Genotyping of Atlantic cod (Gadus morhua) by pantophysin I marker (Pan I)

Bachelor Thesis
October $4^{\text {th }}, 2022$
Completed at the Alfred-Wegener-Institut Bremerhaven

Author:
Caroline Withelm
Bürgermeister-Martin-Donandt Platz 22
27568 Bremerhaven
Student number: 2714070
cawithel@students.uni-mainz.de

Supervisor \& first corrector: Dr. Felix Christopher Mark (AWI)
Second corrector: apl Prof. Dr. Bernhard Lieb (JGU)

Statement of Authorship

I hereby declare that I am the sole author of this bachelor thesis and that I have not used any sources other than those listed in the bibliography and identified as references.

I further declare that I have not submitted this thesis at any other institution in order to obtain a degree.

Bremerhaven, October $4^{\text {th }}, 2022$

Index

Index I
Abstract III
Abbreviations IV
List of figures V
List of tables VI
1 Introduction.1
2 Material and Methods5
2.1 Chemicals, Materials, Equipment and Media5
2.1.1 Chemicals 5
2.1.2 Materials6
2.1.3 Equipment6
2.1.4 Media 7
2.2 Sampling area 7
2.3 Purification of DNA 13
2.3.1 DNA Extraction 13
2.3.2 Quantification of the purified DNA 14
2.4 Allele-specific Polymerase Chain Reaction 15
2.5 Gel electrophoresis 17
2.6 DNA Fragment length analysis 17
2.6.1 Capillary electrophoresis using Genetic Analyser 3130xl (Applied biosystems) 17
2.6.2 GeneMapper Software 18
2.7 Correction of the raw data 18
2.7.1 Correction of the intensity values. 19
2.7.2 Determination of an identification factor 21
3 Results 23
3.1 Genotype plots 23
3.2 Ecotype determination. 26
3.3 Size and age classes of the individuals belonging to Norwegian Coastal Cod 30
3.3.1 Size classes 30
3.3.2 Age classes 31
3.4 Ecotype distribution in relation to locality 32
3.4.1 Distribution within coastal and ford areas 32
3.4.2 Ecotype distribution in regard of the selected stations 33
3.4.3 Ice cover 35
4 Discussion 36
4.1 Biological consideration 36
4.2 Methodological consideration 38
5 Summary and Outlook 40
6 References 42
7 Appendix i
7.1 Datafiles. i
7.1.1 HE519/560 rawdata i
7.1.2 TL all samples i
7.1.3 Rawdata FLA i
7.2 Tables and figures i
8 Acknowledgements - Danksagung XX

Abstract

Due to climate change, the Arctic is warming twice as fast as the rest of the world. This leads to a northward expansion of species from the Atlantic to the Arctic. As a result, the species composition in the Arctic is changing. The Northeast Arctic cod (NEAC) is the most abundant cod population, with a distribution area in the Barents Sea and also in Svalbard. However, NEAC can also be found along the coast of Norway. There the NEAC spawns in the Lofoten region with the Norwegian Coastal cod (NCC), which in turn occurs along the Norwegian coast and in fjords. The offspring is drifted to Svalbard by the prevailing currents. The aim of this work was to investigate the composition of the cod population in Svalbard and whether a local coastal population has formed in Svalbard. For this purpose, the Pantophysin I locus (Pan I) was used to investigate to which ecotype of cod the caught animals from expeditions between August and October in 2018 and 2020 could be assigned. The analysis of Pan I in the caught cod shows that NCC inhabits both coastal and fjord areas in Svalbard. The discovery of NCC in Svalbard is an indication that due to climate change a coastal population may become established in Svalbard, with effects on the prevailing ecosystem in Svalbard.

Abbrevia	ions
${ }^{\circ} \mathrm{C}$	centigrade
3 ,	3-prime end of DNA sequences
5,	5-prime end of DNA sequences
A	Adenin
bp	base pairs
c	concentration
C	Cytosin
corrf $^{\text {f }}$	correction factor
DMSO	Dimethyl sulfoxide
DNA	desoxyribonucleic acid
dNTP	deoxynucleotidetriphosphate
dp	Datapoints
fwd	forward
g	force
G	Guanin
ident $_{\text {f }}$	identification factor
M	Molar
min	minute
NCC	Norwegian Coastal Cod
NEAC	Nordeast Arctic Cod
Pan I	pantopysin I locus
PCR	polymerase chain reaction
PCR	Polymerase Chain Reaction
rcf	relative centrifugal force
rev	reverse
rpm	rounds per minute
SciFi	scientific fishing
sec	second
T	Thymin
TL	total length
V	Volt
v	volume
YMP/SMB	Yermak Plateau/Smeerenburg

List of figures

Figure 1: Distribution of Atlantic cod. 1
Figure 2: Pan I Genotyping 4
Figure 3: Selected Stations of HE519 in 2018 8
Figure 4: Selected Stations of HE560 in 2020 9
Figure 5: Size classes of all Atlantic cod caught 11
Figure 6: Size classes of Atlantic cod selected. 12
Figure 7: Genotype plots of the homozygous genotype PanI ${ }^{\text {AA }}$ 23
Figure 8: Genotype plots of the homozygous genotype PanI ${ }^{\mathrm{BB}}$. 24
Figure 9: Genotype plots of the heterozygous genotype PanI ${ }^{\text {AB }}$ 25
Figure 10: All tested samples assigned to their ecotype 26
Figure 11: Length at age 30
Figure 12: Size classes of NCC (A), NEAC (B) and Hybrids (C). 31
Figure 13: Age classes of NCC (A), NEAC (B) and Hybrids (C). 32
Figure 14: Distribution of Ecotypes. 33
Figure 15: Ecotype distribution according to the selected stations 34
Figure A 1: Ice map Svalbard 9 ${ }^{\text {th }}$ April 2018. Bear Island 001 (grey framed) xv
Figure A 2: Ice map Svalbard $10^{\text {th }}$ April 2018. Hornsund 002 (grey framed) xv
Figure A 3: Ice map Svalbard $16^{\text {th }}$ March 2020. Hornsund 025 (grey framed). xvi
Figure A 4: Ice Map Svalbard 3 ${ }^{\text {rd }}$ April 2018. Kongsfjorden 008 (grey framed) xvi
Figure A 5: Ice Map Svalbard $1^{\text {st }}$ April 2020. Kongsfjorden 020 (grey framed) xvii
Figure A 6: Ice map Svalbard 3 ${ }^{\text {rd }}$ April 2018. Moffen 003 (grey framed) xvii
Figure A 7 Ice map Svalbard $6^{\text {th }}$ May 2020. Moffen 7B (grey framed) xviii
Figure A 8: Ice map Svalbard 3 ${ }^{\text {rd }}$ April 2018. Raudfjorden 004/005 (grey framed) xviii
Figure A 9: Ice map Svalbard $26^{\text {th }}$ March 2020. Raudfjorden 010 (grey framed). xix
Figure A 10: Ice map Svalbard $1^{\text {st }}$ April 2020. Westcoast 000, 014, 015 (grey framed) xix

List of tables

Table 1: List of chemicals and names of their suppliers. 5
Table 2: List of equipment and names of their suppliers 6
Table 3: List of used equipment and names of their suppliers 6
Table 4: List of used software and names of their suppliers 7
Table 5: Station details 8
Table 6: Station details. 9
Table 7: PCR primer list 15
Table 8: Pipetting instructions 16
Table 9: Results of the fragment length analysis for GmoH 025 for allele Pan I^{A}. 19
Table 10: Results of the fragment length analysis for GmoH025 for allele Pan I ${ }^{\mathrm{B}}$. 20
Table 11: New values of ROX75, Pan I^{A} and I^{B} of GmoH025 21
Table 12: Samples with the genotype Pan I ${ }^{\text {AA }}$ belonging to the ecotype of NCC 27
Table 13:Samples with the genotype Pan $I^{B B}$ belonging to the ecotype of NEAC. 28
Table 14: Samples with the genotype Pan I ${ }^{\mathrm{AB}}$ which represents the hybrid form. 29
Table A 1: BA_HE519_560_dataselection. i
Table A 2: DNA concentrations ($\mathrm{ng} / \mu \mathrm{l}$) v
Table A 3: Correction of the intensity of Pan I^{A} using corrf. viii
Table A 4: Correction of the intensity of Pan I^{B} using corrf. x
Table A 5: Calculation of ident xiii

1 Introduction

Due to climate change, the Arctic has warmed at nearly twice the rate as the rest of the world over the last decades (NSIDC, 2020). The Svalbard archipelago, the sampling area of this thesis, is also affected by climate change and its consequences. Svalbard is influenced by cold and warm water masses of different origins. The east coast of Svalbard is influenced by cold water from the Arctic Ocean moving southwards (Spotowitz et al., 2022). The west coast of Svalbard, on the other hand, is influenced by warmer Atlantic currents. The West Spitsbergen Current (WSC), which is a branch of the gulf stream, moves northwards along the west coast (Spotowitz et al., 2022). Thus, in the region around Svalbard, Atlantic water, which is steadily warming, enters the Arctic Ocean (Onarheim et al., 2014). This increased warming will lead to changes that may affect Arctic food webs and the well-being of Arctic communities (Vincent, 2020). Due to the warming of the Arctic waters the sea ice cover is declining, opening new habitats. Since 1979, the trend in winter ice area loss is close to 10% per decade (Onarheim et al., 2014). A northward expansion of invasive species from the Atlantic, such as Atlantic cod (Gadus morbua (Linnaeus, 1758)), is a consequence of warming (Renaud et al., 2011; Mark et al., 2014), causing a change in species distribution and occurrence in the Arctic (Spotowitz et al., 2022).
G. morbua is a bentho-pelagic fish and distributed in the boreal regions of the North Atlantic and the Arctic (Drinkwater, F., 2005) (Figure 1).

Figure 1: Distribution of Atlantic cod.
The area of distribution is shown in grey. Spawning areas are shown in dark grey. (Drinkwater, 2005).

In the North Atlantic, more precisely in the Barents Sea and in the waters along to the coast of Norway, exist two main groups of Atlantic cod. The Northeast Arctic cod (NEAC) and the Norwegian Coastal cod (NCC). Both belong to the species Gadus morbua. The two cod populations differ in their way of life. The NCC is more stationary along the coast of the North of Norway and is found inside fjords. The NCC spawn their eggs in different locations along the coast and inside fords in springtime (Dahle et al., 2018; Fevolden et al., 2009). The main spawning period is from March to April (Nordeide et al., 1998). The eggs drift passively with the Norwegian Coastal Current from the spawning sites in the North of Norway to the Barents Sea until they finally are able to reach Svalbard. Now it may happen that, due to consequences of climatic changes such as the decline of sea ice, the offspring of the NCC can survive the winters in ice-free areas of fords and, as they show less migratory behaviour (Stransky et al., 2008), they settle as a local population in the fjords and the west coast of Svalbard. Nevertheless, the NCC undertakes local coastal migrations (Berg \& Albert, 2003). In contrast, the NEAC is a migratory species. They have their feeding area mainly in the Barents Sea but also along western Svalbard (Otterå et al., 2020, Andrade et al., 2020). However, its spawning area is in the North of the Norwegian coast in the region of Lofoten and Vesterålen whereto the adults of NEAC migrates between December and January (Otterå et al., 2020; Sarvas \& Fevolden, 2005; Andersen et al., 2015). The offspring drift with the Norwegian Coastal Current from the coast of Norway to the northeast and mix with the Atlantic water until finally reaching the Barents Sea and Svalbard (Vikebø et al., 2005). The migratory ecotype of Atlantic cod such as the NEAC comprise the largest known cod stock compared to the NCC as a stationary population (Spotowitz et al., 2022; Markusson, H., 2020). Atlantic cod in Svalbard waters are generally assigned to the ecotype of NEAC according to the literature (Spotowitz et al., 2022). Accordingly, the spawning sites of NEAC and NCC overlap around the Lofoten during springtime (Dahle et al., 2018; Fevolden et al., 2012; Spotowitz et al., 2022; Nordeide et al., 1998). This temporary geographical overlap around the Lofoten can lead to interbreeding of the two populations and the emergence of hybrids (Stransky et al., 2008). Therefore, hybrids originate in the Lofoten region and not in Svalbard, as the NEAC has their spawning sites around the Lofoten and not in Svalbard.

As already mentioned, eggs and larvae are drifted northwards from the spawning sites in the North of Norway with the Norwegian Coastal Current finally reaching Svalbard. This also affects offspring of the NCC. There is growing evidence that a cod ecotype (NCC) that is now able to establish itself in the fjords of Svalbard due to warming will compete with native species for habitat and food, leading to a change in species composition and thus changes in the local Arctic ecosystem. Furthermore, it has already been described that cod attributed to the NCC ecotype have
also been caught in fjords on the west coast of Svalbard (Andrade et al., 2020). The interest here is whether NCC has settled permanently in Svalbard or whether this population is only temporarily resident in Svalbard (Andrade et al., 2020). Therefore, this thesis aims to investigate the population composition of Atlantic cod surveyed in Svalbard waters in 2018 as well as 2020 and whether the NCC has already established itself as a stationary coastal cod population in Svalbard due to the described consequences of climate warming. Due to the rising temperatures, there is the potential that they can survive the winter and settle in Svalbard. This could lead to perennial stocks forming and reproducing in the new habitat. The questions which emerge are: 1.) will a representative number of NCC individuals be found among the selected samples and are they already of reproductive age? It has been reported that coastal cod become mature at the age between 5 and 6 years in average (Berg \& Albert, 2003). The ability of reproduce can therefore be inferred from the age. The age, in turn, can be determined by the length of the animals. Knowing that the NCC tends to be more stationary, the size of the individuals might indicate the length of stay in the respective locality. 2.) are the available data sufficient to support the statement that a costal stock of Atlantic cod (NCC) has become established at the respective locations and remains there throughout the year?

These hypotheses were tested by differentiating the selected samples, taking advantage of a specific gene locus identified in Atlantic cod in the 1990s, Pan I (Fevolden and Pogson, 1997). The gene locus (originally called GM798) codes for an integral membrane protein (Pogson, G. H., 2001), which can serve as a genetic marker for characterisation Atlantic cod ecotypes by using allelespecific PCR in combination with a subsequent fragment length analyse (Stenvik et al., 2006). Pan I encodes part of the protein pantophysin, which is a cellular isoform of synaptophysin and occurs in neuroendocrine as well as in non-neuroendocrine tissues (Haass et al., 1996). The protein consists of four transmembrane domains, two intravesicular loops and two cytoplasmic tails (Pogson, G. H., 2001). Pan I of the Atlantic cod shows genetic differences between stationary (NCC) and migratory (NEAC) populations (Andersen et al., 2015). This allows us to determine the ecotype by genotyping the selected samples. The gene Pan I is biallelic and can be found in three different variants (Otterå et al., 2020). Figure 2 describes the three different variants in which the Pan I alleles can be present. One possible allele variant is Pan I ${ }^{\text {AA }}$ (blue) which shows the homozygous genotype of the Pan I^{A} allele dominating in the relatively stationary Norwegian Coastal cod (NCC). Variant 2, Pan I^{BB} (red), represents the homozygous genotype of the Pan I^{B} allele which is predominant in the migratory population of the Northeast Arctic cod (NEAC) (Felvolden \& Pogson, 1997; Andersen et al., 2015). And the third variant, Pan I ${ }^{\mathrm{AB}}$, shows the heterozygous form with both alleles A and B are present, indicating the hybrid form. The different
intensities also become clear. For Pan I^{AA} and $\operatorname{Pan} \mathrm{I}^{\mathrm{BB}}$, the intensities are clearly higher compared to the standard (orange). For Pan I ${ }^{\mathrm{AB}}$, both allele peaks have almost the same intensity.

