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Abstract. Snowpack microstructure controls the transfer of
heat to, as well as the temperature of, the underlying soils.
In situ measurements of snow and soil properties from four
field campaigns during two winters (March and November
2018, January and March 2019) were compared to an en-
semble of CLM5.0 (Community Land Model) simulations, at
Trail Valley Creek, Northwest Territories, Canada. Snow mi-
cropenetrometer profiles allowed for snowpack density and
thermal conductivity to be derived at higher vertical resolu-
tion (1.25 mm) and a larger sample size (n= 1050) compared
to traditional snowpit observations (3 cm vertical resolution;
n= 115). Comparing measurements with simulations shows
CLM overestimated snow thermal conductivity by a factor
of 3, leading to a cold bias in wintertime soil temperatures
(RMSE= 5.8 ◦C). Two different approaches were taken to
reduce this bias: alternative parameterisations of snow ther-
mal conductivity and the application of a correction factor.
All the evaluated parameterisations of snow thermal conduc-
tivity improved simulations of wintertime soil temperatures,
with that of Sturm et al. (1997) having the greatest impact
(RMSE= 2.5 ◦C). The required correction factor is strongly
related to snow depth (R2

= 0.77,RMSE= 0.066) and thus
differs between the two snow seasons, limiting the applica-
bility of such an approach. Improving simulated snow prop-

erties and the corresponding heat flux is important, as winter-
time soil temperatures are an important control on subnivean
soil respiration and hence impact Arctic winter carbon fluxes
and budgets.

1 Introduction

Seasonal snow is an effective insulator, with snow thermal
properties influencing the soil microclimate (Lawrence and
Slater, 2009; Wilson et al., 2020) and the distribution and
state of permafrost (Biskaborn et al., 2019; Goncharova et
al., 2019; Zhang, 2005). The temperature of the subnivean
environment, particularly the extent to which it allows for
the presence of small amounts of liquid water, acts as an
important control on biogeochemical cycling, including soil
respiration (Semenchuk et al., 2015; Sullivan et al., 2008;
Williams et al., 2009). In addition, the soil temperature also
impacts hydrology through controls on soil infiltration and
runoff (Niu and Yang, 2006; Quinton and Marsh, 1999). Ac-
counting for how well the thermal and hydrological condi-
tions of subnivean soils (including the physical state of soil
water content) are simulated is therefore critical for under-
standing how well current land models such as the Com-
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munity Land Model (CLM; Lawrence et al., 2019) simulate
winter carbon fluxes (e.g. Natali et al., 2019) and permafrost
evolution (Koven et al., 2012).

The depth, (micro)structure and stratigraphy of a snow-
pack determine its capacity to insulate the underlying soil
and are in turn influenced by the temperature of the ground
surface. Tundra snowpacks typically consist of a basal depth
hoar layer, formed as strong temperature gradients within the
snowpack induce kinetic metamorphism, overlain by an up-
per wind slab layer, compacted and densified over the course
of a snow season by strong Arctic winds (Sturm et al., 1995;
Derksen et al., 2009, 2014; Rees et al., 2014; among others).
Between these two layers, an indurated hoar layer may also
be formed (Sturm et al., 2008), where the lower part of the
wind slab takes on some of the microstructural properties of
depth hoar (e.g. faceted grains) while maintaining the density
and hardness of a wind slab (Derksen et al., 2009).

