 
existent field observations. Multitemporal, vegetation-type specific 
fraction cover estimates enable a more accurate and more adequate 

representation of surface composition and structure than time series of 
non-distinctive spectral indices or discrete classifications. Our fraction 
cover estimates address the still existing gap between high-quality field 
observations and large-scale assessments of ecological change. The 
multitemporal regression models corroborate findings of extensive 
shrub expansion in the Mackenzie Delta Region of the Western Canadian 
Arctic, while capturing the heterogeneity of this process at a high level 
of detail. The maps thus provide a new basis for a spatially explicit 
assessment of the underlying mechanisms and their site-specific in-
teractions of shrub expansion. Deploying the method in other regions 
with existing field observations has the potential to further consolidate 
our understanding of the method's applicability across other parts of the 
tundra biome. Sensor-fusion between Landsat and Sentinel-2 holds po-
tential for future adaptions of the approach, including deriving denser 
fraction cover time series for the more recent change history. Generally, 
uniform and scalable mapping techniques of this kind complement high- 
quality field work and are needed to disentangle key ecosystem-level 
processes, including shrubline advance, on the pan-Arctic scale. 
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Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J.P., Luo, D., Malkova, G., 
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A.B.K., 
Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., 
Zheleznyak, M., Lantuit, H., 2019. Permafrost is warming at a global scale. Nat. 
Commun. 10, 1–11. https://doi.org/10.1038/s41467-018-08240-4. 

Bjorkman, A.D., García Criado, M., Myers-Smith, I.H., Ravolainen, V., Jónsdóttir, I.S., 
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Hermanutz, L., Trant, A., Collier, L.S., Weijers, S., Rozema, J., Rayback, S.A., 
Schmidt, N.M., Schaepman-Strub, G., Wipf, S., Rixen, C., Ménard, C.B., Venn, S., 
Goetz, S., Andreu-Hayles, L., Elmendorf, S., Ravolainen, V., Welker, J., Grogan, P., 
Epstein, H.E., Hik, D.S., 2011. Shrub expansion in tundra ecosystems: dynamics, 
impacts and research priorities. Environ. Res. Lett. 6 https://doi.org/10.1088/1748- 
9326/6/4/045509. 

Myers-Smith, I.H., Elmendorf, S.C., Beck, P.S., Wilmking, M., Hallinger, M., Blok, D., 
Tape, K.D., Rayback, S.A., Macias-Fauria, M., Forbes, B.C., Speed, J.D., Boulanger- 
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