Figure 2: Pan I Genotyping.
The three different genotypes of Pan I of the Atlantic cod after fluorescent allele-specific PCR and genotyping. (Stenvik et al., 2006).

2 Material and Methods

For genotyping cod using the Pan I locus DNA is extracted, which is the DNA template for the subsequent PCR, amplifying the Pan I locus. This is done with the help of specific fluorescentlabelled reverse primers and an unmodified forward primer, flanking the region of the sequence to be amplified and serving as a starting point for the DNA polymerase. The length of these synthesised DNA fragments is then determined by fragment length analysis, which allows conclusions to be drawn about the ecotype.

2.1 Chemicals, Materials, Equipment and Media

2.1.1 Chemicals

Table 1: List of chemicals and names of their suppliers.

Name	Supplier
$\mathrm{H}_{2} \mathrm{O}$	AppliChem, Darmstadt, Germany
Ethanol 70\%	Roth, Karlsruhe, Germany
Ethanol absolute for molecular biology	AppliChem, Darmstadt, Germany
Proteinase K	Qiagen, Venlo, Netherlands
Buffer ATL	Qiagen, Venlo, Netherlands
Buffer AL	Qiagen, Venlo, Netherlands
Buffer AW1	Qiagen, Venlo, Netherlands
Buffer AW2	Qiagen, Venlo, Netherlands
Buffer AE	Qiagen, Venlo, Netherlands
5x Phire Reaction Buffer	Thermo Scientific, Waltham, Massachusetts
Phire Hot Start II DNA Polymerase	Thermo Scientific, Waltham, Massachusetts
DMSO	Thermo Scientific, Waltham, Massachusetts
dNTPs	Roth, Karlsruhe, Germany
Primer fwd: PanI-2-PIG	Eurofins Genomics GmbH, Ebersberg, Germany
Primer rev: PanIAfam, PanIBhex	Eurofins Genomics GmbH, Ebersberg,
Germany	
Ultra pure Agarose	Invitrogen, Waltham, Massachusetts
Buffer TAE	AppliChem, Darmstadt, Germany
6x Orange DNA Loading Dye	Thermo Scientific, Waltham, Massachusetts
FastRuler Low Range DNA ladder	Thermo Scientific, Waltham, Massachusetts

HI-DI, Formamid	Applied biosystems, Waltham, Massachusetts
GeneScan ROX Size Standard	Applied biosystems, Waltham, Massachusetts
POP-7 ${ }^{\text {TM }}$ Polymer for $3730 / 3730 x$ xl DNA	
Analysers	Applied biosystems, Waltham, Massachusetts

2.1.2 Materials

Table 2: List of equipment and names of their suppliers.

Name	Supplier
$2.5 / 10 / 20 / 100 / 300 / 1000 \mu \mathrm{l} / 10 \mathrm{ml}$ Pipettes	Eppendorf, Hamburg, Germany
$10 / 300 \mu \mathrm{l}$ multichannel pipettes	Eppendorf, Hamburg, Germany
96 -well reaction plate	Applied biosystems, Waltham, Massachusetts
Pipette tips, epDualfilter T.I.P.S.	Eppendorf, Hamburg, Germany
$1.5 / 2 \mathrm{ml}$ tubes	Eppendorf, Hamburg, Germany
50 ml falcon	Greiner Bio-One, Kremsmünster, Austria
tweezers	Dumont, Montignez, Switzerland
Precision wipes, Kimtech science	Kimberly-Clark, Irving, Texas

2.1.3 Equipment

Table 3: List of used equipment and names of their suppliers.

Name	Supplier
Bio Vortex V1	peQLab, Biotechnologie GmbH, Erlangen, Germany
Thermomixer comfort	Eppendorf, Hamburg, Germany
Centrifuge	Eppendorf, Hamburg, Germany
Mastercycler	Eppendorf, Hamburg, Germany
Centrifuge Galaxy Mini	VWR, Radnor, Pennsylvania
Centrifuge	SiGMA, Osterode am Harz, Germany
NanoDrop Spectrophotometer	peQLab, Biotechnologie GmbH, Erlangen, Germany
Electrophoresis, power supply	Consort, Turnhout, Belgium
Gel imager, Transilluminator	peQLab, Biotechnologie GmbH, Erlangen,
Germany	
Genetic Analyser 3130xl	Applied biosystems, Waltham, Massachusetts

2.1.4 Media

Table 4: List of used software and names of their suppliers.

Software and Version	Supplier
Nanodrop, ND-1000, Version 4.64.00	Thermo Scientific, Waltham, Massachusetts
VisionCapt, Version 14.2 for Windows	peQLab, Biotechnologie GmbH, Erlangen, Germany
GeneMapper, Version 4.0	Applied biosystems, Waltham, Massachusetts

2.2 Sampling area

The sampled G. morbua for the analysis of this thesis come from two different cruises carried out in the past years: in 2018 (cruise code: HE519) and 2020 (HE560), the cruises organized by the Alfred-Wegener-Institute (AWI) with the research vessel Heincke took place in the water around Svalbard and in its fjords. A total of 12 stations were sampled, with a total of 317 individuals surveyed (7.1.1, see appendix). The fish were partly caught by angling, but also caught with pelagic and bottom trawl. From the caught fish, among other things, muscle tissue (stored at $-80^{\circ} \mathrm{C}$) as well as finclips (stored in ethanol at $-20^{\circ} \mathrm{C}$) were taken. For this thesis, stations within fords as well as stations from coastal and fjord areas were selected. From all stations of both cruises, a total of 7 were selected (Figure 3, Figure 4, Table 5, Table 6).

Figure 3: Selected Stations of HE519 in 2018.
Selected Stations (yellow) for this thesis of the cruise to Svalbard with Heincke (HE519) in the year 2018: S001 Bear Island, S002 Hornsund, S003 Moffen, S004/S005 Raudfjorden, S008 Kongsfjorden.

Table 5: Station details.

cruise	date	station_name	station_number	latitude	longitude
HE519	28.09 .2018	Bear Island	001	$74^{\circ} 29^{\prime} 36.4^{\prime \prime N}$	$19^{\circ} 30^{\prime} 51.6^{\prime \prime} \mathrm{E}$
HE519	29.09 .2018	Hornsund	002	$76^{\circ} 58^{\prime} 54.4^{\prime \prime} \mathrm{N}$	$15^{\circ} 44^{\prime} 40.7^{\prime \prime} \mathrm{E}$
HE519	30.09 .2018	Moffen	003	$80^{\circ} 08^{\prime} 42.0^{\prime \prime} \mathrm{N}$	$13^{\circ} 09^{\prime} 57.6^{\prime \prime} \mathrm{E}$
HE519	01.10 .2018	Raudfjorden	004	$79^{\circ} 47^{\prime} 44.8^{\prime \prime} \mathrm{N}$	$12^{\circ} 02^{\prime} 58.1^{\prime \prime} \mathrm{E}$
HE519	01.20 .2018	Raudfjorden	005	$79^{\circ} 44^{\prime} 28.1^{\prime \prime} \mathrm{N}$	$12^{\circ} 00^{\prime} 45.0^{\prime \prime} \mathrm{E}$
HE519	03.10 .2018	Kongsfjorden	008	$78^{\circ} 56^{\prime} 05.0^{\prime \prime} \mathrm{N}$	$12^{\circ} 01^{\prime} 17.5^{\prime \prime} \mathrm{E}$

Figure 4: Selected Stations of HE560 in 2020.
Selected Stations (yellow) for this thesis of the cruise to Svalbard with Heincke (HE560) in the year 2020: S000 YMP/SMB, S010 Raudfjorden, S014 SciFi, S015/S020 Kongsfjorden, S025 Hornsund, 7B Moffen.

Table 6: Station details.

cruise	date	station name	station number	latitude	longitude
HE560	09.08 .2020	YMP/SMB	000	$79^{\circ} 24^{\prime} 33.8^{\prime \prime} \mathrm{N}$	$10^{\circ} 06^{\prime} 09.4^{\prime \prime} \mathrm{E}$
HE560	17.08 .2020	Raudfjorden	010	$79^{\circ} 47^{\prime} 44.8^{\prime \prime} \mathrm{N}$	$12^{\circ} 02^{\prime} 58.1^{\prime \prime} \mathrm{E}$
HE560	20.08 .2020	SciFi	014	$79^{\circ} 44^{\prime} 28.1^{\prime \prime} \mathrm{N}$	$9^{\circ} 47^{\prime} 49.0^{\prime \prime} \mathrm{E}$
HE560	21.08 .2020	Kongsfjorden	015	$78^{\circ} 57^{\prime} 50.9^{\prime \prime} \mathrm{N}$	$11^{\circ} 50^{\prime} 01.2^{\prime \prime} \mathrm{E}$
HE560	25.08 .2020	Kongsfjorden	020	$79^{\circ} 01^{\prime} 12.9^{\prime \prime} \mathrm{N}$	$10^{\circ} 14^{\prime} 25.7^{\prime \prime} \mathrm{E}$
HE560	30.08 .2020	Hornsund	025	$76^{\circ} 57^{\prime} 02.7^{\prime \prime} \mathrm{N}$	$15^{\circ} 48^{\prime} 31.8^{\prime \prime} \mathrm{E}$
HE560	14.08 .2020	Moffen	7 B	$80^{\circ} 00^{\prime} 00.0^{\prime \prime} \mathrm{N}$	$14^{\circ} 08^{\prime} 27.5^{\prime \prime} \mathrm{E}$

All individuals from these stations were sorted in ascending order of total length (TL) for each station to assign them to a size class (7.1.2, see appendix). 12 different size classes were defined. Size class 1 was assigned to individuals with total lengths between 0 and 9.9 cm , size class 2 to 10.0 to 19.9 cm etc. up to size class 12 with 110.0 to 119.9 cm total length (Figure 5). Finally, 10 individuals per station were chosen (Table A 1, see appendix). The smallest and the largest individual were selected, as well as animals in size classes in between, so that individuals of different sizes could be used for the analysis (Figure 6).

All individuals ($\mathrm{n}=50$) of YMP/SMB assigned to size classes

Figure 5: Size classes of all Atlantic cod caught.
Total of all individuals (n) of the respective selected station of both cruises assigned to their size class.

$1(0-9 \mathrm{~cm})$	$7(60-69 \mathrm{~cm})$
$2(10-19 \mathrm{~cm})$	$8(70-79 \mathrm{~cm})$
$3(20-29 \mathrm{~cm})$	$9(80-89 \mathrm{~cm})$
$4(30-39 \mathrm{~cm})$	$10(90-99 \mathrm{~cm})$
$5(40-49 \mathrm{~cm})$	$11(100-109 \mathrm{~cm})$
$6(50-59 \mathrm{~cm})$	$12(110-119 \mathrm{~cm})$

2.3 Purification of DNA

2.3.1 DNA Extraction

DNA was extracted using a DNeasy Blood \& Tissue Kit (QIAGEN). An adjusted Quick-Start protocol (April 2016) was used.
The first step of the DNA extraction was to lyse the samples with help of proteinase K.
For this step, a 1.5 ml tube (Eppendorf) was prepared with $180 \mu \mathrm{l}$ ATL buffer and $20 \mu \mathrm{l}$ proteinase K for each sample. These were mixed by vortexing and they were then centrifuged quickly. The samples were taken under sterile conditions. For this purpose, two forceps were cleaned with 70% ethanol and then flamed with the aid of a Bunsen burner. This procedure was repeated after each sample to avoid contamination. Furthermore, a petri dish was needed for the finclips, which were also thoroughly cleaned with ethanol after each sampling.
For finclips (stored in ethanol at $-20^{\circ} \mathrm{C}$), attention was paid to ensure that only tissue from lower skin layers was collected to avoid possible contamination from skin surface. Therefore, the top layer of skin was lifted off and the exposed tissue was used for the extraction. Before finclip samples were transferred into the prepared lysis solution, they were carefully blotted out on a KIMTECH cloth after collection so that no ethanol remained on the tissue. Muscle samples (stored at $-80^{\circ} \mathrm{C}$) were transferred directly from the storage-tube into the prepared tubes with the lysis solution. The samples were then incubated at $56^{\circ} \mathrm{C}$ and 450 rpm overnight.

After incubation, the lysate was briefly mixed and centrifuged. In the next step, the DNA is selectively bound to the membrane of the DNeasy Mini spin column. For this, $200 \mu \mathrm{l}$ Buffer AL was premixed with 200μ l ethanol per sample. 400μ l of the premix was added to the lysate and immediately mixed thoroughly to homogenise. The whole mixture was pipetted onto the DNeasy Mini spin column and centrifuge at $6000 \mathrm{xg}(6.0 \mathrm{rcf})$ for 1 min . During the centrifugation, the DNA is bound to the membrane as contaminants pass through (DNeasy Blood and Tissue Handbook, QIAGEN, S.9). The flow-through and the collection tube were discarded, and the spin column was placed in a new 2 ml collection tube. In the following two wash steps, the remaining contaminations were removed. $500 \mu \mathrm{l}$ Buffer AW1 was added onto the spin column and centrifuge at $6000 \mathrm{xg}(6.0 \mathrm{rcf})$ for 1 min . The throw-through and the collection tube were discarded. The spin column was placed in a new 2 ml collection tube. $500 \mu \mathrm{l}$ Buffer AW2 was added onto the spin column and centrifuge at $16.100 \mathrm{xg}(16.1 \mathrm{rcf})$ for 3 min . The collection tube was emptied and blotted, then the spin column was placed back onto the collection tube and centrifuge again at 16.100 xg (16.1 rcf) for 1 min . The collection tube including flow-through was discarded and the spin column was transferred to a new 1.5 ml microcentrifuge tube. To elute the DNA from the membrane of the DNeasy Mini spin column, 150μ Buffer AE was pipetted to the center of the
spin column membrane and incubate at room temperature for 1 min . After incubation, centrifuged at $6000 \mathrm{xg}(6.0 \mathrm{rcf})$ for 1 min . The spin column was discarded. The DNA is eluted in the buffer.

2.3.2 Quantification of the purified DNA

To determine the yield of the extracted DNA the concentration was measured a Nanodrop Spectrophotometer. The absorbance peak of DNA is at 260 nm , that of proteins at 280 nm . The ratio of absorbance at 260 and 280 nm provides information about the purity of the measured DNA. DNA is considered pure when the ratio is $\sim 1,8$. If the ratio is clearly below 1,8 , this may indicate contamination, for example by protein.
So that the measurement of the DNA concentration is not falsified by the absorbance values of the buffer, a previous reference measure is necessary, which is carried out with buffer AE in which the DNA is eluted. After blanking, the DNA concentration ($\mathrm{ng} / \mu \mathrm{l}$) of all samples was quantified (Table A 2, see appendix). The purified DNA samples were then diluted in distilled water to an end concentration of $10 \mathrm{ng} / \mu \mathrm{l}$ with a final volume of $50 \mu \mathrm{l}$. For this purpose, the following formulas were used:

To determine the needed volume of the eluted DNA:

$$
v_{1}=\frac{c_{2}(\text { end concentration }) * v_{2}(\text { endvolume })}{c_{1}(\text { concentration of the purified } D N A)}
$$

To determine the needed volume of $\mathrm{H}_{2} \mathrm{O}$:

$$
v_{H 2 O}=v_{2}-v_{1}
$$

The pure DNA as well as the diluted DNA were immediately stored at $-20^{\circ} \mathrm{C}$.