The thermal influence of the snowpack on the underlying
soil can be considered in terms of an effective snow depth
(Sdepth,eff), which describes the insulative properties of the
snowpack by weighting the mean monthly snow depth by its
relative position in the season at a given location across an
entire winter (October–March) (Slater et al., 2017), empha-
sising the timing of snow accumulation as more important
than the end-of-season snow depth in determining winter-
time soil temperatures (Lafrenière et al., 2013). Rapid snow
accumulation and snowpack establishment early in the win-
ter will insulate the ground, thereby dampening soil temper-
ature fluctuations, leading to a higher Sdepth,eff than steady
accumulation throughout the entire winter, even if the to-
tal amount of precipitation is the same (Slater et al., 2017).
The relationship between Sdepth,eff and the normalised tem-
perature difference between air and soil (Anorm) can be used
to understand heat transfer between the air and the soil and
through the snowpack (Slater et al., 2017). The deviation of
this relationship from the expected exponential form (Fig. 3
of Slater et al., 2017), termed the snow heat transfer met-
ric (SHTM), can be calculated and used to evaluate simu-
lated heat transfer processes in the soil and snowpack as was
undertaken by Slater et al. (2017) for the land surface com-
ponents of participating models in CMIP5 (Coupled Model
Intercomparison Project; Taylor et al., 2012). The closer the
value of the SHTM is to one, the smaller the disagreement
between modelled and observed air and soil temperature dif-
ferences. Being able to quantitatively assess snow heat trans-
fer is of particular importance because model parameterisa-
tions of snow physical properties can lead to differences in
soil temperature and therefore contribute to uncertainties in
estimates of Arctic winter carbon fluxes and budgets, which
are currently not well constrained (Fisher et al., 2014; Natali
et al., 2019; Virkkala et al., 2021).

The effective thermal conductivity of the snowpack (Keff;
heat conducted through ice and interstitial air) determines
the rate of heat transfer to underlying soil (Domine et al.,
2015; Jafarov et al., 2014). From here on, we refer to the

effective thermal conductivity of the snowpack as snow ther-
mal conductivity for brevity, after Jafarov et al. (2014). Snow
has a low thermal conductivity, typically in the range 0.01–
0.7 W m−1 K−1 (Gouttevin et al., 2018). Typical Keff val-
ues for tundra snowpacks are at the lower end of this range;
for example Domine et al. (2016) found a maximum value
of 0.33 W m−2 K−1. Measurement of snow thermal conduc-
tivity is typically undertaken using a heated needle probe
(Morin et al., 2010), although snow anisotropy causes 29 %
uncertainty in these estimates of Keff (Domine et al., 2015),
which is a notable limitation to this method (Riche and
Schneebeli, 2013). Models typically parameterise Keff as a
function of the simulated snow density (Gouttevin et al.,
2018), for which a number of different statistical relation-
ships have been proposed (e.g. Sturm et al., 1997; Calonne et
al., 2011).

This study characterises the variability of the thermal
properties of tundra snow and resultant soil temperatures
at Trail Valley Creek, Northwest Territories, Canada, over
the 2017–2018 and 2018–2019 winters using in situ mea-
surements. We then use these measurements to evaluate an
ensemble of simulations from the Community Land Model
(CLM5.0), particularly with regard to how thermal proper-
ties are simulated and the sensitivity of soil temperatures and
SHTM to the properties of the snowpack.

2 Data and methods

2.1 Study location

Trail Valley Creek (TVC; 68◦45′ N, 133◦30′W) is a 57 km2

boreal–tundra transition research watershed located in the In-
uvialuit Settlement Region, approximately 55 km northeast
of Inuvik, Northwest Territories, Canada. TVC has an aver-
age elevation of approximately 99 m above sea level (Marsh
et al., 2008) and a mean annual air temperature of −7.9 ◦C
for the period 1999–2018 (Grünberg et al., 2020). Land
cover at TVC predominately consists of graminoid tundra,
with some lakes, small clusters of willow and alder shrubs,
and some isolated black spruce stands (Essery and Pomeroy,
2004; Grünberg et al., 2020; King et al., 2018). The terrain
consists of mineral soil hummocks of up to a metre in diam-
eter and peaty inter-hummock hollows (Quinton and Marsh,
1998). The ground is underlain by continuous permafrost to
a depth of 350–500 m (Wilcox et al., 2019), with a maxi-
mum active-layer depth of up to 1 m at the end of the summer
(Grünberg et al., 2020). Snow cover at TVC has a typical du-
ration of 8 months (Pomeroy et al., 1993), with typical depths
of 0.2–0.5 m, though drifts exceeding 1–2 m occur surround-
ing tall shrubs and in proximity to steep slopes (Marsh and
Pomeroy, 1999).
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2.2 Field methods