2.4 Allele-specific Polymerase Chain Reaction

By using PCR, specific DNA sequences can be amplified in vitro (Sadava et al., 2006). PCR was performed to amplify the Pan I locus and to identify in a subsequent fragment analysis, if one or both alleles of the locus are present. For this purpose, two different fluorescent-labelled reverse primers, specific for Pan I^{A} (PanIAfam-R) or Pan $I^{B}($ PanIBhex-R), and one unlabelled forward primer (PanI-2-PIG), flanking the searched locus and serving as a starting point for the polymerase, were used (Table 7). The fluorescent primers allow a specific amplification of the Pan I locus in PCR (Stenvik et al., 2006). The forward primer was modified by a PIG-tail. This means that a sequence is added to the 5'end, in our case the sequence GTTTCTT (Table 7). The PIG-tailing modification is intended to improve the genotyping (Brownstein et al., 1996).

Table 7: PCR primer list.
Primers with their respective sequences and band sizes. PIG-tail sequence underlined.

Primer name	Sequence (5'-> 3')	Band size in Bp
PanI-2-PIG	GTTTCTTTGACAGCGCTTGGCAAATGAA	28
PanIAfam-R	GCTTAAGCAGATATCGCAGTAGTTTC	26
PanIBhex-R	TTAAGCAGATCTCCGCAGTAGTTTT	24

The final volume of the PCR mix was $20 \mu \mathrm{l}$ per sample consisting of $18,5 \mu \mathrm{l}$ PCR reaction mix and $1,5 \mu$ template DNA. The total volume was determined according to the number of samples. All volumes of the required components were determined according to the supplier's information (Table 8) in relation to the calculated total volume for the reaction mix. The amount of water was determined proportionally from the sum of these. Two PCR reaction mixtures were prepared, each with one of the two primers since it was decided against a multiplex PCR during the pretests. Starting with water, all components were pipetted in order 1-6 (Table 8) into a reaction tube and mixed by vortexing. Finally, PCR reaction tubes were prepared with $18,5 \mu$ of the reaction mix and $1,5 \mu \mathrm{l}$ of the template DNA.

Table 8: Pipetting instructions.

Order	Component	Stock concentration	Final concentration
1	Phire Reaction Buffer	5 X	1 X
2	dNTPs	2 mM	$0,2 \mathrm{mM}$
3	Primer fwd	$100 \mu \mathrm{M}$	$0,5 \mu \mathrm{M}$
4	Primer rev	$100 \mu \mathrm{M}$	$0,5 \mu \mathrm{M}$
5	DMSO	-	$0,6 \mu \mathrm{l} /$ reaction
6	Phire Hot Start II DNA Polymerase	-	$0,4 \mu \mathrm{l} /$ reaction

A Mastercycler was used for the Polymerase Chain Reaction. After an initial denaturation step for 30 sec at $98^{\circ} \mathrm{C}, 30$ cycles of DNA amplification followed. The DNA is heated to $98^{\circ} \mathrm{C}$ for 5 sec , whereby the single strands separate. The denaturation is followed by primer annealing at $64^{\circ} \mathrm{C}$ for 5 sec . In this step, the primers bind to their target sequence (Sadava et al., 2006). In the following extension step with a temperature of $72^{\circ} \mathrm{C}$ for 10 sec the DNA polymerase synthesizes the new complementary strands, using the dNTPs as building blocks (Sadava et al., 2006). Once the 30 cycles are completed, the process ends with the final extension at $72^{\circ} \mathrm{C}$ for 1 min and the subsequent final hold at $4^{\circ} \mathrm{C}$. During the reaction, the buffer regulates the pH value (Sadava et al., 2006) to guarantee optimal conditions for the activity and stability of the DNA-polymerase (Gelfand, 1989).

2.5 Gel electrophoresis

To verify whether the PCR worked, which means the primer successfully bind to their target region, a gel electrophoresis was run. According to the literature, the size of the products determined by fragment analysis is 79 bp for Pan I^{A} und 77 bp for Pan I^{B}, so a band just above the 50 bp band of the DNA ladder should be visible in our gel.
A 3\% (weight/volume) Agarose gel was produced by dissolving 3 g Agarose in 100 ml TAE (Tris-acetate-EDTA) buffer. The mixture was heated up until a homogeneous solution was obtained. When the solution was cooled down, it was poured to a gel tray equipped with gel combs. After polymerisation of the solution, the gel tray was transferred into the electrophoresis chamber filled with TAE-buffer. Afterwards the gel combs were removed so that the gel was ready for sample application. To prepare the PCR products for the gel electrophoresis, $1 \mu \mathrm{l}$ DNA Loading Dye was placed into a reaction plate and $4 \mu \mathrm{PCR}$ product was added.

All samples were pipetted into the lanes and finally $3 \mu \mathrm{l}$ of the DNA ladder was applied. The electrophoresis chamber was connected to a power supply and the gel run for 35 min at 100 V . For visualisation of the gel a transilluminator was used. The gel was placed into a staining solution to make the DNA fragments visible in form of bands by UV light.

2.6 DNA Fragment length analysis

2.6.1 Capillary electrophoresis using Genetic Analyser 3130xl (Applied biosystems)

By using fragment analysis, the size of fluorescent-labelled DNA fragments can be determined. The fragments are separated by capillary electrophoresis, whose capillaries are filled with polymer, and detected by laser, whereby the exact size in bp is determined by comparison with a size standard. This genetic analysis method was used to find out in the subsequent evaluation whether the allele exists homozygous or heterozygous, which then allowed us to determine the ecotype. To prepare the PCR products for the fragment length analysis, they were first diluted 1:20 in distilled water. Then a mixture of $15 \mu \mathrm{l}$ per sample of HiDi and $0,3 \mu \mathrm{l}$ per sample of ROX size standard was prepared. Afterwards, $15 \mu \mathrm{l}$ of the HiDi-ROX-mix and $1 \mu \mathrm{l}$ of the diluted PCR product were pipetted into a 96 -well plate and directly denatured at $95^{\circ} \mathrm{C}$ for 5 min . Before the plate was placed into the Genetic Analyser, it was cooled in a cooling rack. One run for 16 samples took 90 min .

2.6.2 GeneMapper Software

If the labeled primer has bound to the target region of the DNA during PCR and the respective products synthesized, the labelled products could then be detected by the laser of the Genetic Analyser. The GeneMapper Software was then used to illustrate and analyse the results. To be able to analyse the products, a new analysis method was created as described in the manual of the GeneMapper Software (Thermo Fisher Scientific, 2009). The allele and marker definitions including the fragment size (bp) and the dye colour for both were defined and adjusted.

The size standard ROX75 indicates a peak at a length of 75 bp . It represents a reference point to which the peaks of the labelled Pan I allele sequences are related. On the one hand, this allows the length (bp) of the products to be inferred. On the other hand, the relation between the intensity or height of the standard peak and that of the products can be used to determine whether the allele is homozygous or heterozygous, as described above.

Accordingly, the important information was the intensity of the Peak (height in datapoints) and the length of the fragment (bp). Based on these data, conclusions could be drawn in which variants the alleles were present. Therefore, a sizing table was created, which displays a row of sizing information for each detected peak (Applied Biosystems, 2009). The data of the height of the peak and the base pair length of the labelled products were taken from the sizing table of the Gene Mapper Software. An Excel table was created based on this sizing table (7.1.3, see appendix).

2.7 Correction of the raw data

As already described, the value of ROX75 intensity is the reference point to which the intensities of the allele peaks are referred. This means that the intensities of the allele peaks are considered in relation to the intensity of ROX75. It is therefore important that ROX75 has the same value in all samples so that the allele intensities linked to the standard by the ratio can be compared with each other. Since the two primers for the Pan I alleles were used separately in the PCR, two fragment analysis results were available for each sample in which ROX75 did not always have the same intensity value. This also occurred when the results of the intensities of the different samples were compared with each other. Therefore, it was necessary to adjust the data using correction factors for comparability.

2.7.1 Correction of the intensity values

In order to firstly compare the data for each sample of the identical DNA and secondly that all samples can be compared with each other, the intensity value of ROX75 was set to the value 500 for all samples. Thus, the measured intensity values of the alleles also had to be adjusted to the newly determined ROX75 value (ROX75 corr) so that the ratio of intensity between ROX75 and the alleles is maintained. In the following, this new value of the ratio is called 'correction factor' (corrf $_{\mathrm{f}}$).

The fragment analysis results of sample GmoH 025 were used for the following calculation example:

Results of GmoH025 for Pan I ${ }^{\Lambda}$:
Table 9: Results of the fragment length analysis for $\mathbf{G m o H} 025$ for allele Pan I^{A}.

Intensity of the ROX75 (in dp)	Intensity of the Pan $\mathbf{I}^{\text {A }}$ (in dp)
844	642

First, the ratio of the $\mathrm{ROX}_{\text {corr }}$ value of 500 dp to the measured value of $\operatorname{Pan} \mathrm{I}^{A}$ was calculated:

Definition of corrr $_{f}$ for Pan I ${ }^{A}$:

$$
\operatorname{corr}_{f}\left(\text { Pan }^{A}\right)=\frac{R 0 X 75_{\text {corr }}}{\text { Pan I }^{A} \text { intensity }}
$$

Calculation of $\operatorname{corr}_{f}\left(\operatorname{Pan~I}^{A}\right)$:

$$
\operatorname{corr}_{f}\left(\operatorname{Pan}^{A}\right)=\frac{500}{844}=0,59241706
$$

Next, the $\operatorname{corr}_{f}\left(\operatorname{Pan~}^{A}\right)$ was applied to the measured value of Pan I^{A} allele intensity to determine the new intensity (Pan I ${ }^{A}$ corr) relative to the ROX75 corr intensity value of 500 dp , so that the ratio of the two values remains the same even though the ROX75 value is new.

For this purpose, the following calculation was used:

Definition of Pan I ${ }^{A}$ corr:

$$
\text { Pan } I^{A} \operatorname{corr}=\operatorname{corr}_{f}\left(\operatorname{Pan} I^{A}\right) \times{\operatorname{Pan} I^{A} \text { intensity }}^{2}
$$

Calculation of Pan I ${ }^{A}$ corr:

$$
\text { Pan } I^{A} \text { corr }=0,59241706 \times 642=380,331754
$$

Results of GmoH025 for Pan I^{B} :
Table 10: Results of the fragment length analysis for GmoH 025 for allele Pan I^{B}.

Intensity of the ROX75 (in dp)	Intensity of the $\operatorname{Pan~}^{\mathbf{I}^{\mathrm{B}}}$ (in dp)
675	1139

Definition of corr ${ }_{f}$ for Pan I^{B} :

$$
\operatorname{corr}_{f}\left(\text { Pan }^{B}\right)=\frac{R O X 75_{\text {corr }}}{{\text { Pan } I^{B} \text { intensity }}^{\text {in }}}
$$

Calculation of $\operatorname{corr}_{\mathrm{f}}\left(\operatorname{Pan~I}^{\mathrm{B}}\right)$:

$$
\operatorname{corr}_{f}\left(\operatorname{Pan}^{B}\right)=\frac{500}{675}=0,74074074
$$

Definition of Pan I ${ }^{\mathrm{B}}$ corr:

$$
\text { Pan } I^{B} \operatorname{corr}=\operatorname{corr}_{f}\left(\operatorname{Pan} I^{B}\right) \times \operatorname{Pan} I^{B} \text { intensity }
$$

Calculation of Pan I ${ }^{\mathrm{B}}$ corr:

$$
\text { Pan }^{B} \text { corr }=0,74074074 \times 1139=843,703704
$$

The data of Pan I ${ }^{A}$ corr and Pan I^{B} corr obtained in this way were rounded to the nearest integer:

Table 11: New values of ROX75, Pan I^{A} and I^{B} of GmoH 025.

Intensity of the ROX75 corr (in dp)	Intensity of the Pan I ${ }^{\mathbf{A}}$ corr (in dp)	Intensity of the Pan $\mathbf{I}^{\mathbf{B}}$ corr (in dp)
500	380	844

In this way, the intensity values of all samples were corrected (Table A 3, Table A 4, see appendix).

2.7.2 Determination of an identification factor

Since, as already mentioned, heterozygosity or homozygosity is determined, among other things, by comparing the height of the peak (intensity) of the alleles with the standard and the values of the intensities of the two Pan I alleles are already related to the standard as a reference point. The evaluation could be carried out by looking at the ratios of the intensities.

The results of the fragment length analysis of this project, differed from those described in the literature as follows. There were results $(\mathrm{n}=30)$ that showed a single peak and thus allowed a clear ecotype assignment. However, the remaining results $(\mathrm{n}=40)$ deviated from the results in the literature to the effect that even though these samples showed a peak at the location of allele A and a peak at the location of allele B , but the ratios of the two peaks did not clearly point to the third allele variant (heterozygosity). Therefore, an additional calculated factor had to be introduced, which nevertheless allows the deviating results to be interpreted. This is referred to as the "identification factor" (ident f_{f}) in the following. Ident indicates how much higher or lower the $^{\text {l }}$ intensity of the Pan I^{A} corr allele is compared to the Pan I^{B} corr allele, i.e., the intensity ratio of Pan I ${ }^{A}$ corr : Pan I^{B} corr is.

The following example calculation is intended to illustrate the ident ${ }_{f}$ explained in the previous section. The corrected values of sample GmoH 025 are used for the calculation (see above).

Definition of ident:

$$
\text { ident }_{f}=\frac{\text { Pan I }^{A} \operatorname{corr}}{\text { Pan }^{B} \operatorname{corr}}
$$

Calculation of ident:

$$
\text { ident }_{f}=\frac{380}{844}=0,45
$$

In this way, ident ${ }_{f}$ of all samples were calculated (Table A 5, see appendix).

The ident ${ }_{f}$ could then be used to decide which of the three possibilities of the Pan I genotype was applicable. Ranges were defined for this purpose.

Homozygosity:
Variant 1 Pan $I^{A A}$: From an ident of 2.0 , the individuals are assigned to the NCC ecotype. This means that from a ratio of the intensity of the Pan I^{A} allele to that of the $\operatorname{Pan} \mathrm{I}^{\mathrm{B}}$ allele of 2:1, homozygosity for Pan IA is determined.

Variant 2 Pan I^{BB} : An ident of 0.5 or smaller, in other words, if the ratio between the intensity of the Pan I^{A} allele and that of the Pan I^{B} allele is at maximum 1:2, homozygosity for Pan I^{B} is defined thus the individual belongs to the ecotype of the NEAC.

Heterozygosity:
Variant 3 Pan I^{AB} : If the calculated ident ${ }_{\mathrm{f}}$ is between 0.51 and 1.99 , the individual is assumed to have a heterozygous genotype and is thus assigned to the group of hybrids.

3 Results

3.1 Genotype plots

In this project, the genotyping was performed in order to determine the ecotype of the collected samples. The two different fluorescent primers specific for Pan I were detected by the laser of the Genetic Analyser 3130xl. If the allele was present, this was displayed in form of a peak in position of the respective base pair length with 77 bp for Pan I^{B} and 79 bp for Pan I^{A}. Fragments from three individuals (GmoH56, GmoH057 and GmoH049) are shown below (Figure 7-9).

B

Figure 7: Genotype plots of the homozygous genotype PanIAA.
A: Genotyping results of PCR product using primer for Pan $I^{A} . B$: Genotyping results of PCR product using primer for Pan I^{B}. Y-axis: intensity (in dp). X-axis: fragment length (in bp).

A

B

Figure 8: Genotype plots of the homozygous genotype PanI ${ }^{\mathrm{BB}}$.
A: Genotyping results of PCR product using primer for Pan IA. B: Genotyping results of PCR product using primer for Pan I^{B}. Y-axis: intensity (in dp). X-axis: fragment length (in bp).

A

B

Figure 9: Genotype plots of the heterozygous genotype PanI ${ }^{\text {AB }}$.
A: Genotyping results of PCR product using primer for Pan I^{A} locus. B: Genotyping results of PCR product using primer for Pan I^{B} locus. Y-axis: intensity (in dp). X-axis: fragment length (in bp).

3.2 Ecotype determination

As already described, the ecotype determination was carried out with the help of the calculated identification factor $\left(\right.$ ident $\left._{f}\right)$. Ident $_{f}$ indicates the ratio of the intensity of the Pan I^{A} allele to that of the Pan I ${ }^{\mathrm{B}}$ allele, both are related to the ROX $75_{\text {corr }}$ Standard. Ranges were determined for the three possible variants of how the alleles can be present. Using this information, it was discovered that of the 70 samples, 24 can be attributed to the ecotype of the NCC (Figure 10, Table 12). 37 individuals belong to the ecotype of the NEAC (Figure 10 ,Table 13) and 9 have both Pan I alleles and are thus hybrids (Figure 10, Table 14).

Figure 10: All tested samples assigned to their ecotype.

Table 12: Samples with the genotype Pan I ${ }^{\text {AA }}$ belonging to the ecotype of NCC.
Identified by evaluating a calculated relation factor (ident f_{f}. Sorted by ident ${ }_{f}$ (ascending).

Id	Cruise	Station \mathbf{N}°	Pan IA ${ }^{\text {corr }}$ (intensity)	Pan I^{B} corr (intensity)	ident $_{f}$ $\text { (Pan } I^{A} \text { corr/Pan } I^{B} \text { corr) }$	Allel	Ecotype
GmoH070	HE519	002	183	83	2,21	Pan $\mathrm{I}^{\text {AA }}$	NCC
GmoH083	HE560	7B	439	193	2,28	Pan I ${ }^{\text {AA }}$	NCC
GmoH062	HE519	001	296	107	2,75	Pan I ${ }^{\text {AA }}$	NCC
GmoH044	HE519	008	1464	533	2,75	Pan I ${ }^{\text {AA }}$	NCC
GmoH046	HE519	003	347	125	2,78	Pan I ${ }^{\text {AA }}$	NCC
GmoH063	HE519	001	298	91	3,27	Pan I ${ }^{\text {AA }}$	NCC
GmoH055	HE560	000	1349	403	3,34	Pan I ${ }^{\text {AA }}$	NCC
GmoH079	HE519	005	553	157	3,53	Pan $\mathrm{I}^{\text {AA }}$	NCC
GmoH053	HE560	000	1037	261	3,98	Pan $\mathrm{I}^{\text {AA }}$	NCC
GmoH041	HE560	000	887	220	4,04	Pan $I^{\text {AA }}$	NCC
GmoH051	HE519	004	456	86	5,31	Pan I ${ }^{\text {AA }}$	NCC
GmoH077	HE519	008	8552	144	5,91	Pan I ${ }^{\text {AA }}$	NCC
GmoH028	HE560	014	2078	338	6,15	Pan $\mathrm{I}^{\text {AA }}$	NCC
GmoH099	HE560	014	2617	346	7,55	Pan I ${ }^{\text {AA }}$	NCC
GmoH095	HE560	014	2482	325	7,63	Pan I ${ }^{\text {AA }}$	NCC
GmoH056	HE560	000	1592	0	-	Pan I ${ }^{\text {AA }}$	NCC
GmoH061	HE560	000	1976	0	-	Pan I ${ }^{\text {AA }}$	NCC
GmoH065	HE519	001	291	0	-	Pan I ${ }^{\text {AA }}$	NCC
GmoH048	HE519	003	117	0	-	Pan I ${ }^{\text {AA }}$	NCC
GmoH092	HE560	014	1146	0	-	Pan I ${ }^{\text {AA }}$	NCC
GmoH093	HE560	014	1610	0	-	Pan I ${ }^{\text {AA }}$	NCC
GmoH094	HE560	014	1484	0	-	Pan I ${ }^{\text {AA }}$	NCC
GmoH096	HE560	014	2981	0	-	Pan $\mathrm{I}^{\text {AA }}$	NCC
GmoH098	HE560	014	4696	0	-	Pan I ${ }^{\text {AA }}$	NCC
							$\Sigma=24$

Table 13:Samples with the genotype Pan ${ }^{\text {BB }}$ belonging to the ecotype of NEAC.
Identified by evaluating a calculated relation factor (ident t_{f}). Sorted by ident ${ }_{f}$ (ascending).

Id	Cruise	Station \mathbf{N}°	Pan I ${ }^{\mathrm{A}}$ corr (intensity in Dp))	Pan I ${ }^{\mathrm{B}}$ corr (intensity in Dp)	$\begin{gathered} \text { ident }_{\mathbf{f}} \\ {\text { Pan } \left.I^{A} \text { corr } / \text { Pan } I^{B} \text { corr }\right)}^{2} \end{gathered}$	Allel	Ecotype
GmoH025	HE519	001	380	844	0,45	Pan IBB	NEAC
GmoH068	HE519	001	1018	3554	0,28	Pan $\mathrm{I}^{\text {Bb }}$	NEAC
GmoH037	HE519	008	50	179	0,28	Pan $\mathrm{I}^{\text {Bb }}$	NEAC
GmoH080	HE519	005	160	680	0,23	Pan I ${ }^{\text {Bb }}$	NEAC
GmoH031	HE519	001	53	887	0,06	Pan I ${ }^{\text {Bb }}$	NEAC
GmoH027	HE519	008	30	664	0,05	Pan I ${ }^{\text {bb }}$	NEAC
GmoH084	HE560	7B	0	786	0	Pan I ${ }^{\text {bb }}$	NEAC
GmoH085	HE560	7B	0	605	0	Pan I ${ }^{\text {Bb }}$	NEAC
GmoH086	HE560	7B	0	440	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH087	HE560	7B	0	450	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH054	HE560	000	0	453	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH057	HE560	000	0	818	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH059	HE560	000	0	5540	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH060	HE560	000	0	718	0	Pan $\mathrm{I}^{\text {Bb }}$	NEAC
GmoH066	HE519	001	0	851	0	Pan IBb	NEAC
GmoH033	HE519	002	0	205	0	Pan $\mathrm{I}^{\text {Bb }}$	NEAC
GmoH052	HE519	002	0	52	0	Pan $\mathrm{I}^{\text {Bb }}$	NEAC
GmoH069	HE519	002	0	120	0	Pan I ${ }^{\text {Bb }}$	NEAC
GmoH071	HE519	002	0	53	0	Pan I ${ }^{\text {Bb }}$	NEAC
GmoH072	HE519	002	0	59	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH073	HE519	002	0	50	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH074	HE519	002	0	316	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH047	HE519	003	0	115	0	Pan $I^{\text {Bb }}$	NEAC
GmoH082	HE519	003	0	896	0	Pan $I^{\text {bb }}$	NEAC
GmoH035	HE519	004	0	122	0	Pan I ${ }^{\text {Bb }}$	NEAC
GmoH050	HE519	004	0	510	0	Pan I ${ }^{\text {bb }}$	NEAC
GmoH078	HE519	005	0	738	0	Pan I ${ }^{\text {Bb }}$	NEAC
GmoH045	HE519	008	0	737	0	Pan I ${ }^{\text {Bb }}$	NEAC
GmoH075	HE519	008	0	223	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH076	HE519	008	0	548	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH088	HE560	010	0	444	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH089	HE560	010	0	580	0	Pan I ${ }^{\text {BB }}$	NEAC
GmoH090	HE560	010	0	764	0	Pan I ${ }^{\text {Bb }}$	NEAC
GmoH081	HE560	015	0	665	0	Pan IBb	NEAC
GmoH029	HE560	020	0	19391	0	Pan IBb	NEAC
GmoH030	HE560	025	0	1111	0	Pan IBB	NEAC
GmoH040	HE560	025	0	521	0	Pan IBB	NEAC
							$\Sigma=37$

Table 14: Samples with the genotype Pan $I^{A B}$ which represents the hybrid form.
Identified by evaluating a calculated relation factor (identr). Sorted by ident (ascending).

3.3 Size and age classes of the individuals belonging to Norwegian Coastal cod

As already described, it is assumed that NCC are rather loyal to their location and do not migrate over long distances. In the following, the size classes of the individuals assigned to the ecotype of NCC are presented below. The size will be used to classify the age of the individuals (reference values see Figure 11). This data can be used to make an assumption about how long the animals have already been at the sites and whether a statement can be made about the possibility of the NCCs found being an established local cod population in Svalbard.

Figure 11: Length at age.
"Mean, minimum, and maximum length at age for coastal cod and Nordeast Arctic cod, 1995-2001 combined. [...]" (Berg \& Albert, 2003).

3.3.1 Size classes

In this section, the size classes of the three different ecotypes identified are presented for the purpose of completeness. For the discussion of the possible population relocation of the NCC that follows, however, only the presented information on size classes of the NCC (Figure 12A) is used. The length of the smallest individual of NCC is 19 cm , that of the largest 101 cm , on average the length is $71,96 \mathrm{~cm}$. For NEAC the average length is $50,59 \mathrm{~cm}$, the smallest in size class 2 is 13 cm and the length of the largest individual is 110 cm assigned to size class 11 (Figure 12B). Length of the smallest in size class 6 of the hybrid group is 53 cm , the largest is 89 cm . Mean length is $70,22 \mathrm{~cm}$ (Figure 12C).

Figure 12: Size classes of NCC (A), NEAC (B) and Hybrids (C).

$1(0-9 \mathrm{~cm})$	$7(60-69 \mathrm{~cm})$
$2(10-19 \mathrm{~cm})$	$8(70-79 \mathrm{~cm})$
$3(20-29 \mathrm{~cm})$	$9(80-89 \mathrm{~cm})$
$4(30-39 \mathrm{~cm})$	$10(90-99 \mathrm{~cm})$
$5(40-49 \mathrm{~cm})$	$11(100-109 \mathrm{~cm})$
$6(50-59 \mathrm{~cm})$	$12(110-119 \mathrm{~cm})$

3.3.2 Age classes

In this section, the age classes of the three different ecotypes identified are presented for the purpose of completeness. For the interpretation that follows, however, only the presented information on age classes of the NCC is used. The youngest individual of NCC in age class 1 is in the 0 -year group, the oldest $10-11$ years old in age class 10 (Figure 13A). Mean age of NCC is 7 years. The average age of NEAC is between 4 and 5 years. The youngest individuals are in age class 1. The oldest is in age class 11, therefore over 11 years old (Figure 13B). Mean age of the hybrid group is 7 years. Youngest individuals are in age class 5, the oldest in age class 9 (Figure 13C).

B Age classes of individuals assigned to NEAC

Figure 13: Age classes of NCC (A), NEAC (B) and Hybrids (C).
(x -axis: the associated size classes in brackets)

1 (0-group)	7 (7-8 years)
2 (2-3 years)	8 (8-9 years)
3 (3-4 years)	9 (9-10 years)
4 (4-5 years)	10 (10-11 years)
5 (5-6 years)	11 (>11 years)
6 (6-7 years)	

3.4 Ecotype distribution in relation to locality

In order to make a statement about the locality of the different ecotypes, the results of the determination were assigned to the locations. A differentiation was made between coastal areas and areas within fjords. The differentiation according to the stations selected for this work follows. On this basis of these results concerning the whereabouts, it can be checked with help of ice maps whether the animals found, assigned to ecotype NCC, could have spent the winter at the respective station (Figure A 1-10, see appendix). Based on this, a possible migration behaviour of the NCC could be recognised. The ice maps were selected at maximum ice extent in the area of the station surveyed in the respective year of the cruise (Cryo-Norwegian Meteorological Institute, 2022).

3.4.1 Distribution within coastal and fjord areas

Figure 14 shows the distribution of the ecotype of all analysed samples with regard to the areas of the catch locations. Cod were found in both coastal and fjord areas. It was discovered that of 24 individuals of Norwegian Coastal cod, 5 were found inside fords and 19 in coastal areas. Of 37 individuals belonging to Northeast Arctic cod, 22 individuals were located inside fjords and 15 in coastal areas. One hybrid was also found inside a ford and the remaining 8 in coastal areas.

Figure 14: Distribution of Ecotypes.
Ecotype distribution of all analysed samples divided in coastal and fjord areas of Svalbard.

3.4.2 Ecotype distribution in regard of the selected stations

Cod were found at all surveyed stations (Figure 15). It is noticeable that on the west coast (stations $000,014)$ most individuals belong to the NCC type of cod. At the two stations in the north of Svalbard $(003,7 B)$ there were more of the NEAC type. At the station near Bear Island, both types of cod are represented equally often. Within the fjords surveyed, most individuals belong to the NEAC ecotype. The group of hybrids is little represented but was found at 6 out of 7 stations.

3.4.3 Ice cover

When considering the ice maps, it emerged that no area of the stations surveyed was completely covered by ice in 2018. The area around Moffen (003) in the north of Svalbard was freely accessible without drift ice. In Raudfjorden (004, 005), also in the north, the inner part of the ford was completely covered with ice, but in the front part of the fjord only drift ice was recorded. At the remaining stations on the west coast $(002,008)$, as well as Bear Island (001), only drift ice was recorded.

In 2020, 3 stations in the north of Svalbard were completely covered with ice ($025,7 \mathrm{~B}, 010$). Areas on the west coast of 3 stations $(000,014,015)$ were completely ice-free and drift ice was recorded in the area of the remaining station (020).

4 Discussion

The increased warming of the Arctic as consequence of the climate change, may bring a change in Arctic communities. New habitats have opened up due to the decline of sea ice and a northward expansion is possible for species from lower latitudes. One of the species expanding northwards is the Atlantic cod. In this study, it was to investigate whether the Norwegian Coastal cod population can or has established itself in Svalbard. For molecular differentiation of the two cod ecotypes, genotyping using the pantophysin I (Pan I) locus was used.

4.1 Biological consideration

The Pan I locus was used to determine to which ecotype the selected samples for this project belong. It was found that Northeast Arctic cod, Norwegian Coastal cod and hybrids were among 70 tested samples. Among those, 37 individuals were assigned to the NEAC population, 24 to NCC and 9 to the hybrid group. As the NEAC begins its spawning migration south between December and January, NEAC was found in Svalbard during the sampling period between August and October in 2018 and 2020. NEAC is the most frequently represented cod type among the samples in this work, accounting for 53%. This result is consistent with data from other studies, which indicate that the NEAC is the largest known cod stock in the north-east Atlantic and the Barents Sea (Spotowitz et al., 2022). After spawning on the Norwegian west coast, the NEAC undertake their feeding migration towards Svalbard after spawning time from April on and thus also reaches the coasts and fjords of Svalbard in summer.

NCC was also found. 34% of the catch could be assigned to this ecotype. This discovery can be explained by the fact, that the eggs of NCC were passively driven from the spawning grounds in the Lofoten region to Svalbard and due to climate change it can be possible for them to overwinter. The NCC shows less migratory behaviour, only local migrations were attributed to NCC. Therefore, overwintering is dependent on the prevailing conditions on arrival in Svalbard. This study has shown that NCC is present in Svalbard. Accordingly, the offspring must have survived the winter months, if it is assumed that this ecotype is stationary. This means that it is possible for the offspring of NCC to overwinter under the given environmental conditions in Svalbard. The formation of local coastal populations in Svalbard is thus related to the survival during the winter. If the locations of the animals are considered in combination with the ice maps (of the year in which the sampling took place) at maximum ice cover, it can be assumed that there are indeed icefree areas that are habitable for NCC in winter (7.2, see appendix). In addition, assuming that NCC is a non-migratory cod type, it can be assumed that the NCC found have survive the winters in Svalbard according to their age. More precisely, if an individual has reached its seventh year of life, for example, it can be concluded, that is has already spent seven years in Svalbard. Due to the West

Spitsbergen Current bringing warm Atlantic water along the west coast of Svalbard, this area may be suitable for species coming from lower latitudes to live. This effect is further enhanced by the fact that the temperature of the Atlantic water increases by $0.3^{\circ} \mathrm{C}$ per decade (Onarheim et al., 2014). This could be the reason why the most frequent appearance of the NCC ecotype at the surveyed stations is on the west coast of Svalbard. In addition, the west coast remains relatively ice-free in winter except for a little drift ice due to the West Spitsbergen Current, offering the chance of wintering in this area. This appearance of the NCC in Svalbard shows the shift of Atlantic species northwards into Arctic waters, enabled by the changing climatic conditions in the Arctic (Lisa Spotowitz et al., 2022).

In addition to the simple fact that NCC has been found, the individuals have reached sizes that are capable of reproduction. Under the mentioned aspect of location fidelity of the NCC in contrast to the NEAC, which migrates back from its feeding ground to its spawning grounds over a long distance every spring, the adults of the NCC in Svalbard must have already survived there for several years, judging by their size. For this purpose, the sizes (TL [cm]) of the animals were assigned to an age class. The results show that the individuals of the NCC found in this study, ranged in size from 19-101 cm, are between 1-11 years old. The individuals of NCC are on average 7 years old with mean length $71,28 \mathrm{~cm}$. From point of view of site fidelity, it can be assumed that the animals survived an average 7 years in Svalbard. This allows to investigate the question of whether a local cod population has established itself in Svalbard at the respective sites. The forming of a stock that establishes itself in a new location includes, in addition to survival, the ability to reproduce. According to the literature, coastal cod is capable of reproducing between the ages of five and six years old (Berg \& Albert, 2003). Relying on this reference value from the literature, 92% of the analysed animals (figure 8A) may be capable of reproduction, even though it was not examined if NCC found had already spawned. Nevertheless, the two conditions mentioned above for the establishment of a coastal cod stock in Svalbard would be fulfilled. The stage of maturity of the animals was determined during sampling, all individuals were only in stage 1 or 2 (7.1.1, see appendix). Sampling took place at the end of the summer, i.e., about 5-7 months before spawning season beginning in March. Thus, the gonads had already been formed, but they were still maturing. If the sampling had been conducted in the first quarter of the year, the maturity observations, among others, would have been different. But it is possible that, considering that the animals have reached sizes that are reproductive according to the literature, they have found spawning sites in Svalbard and are reproducing there. Furthermore, tagging experiments on coastal cod have shown that they visit the same spawning grounds every year after making only short local migrations (Berg \& Albert, 2003). Therefore, it is possible that the found reproductive individuals assigned to the NCC ecotype formed a locally migratory coastal population.

Furthermore, it was decided by using ice maps whether it was possible that the animals spent the last winter at the location where they were found (7.2). If the sampled station was covered with ice last winter, the animals in question could not have spent the winter there. This suggests that the animals migrated to the station of interest in the period between the retreat of the ice cover and the sampling. This discovery of local migrations is consistent with results from a study that also described that NCC undertaking local migrations (Andrade et al., 2020). By looking at the ice maps at the times of maximum ice expansion, specific to the respective stations of the catches, it could be determined that at three out of seven stations it had been impossible for the animals to spend the winter at the location found. The reason for that is, that the ice maps show that in Hornsund (025), Moffen (7B) and Raudfjorden (010), the areas were completely covered by ice in spring during the year of the catch (2020). This confirmed it was unlikely that the animals spent the winter at the stations in question and must have migrated to the site of capture after the sea ice had retreated. It was noticeable that the stations were located in the south and on the north coast of Svalbard. The exact route of the animals could not be determined in this work. Most of the individuals stay on the west coast, which is due to the above-mentioned Atlantic influence in this area. It therefore suggests that the NCC feels most comfortable in this area. The results also show that NEAC also reside along the west coast and north of Svalbard. Thus, it can be concluded that both ecotypes essentially follow the currents of the Gulf Stream. It can therefore be assumed that animals found in the north or south of Svalbard most likely migrate northwards and southwards from this area. This is possible in the period after the maximum ice expansion, which is also the period of the catches. However, in order to create a more specific pattern of NCC migration in Svalbard, a more detailed study has to be performed and more samples have to be collected.

4.2 Methodological consideration

For this study, however, a self-defined range had to be used, since 30 of the 70 samples did not provide clear results. The results from the fragment length analysis are considered unambiguous if either the Pan I allele is homozygous, meaning that only one of the specific primers for the respective allele has bound and thus only one intensity peak is recorded. This intensity peak is at the 77 bp position for Pan I^{BB} or NEAC and at 79 bp for Pan I^{AA} or NCC. Or in the case of heterozygosity, both primers have bound, which means that two peaks of the same intensity should be present at the respective bp positions. Among the results for Pan I ${ }^{\text {AA }}$, however, there are 15 samples in which two peaks were detected for both alleles, whereby the intensity for the Pan I^{A} allele was clearly stronger. The same was the case for the Pan I^{B} allele, in which 6 samples were nevertheless classified as homozygous for Pan I^{B} due to the significantly stronger intensity for the specific primer of the Pan I^{B} allele than for Pan I^{A}. In order to be able to assign the ambiguous
samples to a population, ranges (0 to $0,5 \operatorname{Pan} \mathrm{I}^{\mathrm{BB}}, 0,51$ to 1,99 Hybrid, off 2,0 Pan I^{AA}) were defined, which allowed a clear classification to the populations. The reasons for the differences in the results compared to those from literature have not yet been conclusively explained. Nevertheless, the results are reproducible because during the phase of optimising the PCR conditions, the same starting DNA was used for different PCR. In the subsequent fragment length analyses, however, the same results were produced for the different PCR products by using identical DNA templates.

5 Summary and Outlook

This project investigated whether a local coastal population of NCC ecotype has formed in Svalbard. For this purpose, the population structure in Svalbard waters was studied. The data survey was carried out in September and October 2018, as well as in August 2020 in the coastal and fjord areas of Svalbard. Tissue samples of muscle and fins, as well as other data such as the total length of the fish were measured. Genotyping of cod from results of fragment length analysis (FLA) after previous allele-specific PCR, was performed using the pantophysin I locus (Pan I). The two ecotypes mentioned can be distinguished by their allelic variants of the Pan I locus. NEAC has the homozygous genotype Pan I^{BB}, whereas NCC is homozygous for the Pan I^{A} allele. In addition, there is the heterozygous variant Pan I^{AB}, which is assigned to the group of hybrids. Due to a discrepancy in the results from the FLA compared to results from the literature, the data had to be adjusted using a correction factor, as well as a calculated identification factor. It has not yet been sufficiently explained where the origin of these differences lies, although it could be verified and confirmed that the identical initial DNA yields the same divergent FLA results. From the usable and reproducible results, it was found that all three ecotypes of cod occur in Svalbard. It was then investigated whether the cod found assigned to the NCC ecotype had reached sizes that were capable of reproduction, which would allow an answer to the question of whether this type has become established in Svalbard. For this purpose, the individuals were divided into age classes based on their sizes using reference values from the literature. This in turn made it possible to determine whether the animals were already able to reproduce. On the basis of these investigations, it could be shown that the NCC found in Svalbard are in age classes that have been able to spawn for several years. On the basis of the fact that these animals show a stationary behaviour and only undertake local coastal migrations, it can be assumed that they have been in Svalbard for several years. In addition, an investigation of migratory behaviour was carried out using ice maps. The ice maps provide information on whether it was possible for the animals to have survived the last winter at the location where they were caught. At stations on the coast (Moffen, 7B), as well as a fjord (Raudfjorden, 010) in the north of Svalbard and a station in a southern fjord (Hornsund, 025), it could be shown that it was not possible for the animals to have spent the winter at these locations. These areas were completely covered by ice. Since the distribution of the animals in Svalbard shows that most individuals of the NCC were found on the Atlantic-influenced west coast, it can be assumed that the animals undertake southward and northward coastal migrations from there. Tagging experiments on the animals in Svalbard would provide more precise conclusions, which, however, could not be carried out within the context of this work. Finally, the appearance of the NCC, which were on average 7 years old, in Svalbard's coasts and fjord areas shows that it is possible for them to have survived there for several years, assuming site fidelity. With more
profound genetic studies, such as single nucleotide polymorphic (SNP) markers, it would be possible to show more specifically whether the population (NCC) in Svalbard is genetically different from that on the west coast of Norway. Which would support the establishment of a Svalbard Coastal cod (SCC) population. Overall, this finding represents a change in species composition in Svalbard, which may have an effect on the already established Arctic inhabitants there. For this, it would be important that Arctic species in Svalbard are also studied annually to show patterns in any changes.

6 References

Andrade, H., van der Sleen, P., Black, B. A., Godiksen, J. A., Locke, W. L., Carroll, M. L., Ambrose, W. G. \& Geffen, A. (2020, 6. April). Ontogenetic movements of cod in Arctic fjords and the Barents Sea as revealed by otolith microchemistry. Polar Biology, 43(5), 409421. https://doi.org/10.1007/s00300-020-02642-1

Andersen, I., Johnsen, H., De Rosa, M. C., Præbel, K., Stjelja, S., Kirubakaran, T. G., Pirolli, D., Jentoft, S. \& Fevolden, S. E. (2015). Evolutionary history and adaptive significance of the polymorphic Pan I in migratory and stationary populations of Atlantic cod (Gadus morhua). Marine Genomics, 22, 45-54. https://doi.org/10.1016/j.margen.2015.03.009

Berg, E. \& Albert, O. T. (2003, 1. January). Cod in fjords and coastal waters of North Norway: distribution and variation in length and maturity at age. ICES Journal of Marine Science, 60(4), 787-797. https://doi.org/10.1016/s1054-3139(03)00037-7

Brownstein, M. J., Carpten, J. D. \& Smith, J. R. (1996). Modulation of Non-Templated Nucleotide Addition by TaqDNA Polymerase: Primer Modifications that Facilitate Genotyping. BioTechniques, 20(6), 1004-1010. https://doi.org/10.2144/96206st01

Cryo - Norwegian Meteorological Institute (2022). Cryo - Norwegian Meteorological Institute. Historical Ice Charts. https://cryo.met.no/en/latest-ice-charts

Dahle, G., Johansen, T., Westgaard, J. I., Aglen, A. \& Glover, K. A. (2018). Genetic management of mixed-stock fisheries "real-time": The case of the largest remaining cod fishery operating in the Atlantic in 2007-2017. Fisheries Research, 205, 77-85. https://doi.org/10.1016/j.fishres.2018.04.006

DNeasy Blood \& Tissue Handbook - QIAGEN. (o. D.). Abgerufen am 24. September 2022, von https://www.qiagen.com/us/resources/resourcedetail?id=68f29296-5a9f-40fa-8b3d1c148d0b3030\&lang=en

Drinkwater, K. F. (2005, 1. Januar). The response of Atlantic cod (Gadus morhua) to future climate change. ICES Journal of Marine Science, 62(7), 1327-1337. https://doi.org/10.1016/j.icesjms.2005.05.015

Fevolden, S. (2012, 7. Februar). Brage IMR: Farming of Atlantic cod Gadus morbua in the vicinity of major spawning sites for Norwegian coastal cod populations - is it hazardous? Havforskningsinstituttet Institute of Marine Research. https://imr.brage.unit.no/imr-xmlui/handle/11250/102994?locale-attribute=en

Fevolden, S. E. \& Pogson, G. H. (1997). Genetic divergence at the synaptophysin (Syp I) locus among Norwegian coastal and north-east Arctic populations of Atlantic cod. Journal of Fish Biology, 51(5), 895-908. https://doi.org/10.1111/j.1095-8649.1997.tb01529.x

Haass, N. K., Kartenbeck, M. A. \& Leube, R. E. (1996). Pantophysin is a ubiquitously expressed synaptophysin homologue and defines constitutive transport vesicles. Journal of Cell Biology, 134(3), 731-746. https://doi.org/10.1083/jcb.134.3.731

Impacts of climate change on Arctic climate and weather. (o. D.). National Snow and Ice Data Center. Abgerufen am 24. September 2022, von https://nsidc.org/learn/parts-cryosphere/arctic-weather-and-climate/why-arctic-weather-and-climate-matter

Mark, F., Peeken, I., Flores, H., Schauer, U., Soltwedel, T., Storch, D. (2014). The consequences of climate change for life in the Arctic Ocean. Alfred-Wegener-Institut - Fact Sheet. Abgerufen am 28. September 2022, von https://epic.awi.de/id/eprint/46408/1/WEB_UK_Factsheet_ArcticOcean.pdf

Markl, J., Sadava, D., Hillis, D. M., Heller, C. H., Hacker, S. D., Held, A., Jarosch, B., Seidler, L., Niehaus-Osterloh, M., Sixt, E. \& Delbrück, M. (2019). Purves Biologie (10. Aufl. 2019). Springer Spektrum.

Markusson, H. (2020, 17. April). Is cod becoming a stationary species in the Svalbard fords? Framsenteret. Abgerufen am 24. September 2022, von https:// framsenteret.no/nyheter/2020/04/17/is-cod-becoming-a-stationary-species-in-the-svalbard-fjords/

Nordeide, J. T. \& Båmstedt, U. (1998, 30. November). Coastal cod and north-east Arctic cod do they mingle at the spawning grounds in Lofoten? Sarsia, 83(5), 373-379. https://doi.org/10.1080/00364827.1998.10413696

Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B. \& Nilsen, F. (2014). Loss of sea ice during winter north of Svalbard. Tellus A: Dynamic Meteorology and Oceanography, 66(1), 23933. https://doi.org/10.3402/tellusa.v66.23933

Otterå, H., Johansen, T., Folkvord, A., Dahle, G., Solvang Bingh, M. K., Westgaard, J. I. \& Glover, K. A. (2020). The pantophysin gene and its relationship with survival in early life stages of Atlantic cod. Royal Society Open Science, 7(10), 191983.
https://doi.org/10.1098/rsos. 191983

Pogson, G. H. (2001). Nucleotide Polymorphism and Natural Selection at the Pantophysin (Pan I) Locus in the Atlantic Cod, Gadus morbua (L.). Genetics, 157(1), 317-330. https://doi.org/10.1093/genetics/157.1.317

Sarvas, T. H. \& Fevolden, S. E. (2005). The scnDNA locus Pan I reveals concurrent presence of different populations of Atlantic cod (Gadus morhua L.) within a single fjord. Fisheries Research, 76(3), 307-316. https://doi.org/10.1016/j.fishres.2005.07.013

Spotowitz, L., Johansen, T., Hansen, A., Berg, E., Stransky, C. \& Fischer, P. (2022, 8. September). New evidence for the establishment of coastal cod Gadus morhua in Svalbard fjords. Marine Ecology Progress Series, 696, 119-133. https://doi.org/10.3354/meps14126

Stenvik, J., Wesmajervi, M. S., Damsgard, B. \& Delghandi, M. (2006). Genotyping of pantophysin I (Pan I) of Atlantic cod (Gadus morhua L.) by allele-specific PCR. Molecular Ecology Notes, 6(1), 272-275. https://doi.org/10.1111/j.1471-8286.2005.01178.x

Stransky, C., Baumann, H., Fevolden, S. E., Harbitz, A., Høie, H., Nedreaas, K. H., Salberg, A. B. \& Skarstein, T. H. (2008, April). Separation of Norwegian coastal cod and Northeast Arctic cod by outer otolith shape analysis. Fisheries Research, 90(1-3), 26-35. https://doi.org/10.1016/j.fishres.2007.09.009

Thermo Fisher Scientific - Site Down. (2009). Microsatellite Analysis Getting Started Guide. https://www.thermofisher.com/nl/en/home/technical-resources/technical-referencelibrary / capillary-electrophoresis-applications-support-center/fragment-analysissupport.html

Vikebø, F., Sundby, S., Ådlandsvik, B. \& Fiksen, Y. (2005). The combined effect of transport and temperature on distribution and growth of larvae and pelagic juveniles of ArctoNorwegian cod. ICES Journal of Marine Science, 62(7), 1375-1386.
https://doi.org/10.1016/j.icesjms.2005.05.017

	00＇69	${ }^{\text {n／}}$		9ε		ε	L00	pur［sI ${ }^{\text {IEPG }}$	$81^{\circ} 60^{\circ} 87$	6IS＇H
	$00^{\circ} \mathrm{C}$ ¢	${ }^{n} \mathrm{~N}$		$\bigcirc \mathcal{L}$	enчrou－snpery	ε	L00		81．60⒏	6IS日H
［мед шопо仡	$00^{\circ} \mathrm{ZS}$	H		$\dagger 乙$	en¢ıou－snped	ε	L00	рur［SI ${ }^{\text {IEPg }}$	81．608z	6IS＇3H
${ }^{\text {мехд }}$ шопо	00 ＇$¢ ¢$	H		¢Z		ε	L00	pur］s IEPg	81．608\％	
［Mex momoq	$00^{\text {¢ }}$ L8	H		IZ	enчrou－snped	ε	L00	purlsi Irวg	81．60＇82	6IS日H
［мед］שomoq	$00^{6} 08$	H		02	セnपrou－snpery	ε	L00		$81^{\circ} 60^{\circ} 82$	6IS＇RH
	00＇101	H		9I		\checkmark	L00	purlsi ${ }^{\text {IRJg }}$	$81^{\prime} 60^{\circ} 82$	6IS＇3H
	$00^{\text {c }}$ L9	${ }^{\mathrm{n}} \mathrm{N}$		$\dagger 1$	en¢ıOU－snpen	I	L00	pur｜SI IEPg	81．60．82	6IS＇H
	00 ＇89	H		L	セnपrou－snper	1	L00	purls IEPg	81．60＊8	6IS＇3H
	［wo］TL	2nss！	d＇II ${ }^{-} \mathrm{P}$ ！	P！	sə！うəds	$\mathrm{I}^{\mathbf{O}}$	دəqunu－uolpełs		әнер	วงฺฺn

sə．m．ő！pue səqe工 $\quad \boldsymbol{Z}^{\bullet} L$

V＇Iн еұермеу ع゙İL

səduwes［IE TL でじレ

 x！puəddV

po． 8 ¢！	2ε	${ }^{\text {H }}$	862		en¢ıou＇snper		GL	แวృО\}	0 O゙80t	09¢＇3H
	87	H	ع08		enчrou＇snpey		GL	แәңОЈ		09¢＇3H
pos． ¢u！	98	H	28ε		епчrou－snped		GL	แวృО\}	0 O＇80t $^{\text {a }}$	09¢＇3H
	8 S	H	Itt		enчrou＇snpeg		GL	นวษОN	0で80t	09¢＇3H
pos． 8 U！！ Pry $^{\text {d }}$	$00^{\circ} \subseteq$ L	n／		9II		t	$\varepsilon 00$	นวృ๐N	81＊6000	6［G＇3H
	$00^{\circ} 8 \mathrm{~L}$	n_{N}		¢II	enчrou－snped	†	$\varepsilon 00$	แวృОN	81＊6000	6IS日H
	$00^{6} 6 \mathrm{t}$	${ }^{\text {n／}}$		60 I	enчıou－snpeg		$\varepsilon 00$	นวృОN	81＊6000	6IS＇3
	$00^{\circ} 9 \mathrm{t}$	${ }^{n} \mathrm{~N}$		201		\downarrow	$\varepsilon 00$	แวษОN	81\％6000	6 LG＇3
	00° そt	${ }^{\text {H }}$		86	en¢rou－snped	\dagger	¢00	แәҒО\	81＊6000	6IS＇3H
［Mex］womoq	0t	H	Z0ZI		セn¢row－snpery	8	¢10		0で80＊IZ	09¢＇，${ }^{\text {a }}$
${ }^{\text {Mex }}$ யи\％\＃оq	t6	H	¢ ¢ L			I	020	uวp．olys．suo ${ }^{\text {a }}$	0 O＇80¢ $^{\circ}$	09¢＇3H
	$00^{\circ} 9 \mathrm{t}$	${ }^{\text {n／}}$		t82	enчrou＇snpe才	VS	800		81＊01．E0	6IS＇3
por． 8 U！̣ ${ }^{\text {Pry }}$	00^{6} L01	${ }^{\text {n }}$ N		082		VS	800		81001．¢0	6IS＇3H
	$00^{\circ} 08$	H		S92		VS	800	uวp．olys．suo ${ }^{\text {a }}$	81001．¢0	6IG日H
	$00^{\circ} \mathrm{t}$ S	H		Scz		VS	800		81001．¢0	6IS＇3H
	$00^{6} 6 \mathrm{~S}$	${ }^{\text {n }}$ N		しゃて	セn¢rou－snpery	VG	800	uวpıolys̊̊\％${ }^{\text {a }}$	81001＊¢0	6IS＇3H
pos． ¢U！	$00^{\circ} \mathrm{IL}$	${ }^{\text {H }}$		$68 Z$		VG	800		81＊01＊¢0	6IS＇3H
	$00^{6} 6 \mathrm{t}$	d		S\＆Z		VS	800		81001．${ }^{\text {co }}$	6IS＇3H
	$00^{\circ} \mathrm{G} 9$	${ }^{\text {nJ }}$		て\＆Z		VG	800	uวpıolyso̊uo ${ }^{\text {a }}$	81＊01＊¢0	6IS＇3H
	$\subseteq \varepsilon$	${ }^{\text {H }}$	09tl				¢Z0	punsumoh	0で80＊0ع	099＇3H
	19	d	0¢ヶI		en¢rou＇snper		¢Z0	punsumoh	0で80＊0¢	09¢＇8H
H！！पSy	$00^{\circ} 02$	H		t6	en¢rou－snper	¢	200	punsumo	81．60．6Z	6 LG＇3H
サ！！पS5	$00^{\circ} \mathrm{E}$ I	H		\＆6		¢	200	punsumoh	81．60．62	6IS日H
H！！पS5	$09^{\text {c } 61}$	H		06	en¢rou－snper	¢	200	punsumoh	81．606․	6IS＇H
H！！पSy	$00^{\circ} 8 \mathrm{I}$	${ }^{\text {H }}$		†8		¢	200	punsuioh	81．60．62	6IS＇3H
サ！！पSy	$00^{\text {² }}$ IZ	H		62	enчrou－snpey	¢	200	punsuroh	81．60．62	6IS＇3H
H！！पSy	00＇6I	H		EL		S	200	punsumo H	81．60．62	6IS＇H
H！！पS5	$09^{\text {c }}$ LI	${ }^{\text {d }}$		69		S	200	punsumoh	81．60．62	6IS日H
H！！पS5	$00^{\circ} \mathrm{t}$ S	${ }^{\text {n }}$ N		L9	セnपrou－snpery	¢	200	punsumoh	81．60＇62	6IS＇3H
${ }^{\text {Mex }}$ Uomoq	$00^{6} 9 \mathrm{t}$	H		OS	en¢rou－snper	ε	100	Pue［SI IEPG	81．60．82	6IG＇H

	$\angle 9$	H	Z9		en¢ıou－snpen		000	gWS／dWX	02＇80＊60	0993H
	09	H	16		enчıou－snpe才		000	gWS／dWX	0で80＊60	09¢ ${ }^{\text {a }}$
pox ．8u！${ }^{\text {Pry }}$	\＆¢	H	981				000	gWS／dWX	0で80＊60	09¢马H
pox． ¢u！	0LI	H	\＆\downarrow l		enчıou－snpen		000	gNS／dWX	0で80＊60	09¢马H
po． ¢u！	18	H	87		enчıou－snpe才		000	gNS／dWX	0で80＊60	09¢马H
	¢6	H	L6I		enчıou－snpery		000	gNS／dWX	0で80＊60	09¢马H
pox． ¢u！	LS	H	†¢ I		enчıou－snpe才		000	gWS／dWX	0で80＊60	09¢马H
po． ．u！	L8	H	02		en¢ıou－snpeŋ		000	gWS／dWX	0で80＊60	09¢马H
pox．$\frac{\text { ¢u！}}{}$	ZL	H	LEI		enчıou－snper		000	gWS／dWX	0で80＊60	09¢马H
	tL	H	¢ IZI				†t0	！${ }^{\text {！}}$ S	0で80＊02	09¢＇，${ }^{\text {a }}$
	84	H	L0¢1		en¢ıou－snpeŋ		†t0		0で80002	09¢马H
pox． ¢u！	68	H	¢ZII		enчıou－snpery		†t0	！	0で80．02	09¢马H
	$\angle 9$	H	6ZZI		en¢ıou－snpef		†L0	！${ }^{\text {！}}$ ，${ }^{\text {S }}$	0で80＊02	09G＇HH
	ZL	d	08LI				ti0	！${ }^{\text {！}}$ ！${ }^{\text {S }}$	0で80002	09¢马H
	69	d	LIII				ti0	！ 1 ！${ }^{\text {S }}$	0で80＊0Z	09¢马H
pox．8u！${ }^{\text {Pry }}$	09	H	L9IL		セnчıou－snpen		†t0	！${ }^{\text {！}}$ S	0で80．02	09¢马H
	LL	H	L801		en¢ıou－snper		†10	！ 4 ！${ }^{\text {S }}$	0で80002	09¢GH
	96	d	Z0¢1		enчıou－snpe才		†t0	！	0で80．02	09¢马H
	¢8	H	78II		عnчıou－snpen		†t0	！${ }^{\text {！}}$ S ${ }^{\text {S }}$	0で80＊02	09¢3H
H！${ }^{\text {¢S }}$	$00^{\text {c }}$ I8	H		$8 \varepsilon 1$	عnчıou－snper	I	¢00	แәрıо！pney	810010 0	6ISAH
H！！पS5	$00^{\circ} 02$	H		I¢ 1	enqıou－snper	I	¢00	นวр．ヵ！pney	81001゚0	6ISGH
H！！पS	00 ¢ 6	H		0¢1	عnчrou－snper	I	¢00	иวр．о！pney	81001． 0	6ISGH
H！！पS	E9	H	IEL			L	0 L0	uวpıolypney	0で80＊${ }^{\circ}$	09¢＇HH
H！！पS5	95	H	ZZL			L	0 L0		0で80＊LI	09¢马H
H！！पSy	68	H	E9L		عnчıou－snper	L	0 L0	иәрıоไ̧pney	0で80＊L	09¢＇，${ }^{\text {a }}$
H！¢ पSy	0068	n_{N}		2Z1		ε	t00	uәpıolypney	810010 0	6IS日H
	$00^{\circ} \mathrm{L}$ 9	${ }^{n} \mathrm{~N}$		LZI	عnчıou－snpen	ε	t00		810010 0	6IS日H
サ！！पS5	$00^{\circ} \mathrm{L} \mathrm{\varepsilon}$	${ }^{\text {n }}$ N		¢ZI	епчıou－snpery	ε	to0		81001．L0	6IS日H
H！！पS	00＇6¢	${ }^{\text {n／N }}$		\＆ZI		ε	t00	uәpıolypney	81001． 0	6ISAH
	$\dagger 乙$	H	$9 \varepsilon 8$		enчıou－snper		GL	ЧวサОN	$0 て ゙ 80{ }^{\text {¢ }}$－	09¢GH

Lでて	87 ¢＇I	Z\＆6＇て	9＇9tI	†0：01	てで¢0｀¢	LS0HOu－
でて	8¢0＇I	ャてどて	Iで9しI	ع0：01	で｀ $0^{\circ} \mathrm{C}$ ¢	9¢0H0ひワ）
LI＇Z	6 $0^{\text {c }}$ I	\＆ャどて	カレ゙ムじ	20：01	で｀ $0^{\circ} \subseteq 1$	¢¢0Ношワ
81「て	$216{ }^{6}$	266＇I	29‘66	10：01	で｀ $0^{\circ} \mathrm{C}$ ¢	ャ¢0Ноuワ
とでて	ZLI＇I	609 ¢	\＆t＇0¢L	00：01	てでと0｀¢	๕¢0Houn
しでて	てLでて	$810{ }^{\circ} \mathrm{¢}$	$6^{6} 092$	6¢：60	で｀ $0^{\circ} \mathrm{C}$ ¢	290HOu－
LI＇Z	26t＇0	L90＇I	¢¢＇¢¢	8¢：60	で｀ $0^{\circ} \subseteq 1$	โ¢0Houワ
LI＇Z	LL8＇0	L06＇	ャ0＇¢6	9¢：60	で｀ $0^{\circ} \subseteq 1$	0¢0Hour
ャ8＇	$606{ }^{\circ} 0$	LL9＇I	L9＇¢8	¢¢：60	で｀ $0^{\circ} \mathrm{C}$ ¢	6ヶ0Hour）
$9 Z^{\text {c }}$ て	I9¢ ${ }^{\text {c }}$	89でI	てが¢9	\＆¢：60	で｀ $0^{\circ} \subseteq \subseteq$	8ャ0H0uワ）
LI＇Z	ELL＇0	¢L9＇I	9L＇¢8	Z¢：60	てでと0＇¢	¢ヶ0HOu！
¢でて	6LL＇0	ZSL＇I	$69^{\text {c }}$ ¢	IS：60	てで¢0｀¢	9t0Hour
でて	Z8L＇0	ZZL＇I	てI＇98	0¢：60	で｀ 0° ¢	Lь0Ноu＇）
LI＇Z	L81＇0	L0t＇0	$9 \varepsilon^{\text {¢ }} 0$ \％	9t：60	で「 $0^{\circ} \subseteq 1$	ャャ0Ноயワ
81＇z	¢ 10 ＇ 1	†Iでて	890し1	St：60	てで¢0｀¢	\＆ャ0Hour
でて	920＇L	¢Sでて	LL｀てII	\＆ャ：60	で｀ $0^{\circ} \mathrm{C}$ ¢	てャ0Ноuワ
61＇z	EL9 0	$\varepsilon\left\llcorner t^{6}\right.$ L	L9¢ $¢ L$	十t：80	で「と0「て0	เっ0HOuワ
\dagger でて	\＆96 0	191＇Z	90「801	عt：80	で「と0「て0	0ャ0Houn
\dagger でて	†00＇L	てSでて	69＇zLI	0t：80	で「と0「て0	Lع0Ношワ
¢でて	L9L＇0	80L＇I	カ｀98	8¢：80	でどと0「て	¢¢0HOuワ
61＇z	916\％	L00＇て	$9 \varepsilon^{6} 00$ I	9¢：80	でと0「て0	\＆ع0Houn
¢1＇Z	¢9でて	9L8＊${ }^{\text {¢ }}$	6L｀¢ちて	¢¢：80	で「と0て0	โ¢0Hour
61＇z	991＇E	\＆ャ6＇9	とじんナを	80：¢1	で，1000	080Houn
$8{ }^{\text {čz }}$	¢8L＇I	Z68 ${ }^{\text {c }}$ ¢	9＇t6I	LO：¢ I	で10．02	620Hour
LI＇Z	6L6＇I	88でゅ	8\＆゙ャレて	90：¢I	で1000	820Hour
とし「て	80č0	6L0＇I	$96^{\text {¢ }}$ ¢ $¢$	¢0：¢I	で，10．02	LZ0Houn
¢ I＇Z	$6 t \varepsilon^{\text {c }}$ I	¢06＇Z	Lで¢ヶL	to：$¢ 1$	で10．02	920Hour
とでて	8 8でI	を9L＇て	CL＇8¢	¢0：¢I	で1000	¢Z0Houn
08Z／09Z	08ZV	092V	［ ${ }^{\text {／}}$ ¢u	2u！L	${ }^{2+1} \mathrm{C}$	CI ग ${ }^{\text {dures }}$ S

¢0＇Z	8โどป	L＇Z	¢\＆	てt：01	てて＇$¢ 00^{\circ} \subseteq 1$	280Houn
とでて	IC0＇I	$6 \downarrow$ ¢＇Z	StiLll	It：01	で＇$¢ 0^{\circ} \subseteq 1$	980Houn
て＇乙	889\％0	¢IS＇I	9L＇¢ ${ }^{\text {c }}$	0t：01	てで¢0 $0^{\circ} \subseteq$	¢80H0uŋ
1でて	¢¢¢＇L	¢86＇z	¢で6t1	6と：01	てて＇ $0^{\circ} \subseteq 1$	ャ80Нош门
カでて	818＊0	$98^{\text {¢ }}$ I	84＇I6	8¢：01	てで¢0¢	\＆80Нош门
¢でて	9 21「1	\＆¢c＇z	99｀92I	Lع：01	てで¢0¢	280H0uヵ）
Iでて	てSt「0	L00＇ I	E0＇0¢	9¢：01	で＇ $0^{\circ} \subseteq 1$	180Нош门
てİて	Et50	$606^{\circ} 0$	Et＇St	¢¢：01	てて＇$¢ 0^{\circ} \subseteq 1$	080Houn
LI＇乙	¢09\％0	IE＇I	Z¢＇¢9	t¢：01	てで¢0¢	6 $20 \mathrm{H}^{\text {Oü }}$
91「て	LL6＇${ }^{\text {I }}$	$8 \downarrow$ でャ	カ「でて	2¢：01	てて＇ $0^{\circ} \subseteq 1$	820HOuŋ
8t「て	カLI「0	โモt「0	ャc＇ı	L¢：01	てて＇$¢ 0^{\circ} \subseteq 1$	LLOHOuŋ
てでて	†06＇0	¢00＇Z	9で001	とて：01	てて＇$¢ 0^{\circ} \subseteq 1$	920Houn
9 V「て	680＇L	6St「て	¢6「てZ1	てZ：01	てで¢0¢	¢ 20 HOU
て＇Z	カレt「て	6tt＇${ }^{\text {c }}$	ガ「てLZ	Lて：01	で＇ $0^{\circ} \subseteq 1$	ャ LOHOuワ
てでて	$96{ }^{\text {c }}$	¢89＇9	とで6Zを	0z：01	てで¢0¢	\＆LOHOü
¢でて	6 I＇z $^{\text {a }}$	SZ6＇t	とで9って	6I：01	てで¢0¢	ZLOHOயワ
ャでて	8しげて	¢ $\downarrow \downarrow^{\circ} \mathrm{C}$	S9＊0LZ	81：01	てて＇$¢ 0^{\circ} \subseteq 1$	L20Hour
とでて	ち0でて	L6＇t	¢̧＇¢って	LI：01	てで¢0｀¢	020H0uヵ）
て＇Z	StL＇て	2E0＇9	19＇10¢	91：01	てで¢0¢	690Hour
Lでて	L9860	9t6 ${ }^{\text {² }}$	2どL6	¢ I：01	てて＇$¢ 0^{\circ} \subseteq 1$	890Hour
ャでて	81＇1	$8+9$ ¢	じてとし	ャワ：01	てて＇ $0^{\circ} \subseteq 1$	L90HOuŋ
て＇Z	ILE＇I	20＇ε	$66^{6} 0 ¢ \mathrm{~L}$	ャワ：01	てで¢0¢	990H0uヶ
とでて	6tr＇I	299＇Z	80＇8Z1	2I：01	てて＇$¢ 0^{\circ} \subseteq 1$	¢90Ношŋ
¢でて	9とL＇0	LS9＇I	ャ8＇z8	LI：01	てて＇$¢ 0^{\circ} \subseteq 1$	ャ90Ношŋ
61＇z	Z $26{ }^{\circ} 0$	IZ0\％	90＇101	01：01	てで¢0¢	\＆90Houn
¢でて	†て9「0	L0t＇I	$9^{6} 06$	60：01	てでと0＇¢1	290Houヵ
61＇z	999＇I	てとt「	9「しくさ	80：01	てて＇ $0^{\circ} \subseteq 1$	190Hour
81＇z	LIE＇I	$898^{\circ} \mathrm{Z}$	$6^{\text {²b }}$ I	L0：01	てで¢0¢	090H0ひヵ
61＇z	¢0＇I	と＇z	$66^{\text { }}$ IL	90：01	てて＇$¢ 0^{\circ} \subseteq 1$	6¢0Hour
61＇z	$86 \varepsilon^{\prime}$＇	\＆90＇ε	†l＇¢¢	¢0：01	てて＇ $0^{\circ} \subseteq \subseteq$	8¢0H0uヵ）

tliz	てもどt	18766	L0＇t9t	\＆¢：01	乙て＇$¢ 0{ }^{\circ} \subseteq 1$	660H0ur
カl＇Z	60て＇E	LL899	t8＇どを	2¢：01	てで¢0¢ ${ }^{\circ}$	860Houn
LI＇Z	991＇Z	L0L＇t	¢\＆＇¢¢Z	IC：01	てて＇$¢ 0^{\circ} \subseteq 1$	L60Houn
91＇z	¢60 ${ }^{\text {¢ }}$	LIG＇t	¢8｀¢ZZ	L¢：01	てて＇$¢ 0{ }^{\circ} \subseteq 1$	960H0u－
91＇z	$\operatorname{Scc}^{\text {c }}$ ¢	LEでL	78「198	0¢：01	てで¢0 ${ }^{\circ} \subseteq$	¢60HOuF
6L＇z	\＆ャ9 \％	26L＇s	$69^{\text {¢ } 682}$	6t：01	てて＇$¢ 0{ }^{\circ} \subseteq 1$	760Houn
6L｀	$¢^{9} 68^{\circ} \mathrm{Z}$	ゆ¢ ${ }^{\text {¢ }} 9$	E0＇LIE	8t：01	てて＇$¢ 0{ }^{\circ} \subseteq 1$	\＆60HOu＇）
て＇Z	$8 \pm L^{\text {c }}$ I	¢¢8＇¢	L9｀て61	Lt：01	てで¢0 $\subseteq 1$	260Hour
て＇Z	L8L＇て	6 ${ }^{\text {¢ }} 9$	ャ6＇¢0¢	9t：01	てて＇$¢ 0{ }^{\circ} \subseteq 1$	160H0uワ
$\dagger て^{\text {c }}$	$69^{6} 0$	LZと＇L	E0＇99	St：01	てて＇$¢ 0{ }^{\circ} \subseteq 1$	060H0uワ
91＇z	$926{ }^{6}$	\＆01＇z	¢ L＇¢01	ちt：01	てで¢0 $\subseteq 1$	680HOu．
IZ｀	61＇】	て¢9「て	89＇IEL	Et：01	てでと0 0° ¢	880Houn

0	0	00¢	¢ŞLEZILL‘0	0	\＆0L	LSOHOU．
Z6SI	¢Z¢¢0でて6¢1	00¢	てぃE0LS0¢6＇0	¢ 29 I	925	9¢0HOuワ
6t¢ 1	60ZLE8＇8ヵ¢	00¢	てStZ80LS0＇L	9LZI		¢¢0НОШワ
0	0	00¢	¢6880LLt ${ }^{\text {c }}$ I	0	ILE	ャ¢0Ношワ
LE0I	LE0¢¢8＊9E0】	00¢	6ZZI0¢8Zて＇1	tt8	L0t	\＆¢0НОШワ
0	0	00¢	6Et6LSt\＆6「0	0	¢¢¢	2¢0HOuワ
95t	とโ9ISt9＊¢St	00¢	と上9ISt908「0	¢9¢	029	I¢0Houn
0	0	00¢	9 $\downarrow \downarrow 8$ ¢6¢G「0	0	$\downarrow 68$	0¢0HOU．
＋6I	6L8L8Zİt6I	00¢	L696969t6 0	¢0Z	8Z9	6ヶ0HOuワ
LII	L8tI868＊9 I	00¢	L0t $20 t \angle S$ I＇I	I0I	て\＆t	8t0H0uワ
0	0	00¢	LSIZ6E086 ${ }^{\circ}$	0	015	Lt0HOuワ
LtE	¢6tて80 ${ }^{\circ} \mathrm{Lt}$ ¢	00¢	LIZ9E0900＇I	St\＆	L6t	9t0H0ひワ
0	0	00¢	69t6I90「「	0	2St	¢ヶ0H0uワ
カ9tI	¢¢ LZ99＇¢9tI	00¢	6tLStIZI0＇し	9ttI	t6t	ャャ0Houワ
Z0S		00¢	ャてS8ャ8 $\downarrow 9^{\circ} 0$	28L	6LL	\＆ャ0Нощワ
S92	988ャ8を6＇ャ9て	00¢	LI\＆L9E6Et「0	\＆09	8\＆LI	てか0Ношワ
L88	てIS9tCE゙L88	00¢	98IttL9てL「0	LZZI	889	しゃ0Ношワ
0	0	00¢	とZZ0E0LS9＊0	0	19L	0ヶ0Hour
OS	696¢ $28 \varepsilon^{6} 0$ ¢	00¢	86LE6ISLL＇0	¢9	¢t9	Lع0HOuŋ
0	0	00¢	とtL9C9¢L8＇0	0	ILS	¢ $¢ 0 \mathrm{HOய口}$
0	0	00¢	†をZ¢0L889「0	0	9ZL	\＆ع0Ношワ
ES	L9EL6L09｀\％S	00¢		LII	ZIIL	โع0Ношワ
0	0	00¢	t06I60t60＇L	0	LSt	0 0\％${ }^{\text {Oü }}$
0	0	00¢	EtILS8Z68 ${ }^{\circ}$	0	09¢	620Houn
8L0Z	LStI8「LLOZ	00 S	LStI8LZ8＊0	0192	†09	820H0uワ
0ع	ع0¢0¢0¢ 0 0	00¢		ZS	8¢8	LZ0HOuワ
0tて	LZ0¢6Z9｀6とZ	00¢	L9Z90¢ Ltti0	¢t¢	¢¢LI	920Houn
08ε	9¢SLIEE์08を	00¢	て90LItて6¢「0	2t9	カャ8	¢20Houŋ
${ }^{1000}{ }_{\mathrm{VI}} \mathrm{He} \mathrm{C}_{\mathrm{d}}$	${ }^{300}{ }_{\text {VI }}{ }^{\text {UP }} \mathbf{d}$	${ }^{1009} S_{L} \mathbf{x O Y}$	${ }^{\text {J．LOO }}$	$\mathrm{vI}^{\text {UP }} \mathrm{C}_{\text {d }}$	g \angle POY	xxx ${ }^{\text {OuF }}$

0	0	00¢	6¢ L80カてL6＇0	0	$8 \pm$ ¢	L80Hour
0	0	00¢	L8996「¢E0＇I	0	\＆8t	980Hour）
0	0	005	L80860990 ${ }^{\text { }}$	0	$69 t$	¢80Hour
0	0	00¢	9¢¢¢¢ $0898^{\circ} 0$	0	9LS	ャ80Ношワ
6ct	6L6EL＇8Et	00¢	ZL¢0¢セ¢89 0	ZSL	L¢8	\＆80Houn
0	0	00S	†L98Z08tt「0	0	911L	280Houワ）
0	0	00S		0	189	180Hour
091	68「960L＇6SI	00¢		9LI	LS¢	080Hour）
¢¢¢	StてZ190＇と¢s	00¢	と9180t0z0＇I	てt¢	06t	620Hour
0	0	00¢	ャ6L6¢988でI	0	88ε	820Hour）
298	68ZZL08＇IS8	00¢	LLZ6I8t0でI	LOL	¢ LT	LLOHOU－
0	0	00¢	$8 \pm$ 8LS0968 0	0	8¢¢	920Hown
0	0	00¢	8LZ89CZ08｀0	0	\＆Z9	¢ $20 \mathrm{H}^{\text {Ou－}}$
0	0	00 S	6Z900L6Z9「0	0	St6	－ $20 \mathrm{H}^{\text {OuF }}$
0	0	00¢	LZ¢ZS8t¢0＇I	0	t $\angle t$	\＆LOHOU－
0	0	00¢	LLOCZ610z＇I	0	91t	2LOHOU－
0	0	00¢	800t00Z00＇I	0	66t	ILOHoun
881	tS80Lげと81	00¢	L0tI8Z9CでI	9tI	86ε	020Hour）
0	0	00¢	¢とZ89¢8しI「し	0	Ltt	690Hour）
8101	ZてLE6＇LI01	00¢	¢とて9L0してI＇I	806	9tt	890Houn
LLZ	¢6tS9¢ 「LLZ	00S	St0ZZL86L＇0	Lt¢	929	290Hour）
0	0	00¢	6Z¢0016Z9「0	0	St6	990Hour）
L62	¢\＆8E¢ç์＇L6Z	00¢	ャて96ャ86\＆6 ${ }^{\circ}$	01E	ZES	¢90Hour）
LLt	\＆LZLZLZ＇LLt	00S	Z80IGzZ80＇I	Ltt	Z9t	ャ90Ношワ
862	2861861＇862	00¢	L06006006 ${ }^{\circ}$	IEE	¢¢¢	\＆90Hour）
962	90Z6t¢9｀¢6Z	00¢	Z6tE90Z66 0	862	t0¢	290Hour）
9L6I	898tE0「9L6I	00¢	6I9ちてと680「1	† 18 I	6St	［90H0uワ）
0	0	00¢	$868269696{ }^{\circ}$	0	IZS	090Houワ）
0	0	00¢	86EEL0609＊0	0	IZ8	6¢0Hour）
885		00¢	66LZE9Stti0	60¢I	てZII	890Hou－

027	2891929＊6IZ	00¢	てヤL9¢¢L99「0		$67 L$	
IZS	60¢ち8Et「IZS	00¢	てE6Z9¢169＊0	t¢L	EZL	0ヶ0Houn
6LI	ZI90ISI「6LI	00¢	¢ZL6IZたて9「0	L8Z	108	LE0HOU．
ZZI	¢¢Z860t＇てZI	00¢	†¢86ZLE8E＇0	6IE	\＆0¢L	¢¢0HOü
¢0Z	L6で¢66＇t0Z	00¢	とZZ0ع0LS9「0	てIE	192	\＆と0Houn
L88	66t＋8LC「988	00¢	†8¢6LISt6 ${ }^{\circ}$	886	6Z9	โع0НОu＇
LII	29986860LI	00¢	St6zZ09¢6＇0	Z91I	\＆Z¢	$080 \mathrm{H}^{\text {oun }}$
L6¢61	8t8ZL「06を6I	00¢	6¢LZS LE0 I＇I	89¢ LI	\＆¢t	620Houn
88ε	StS0L66 ${ }^{\circ}$ LeE	00¢	¢Z0LLE9EL「0	6St	6L9	820Houn
†99	9L9010L＇E99	005	¢IL6L9688＊0	$97 \angle$	295	LZOHOயワ
682	LセELI0¢682	00¢	LELI6EE96\％	00¢	6IG	920Houn
ttr 8	LE0LE0L＇Eヶ8	005	Lt $20 \downarrow$ LOt ${ }^{\text {co }}$	6ELI	¢L9	¢Z0Houn
${ }^{\text {［0\％}} \mathrm{gI}^{\text {Ur }} \mathrm{C}$	${ }^{\text {0\％}} \mathrm{gII}^{\text {uv }}{ }_{\text {d }}$	${ }^{\text {［10\％}}$ S $\angle X O Y$	${ }_{\text {J．LOO }}$	$\mathrm{gI}^{\text {ued }}$	GLXOU	xxxHoun

Table A 4：Correction of the intensity of Pan I^{B} using corrf．

LI9	L99999「9192	005	6I9Lt06I＇I	86IZ	02t	660Hour
969t	¢\＆¢Z¢8＇¢69t	005	E\＆LELOZSI＇I	9L0t	ナEt	860Houn
¢ScI	L¢Z¢6＇t¢¢	005	てS09てセ8L9＊0	Z6ZZ	LEL	L60Hour）
1862	Z6LZ08＊086Z	005	6tE009ZL8「0	9โセを	$\varepsilon \angle S$	960Hour
て8tて	889tくI＇z8ちて	005	L6Sc92I68＊0	¢8LZ	199	¢60Hour
ャ8ヶI	St00tčt8tI	005	EとZ89981L＇I	LZEI	Ltt	ャ60Hou＇s
0191	E6LEL6＇609I	005	L0Z98¢ 2 L0＇I	カ6tI	t9t	\＆60Houn
9 －II	LIE008「¢ちLI	005	LZ0ع6EZ6L＇0	9ttI	IE9	260Hour）
862	ャ66LL09 L6L	005	L8IGZ96tL＇0	t901	L99	160Hour
0	0	005	† ¢088しゃ¢¢「0	0	9 96	060Hour
0	0	005	L9t660888®0	0	\＆9¢	680Hour
0	0	005	L0660066 ${ }^{\circ}$	0	¢0¢	880Houn

t¢ $¢$	†L89โ¢Ét¢\＆	009	L9t660888「0	668	E9¢	890Houn
¢IZ	I82698「レIZ	00¢	カ9tE66918＊0	\＆9Z	て19	L90Hour
IS8	9609Z¢Z゙โ¢8	00¢	8990Z6LZ950	IE9I	856	990Houn
0	0	00¢	9Z6¢Z6¢Z660	0	0tS	¢90Hour
LE6	ZとIZ001＂LE6	00¢	L80860990＇1	628	69t	ャ90Houn
L6	L69908L0＇L6	00¢	と089E6Z6＇0	86	8\＆¢	\＆90Houn
LOL	8Zと9ttE゙L0I	00¢	98¢6โ91ヵ6\％	カIL	IE¢	290Houn
0	0	00¢	ZStZ80LS0＇I	0	$\varepsilon L t$	190Hour
8LL	L8¢Z960＇8IL	00¢	Z¢608¢Z¢60	$t ¢ L$	SZS	090Houn
OtS	99LItロが0ts	00¢	860¢tLZI9＊0	288	918	690Houn
LIt	LOELI969「的	00¢	とLI9691ヵti0	t十6	て¢II	890Houn
818	818	00¢	L99999999 0	LZZI	OSL	LSOHoun
0	0	00¢	EtILS8Z68\％	0	09¢	9¢0Houn
E0t	¢ZIE0ZどE0t	00¢	¢Z9S9L660	とLt	ZIS	¢¢0Houn
ESt	¢ZI＇と¢t	00¢	LLOEZ6IOZ＇I	LLE	9じ	ャ¢0Houn
192	E08EE99「09て	00¢	Z680LELI＇I	てZ乙	9てt	\＆¢0Houn
ZS	8Z86t¢0t＇r¢	00¢	6ZS9016¢8＊0	L9	289	250Houn
98	9808¢808｀¢8	00¢	80¢Z80¢Z8「0	t01	909	IS0Houn
015		00¢	66IZL98IG「0	t86	†96	0¢0Houn
Lt		005	て¢โ6S $\downarrow 06{ }^{\circ} 0$	9¢ I	\＆ऽऽ	6t0Hour
0	0	00¢	LI8892GL0＇L	0	¢9t	$8 \pm 0 \mathrm{H}^{\text {our }}$
SIL	LZて8ャで¢ 11	00¢	とZ8ちて¢988＊0	0¢I	t9¢	Lt0Houn
CZI	89L009L゙もてI	005	8687696¢6\％	O¢I	IZS	9t0Hour
LEL	6Ltて0Lc「9とL	00¢	LS8LS0EE0＇I	EIL	t8t	¢t0Houn
E\＆¢	L8LEttS＇zとS	005	†6Zと61986\％	$0 t ¢$	LOS	tt0Houn
$86 乙$	80696¢8＊L6Z	009	LZと0¢St6950	IOS	しゃ8	\＆ャ0Houn
6\＆ 1	E†00¢98＊8¢	00¢	カよ9Zて66で「0	EZE	E9II	2t0Houn

¢Z\＆	\＆ャ6LIE＇SZと	00¢	L6SS9ZI68＊0	¢98	L9¢	¢60HOu！
0	0	00¢	6てtIL09しI「し	0	8tt	ャ60Hour
0	0	005	86をカtELE0＇L	0	28t	\＆60H0யワ
0	0	00¢	8E60Z¢LE8\％0	0	L6¢	260Hour
Ltt	S6tSLZL＇9tt	00¢	800¢E0L9L｀0	L8S	LS9	160Hour
t9L	とちてとってどャ9L	00¢	Lヵ¢0t¢0ヶ¢ 0	†しゃ	¢Z6	060Houn
08ऽ	カ\＆てttを0「08s	009	86IC8S098 0	tL9	L8S	680Hour
tot	くカてZ0Z8「を切	00¢	88¢6ZE9E6 ${ }^{\circ}$	t $\angle t$	†¢¢	880H0uワ
0¢t	0¢t	00¢	996890Z98 0	ZZS	08¢	L80Houn
0tt	と0t066t「0tt	005	8687696¢6 0	6¢t	IZS	980H0uワ
¢09	L0¢cçz9「t09	00¢	98¢IZ¢โ0じし	6 ± 5	†¢t	¢80Hour
98 L	996890で98	005	$996890298{ }^{\circ} 0$	2L6	08¢	780H0ur
\＆61	¢ち9LZE8「て6I	005	†IZ8Z889950	68E	6 L8	\＆80Hour
968	ZISE00t「968	00¢	と9¢ I868\＆が0	てち0z	6 6LI	280Houn
¢99	¢0¢SLS8「t99	00¢	てS092t8L9 0	086	$\angle \varepsilon L$	280HOu．
089	LL8ES6ど089	00¢	6ZZEZLEZ8＊0	978	L09	080Houn
LS I	6\＆EL088＇9¢ I	005	と6IIEtLI6「0	ILI	StS	620HOun
8EL	9Z9tS888 LEL	00¢	98¢IZとโ0じし	$0 \angle 9$	tSt	820HOuF
ttI	996LL90＇tol	005	†E0ZZ£6¢0＇1	9¢1	てLt	LLOHOU口
$8 \downarrow$ ¢		009	LELZL96I8＊0	899	019	9 $20 \mathrm{H}^{\text {Our }}$
\＆ZZ	†88LI08‘てZて	00¢	と8t9¢ IStL「0	662	L $\angle 9$	¢ $20 \mathrm{H}^{\text {OuI }}$
91E	IZLI6Es＇sIE	00 S	9てZItS88950	L6S	$9+6$	七20HOU口
0 S	\＆ZZIL6SE์0¢	00¢	9LS08Z668＊0	95	9¢5	\＆LOHOU．
6 S	8tE0Lt0ど6s	005	888ち6ちてZ0＇L	8 S	$68 t$	2LOHOU口
¢S	6L0EL6It＇Es	00¢	てع0LIEか8＊0	£9	E6S	ILOHOUF
¢8	EعLI8\＆I＇¢8	005	L8L0960LI＇L	IL	LZヤ	020HOur
0ZI	LELOE9866L	00¢	LISZSSLけじし	¢01	8\＆t	690Hour

ES＇$¢$	LSI	¢¢¢	6L0Houŋ	¢ L^{\prime}＇	¢¢¢	t9tI	ャt0Hour
$00^{\circ} 0$	$8 \mathcal{L}$	0	820Hour	69＇1	862	Z0¢	Et0Hour）
$16^{\text {＇}}$ ¢	tol	Z98	LLOHOuŋ	16^{6} I	6\＆1	S9Z	2t0Hour）
$00^{\circ} 0$	8 ± 5	0	9LOHOuŋ	t0＇t	072	$\angle 88$	Lt0Houn
$00^{\circ} 0$	\＆ZZ	0	¢ LOHOu！	$00^{\circ} 0$	IZS	0	$0 \pm 0 \mathrm{Hou}$
$00^{\circ} 0$	918	0	－LOHoun	$87^{\prime} 0$	6 LI	OS	LEOHoun
$00^{\circ} 0$	09	0	\＆LOHouŋ	$00^{\circ} 0$	221	0	¢¢0Houn
006	69	0	てLOHour	$00^{\circ} 0$	¢0Z	0	¢ع0Hour
$00^{\circ} 0$	\＆¢	0	ILOHoun	$90^{\circ} 0$	$\angle 88$	¢¢	İ0Houn
$1 て ゙ て$	£8	E8I	0L0Hour	$00^{\circ} 0$	LIL	0	0 0\％Houn
$00^{\circ} 0$	021	0	690Houŋ	$00^{\prime} 0$	L6E6I	0	620Houn
$\angle 8^{\prime}$ 亿	$\dagger \subseteq \varepsilon$	8101	890Houn	¢I＇9	$8 \varepsilon \varepsilon$	8L0Z	820Houn
$6 Z^{\prime}$ I	¢IZ	$\angle L Z$	L90Houŋ	¢0¢0	t99	0ε	LZOHour
$00^{\circ} 0$	LS8	0	990Houŋ	E8＊0	682	$0 \downarrow$	920Houn
$0^{〔}$ て＜	0	162	¢90Houŋ	St＇0	tb8	08ε	¢z0Houn
Јиәр！	${ }^{\text {º\％}}{ }_{\text {gI }} \mathrm{UE}_{\text {d }}$		xxxHown	эұиәр！	${ }^{100}{ }_{\text {al }}{ }_{\text {I }}{ }^{\text {ue }}$ d		xxx ${ }^{\text {oung }}$

$9 \dagger \varepsilon$	t9 9 ¢ 9 ¢ $9 \downarrow$ ¢	00¢	$606060606^{6} 0$	L8\＆	0¢¢	660Houn
0	0	00¢	90¢ç6cczid	0	¢tt	860Houn
928	E0¢ttc9 ¢ $¢ 8$	00¢	Z9Z0¢ちt¢960	8E¢	t9L	L60Houŋ
0	0	00¢	ャ8¢ャ91998＊0	0	t89	960HOuヵ

$¢ \varsigma^{\prime} \downarrow$	$9 \dagger \varepsilon$	LI9Z	660Houn	LS＇0	L\＆6	LLt	t90Hour
$0^{\prime} \mathrm{Z}<$	0	969t	860Houn	\angle L＇ε	16	862	\＆90Hour
8L＇I	$9 \angle 8$	¢¢¢ \downarrow	L60Houn	$¢ L^{\prime}$＇	LOI	962	290Houn
$0^{\prime} \mathrm{Z}<$	0	1862	960Houn	$0^{\text {¢ }} \mathrm{Z}<$	0	9261	190Houn
E9 ${ }^{\text {c }}$	¢̧ع	Z8ヵて	¢60Houn	$00^{\circ} 0$	8IL	0	090Houn
$0^{\prime} \mathrm{Z}<$	0	＋8t1	＋60Houn	00×0	0ts	0	690Houn
$0^{\prime} \mathrm{Z}<$	0	0191	\＆60Houn	$0 t^{\prime}$ I	LIt	\＆8¢	850Houn
$0^{\prime} \mathrm{Z}<$	0	$9+11$	260Houn	$00^{\circ} 0$	818	0	LSOHOun
$6 L^{\prime}$ I	Ltt	862	160Houn	$0^{\prime} \mathrm{Z}<$	0	Z6SI	950Houn
$00^{\circ} 0$	t9L	0	060Houn	$\downarrow \varepsilon^{\prime} \varepsilon$	c0t	$6 t \varepsilon 1$	¢¢0Houn
$00^{\circ} 0$	08¢	0	680Houn	$00^{\circ} 0$	¢St	0	†¢0Hour）
$00^{\circ} 0$	ttt	0	880Houn	$86{ }^{\circ} \mathrm{E}$	192	LEOL	\＆¢0Houn
$00^{\circ} 0$	0¢t	0	L80Houn	$00^{\circ} 0$	29	0	Z50Houn
$00^{6} 0$	0tt	0	980Houn	IE＇\subseteq	98	9¢t	ISOHOun
$00^{\circ} 0$	¢09	0	¢80Houn	$00^{\circ} 0$	0IS	0	0¢0Houn
$00^{\circ} 0$	98 L	0	ャ80Houn	$8 \varepsilon^{\text {c }}$＇	しゅ！	＋6I	6 tOH H
$87^{〔} 2$	E6I	$68 t$	\＆80Houn	$0^{\text {¢ }}$＜$<$	0	LII	8t0Hour
$00^{\circ} 0$	968	0	280Houn	$00^{\circ} 0$	¢ 11	0	LtOHOun
$00^{6} 0$	¢99	0	180Houn	8L＇z	¢ZI	Lt¢	9 tOH Oun
$\varepsilon z^{\prime} 0$	089	091	080Houn	$00^{\circ} 0$	LEL	0	¢t0Houn

N！X｜X ！p u ə d d \forall

$x!x \mid x!p u$ ә d $d \forall$

Ebenfalls möchte ich Annegret Müller danken.
 Ein herzliches Dankeschön geht an Dr. Christoph Held.
Danke Andrea für deine tatkräftige Unterstützung und Einarbeitung im Labor, sowie dein immer offenes Ohr! Es hat Spaß gemacht!
Des Weiteren würde ich mich gerne bei Andrea Eschbach bedanken.
unsere Besprechungen, haben mich immer wieder motiviert und mein Interesse an meeresbiologischen Themen verstärkt. Merci!
Danke Dir lieber Felix für deine Unterstützung, dein Verständnis und deinen langen Atem während des gesamten letzten Jahres! Deine Betreuung, sowie
Ein besonderer Dank geht an Dr. Felix Christopher Mark.
8 Acknowledgements - Danksagung
Acknowledgements - Danksagung|xx