Comprehensive snow and soil data are used from four winter
season intensive measurement periods (14–21 March 2018,
12–18 November 2018, 11–20 January 2019 and 18–27
March 2019). Additionally, meteorological data for the en-
tirety of the study period (1 August 2017–31 August 2019;
plus model spin-up), measured at the TVC eddy covariance
tower (AWS, automatic weather station), were also used.
Half-hourly 2 m air temperatures were measured using an
HMP35CF sensor (Campbell Scientific, Logan, Utah), and
precipitation totals were measured using a weighted T-200B
gauge (Geonor Inc., Branchville, New Jersey). Precipitation
gauge undercatch is common in tundra environments such
as TVC (Smith, 2008; Watson et al., 2008; Gray and Male,
1981); therefore precipitation was corrected as per Pan et
al. (2016). Automated snow depth measurements used were
from the nearby Meteorological Service of Canada station
and measured by an SR50A sensor (Campbell Scientific).
Soil temperature profiles (Boike et al., 2020) were measured
at 2, 5, 10 and 20 cm depths using 107B thermistors (Camp-
bell Scientific). Soil moisture content (Boike et al., 2020) was
profiled at the same depths using CS615 soil water content
reflectometers (Campbell Scientific).

Spatially distributed snow micropenetrometer (SMP;
Schneebeli and Johnson, 1998) profiles (n= 1050) were
measured across the TVC sub-catchment. The SMP provides
vertical profiles of force at 40 µm resolution (Proksch et al.,
2015). Bespoke coefficients for tundra snowpacks were cal-
culated based on the methodology of King et al. (2020b) to
derive high-vertical-resolution snow density profiles from the
SMP force profiles (see Appendix A for detailed method-
ology). Briefly, a K-fold recalibration was used to derive
new coefficients (Table A1) from 36 co-located snowpits and
SMP profiles across the TVC catchment. These coefficients
were then applied to all 1050 SMP force profiles from the
three campaigns over a 2.5 mm rolling window to give re-
calibrated density profiles. These density profiles were then
used to approximate profiles of thermal conductivity using
theKeff relationships derived by Sturm et al. (1997), Calonne
et al. (2011), Jordan (1991) and Fourteau et al. (2021b), de-
noted Keff−Sturm, Keff−Calonne, Keff−Jordan and Keff−Fourteau
respectively (the parameterisations are similarly referred to
as Sturm, Calonne, Jordan and Fourteau). Use of the SMP
allows for a large increase in both the number of sites and the
vertical resolution at each site compared to traditional snow-
pits, but some coincident snowpit measurements are still re-
quired to derive the coefficients to estimate snow density.
Sources of uncertainty in the SMP measurements include in-
teractions with vegetation within the snowpack and collapse
of the depth hoar layer during measurement; an experienced
SMP user can easily identify and remove profiles which are
affected by these issues. A positive bias in derived depth hoar
density occurs because of large distances between snow grain

failures (see Appendix A and King et al., 2020b, for more de-
tails).

During the March 2018 and March 2019 campaigns, ther-
mal conductivity was also measured using a TP02 needle
probe (Hukseflux, Delft, the Netherlands) after Morin et
al. (2010). Measurements of thermal conductivity of each
snowpack layer, a total of 105 measurements from 37 differ-
ent snowpits, were made across these two campaigns. Almost
36 500 GPS-located snow depths (Toose et al., 2020; King
et al., 2020a) were measured across the four campaigns us-
ing a Magnaprobe instrument (Sturm and Holmgren, 2018),
allowing for spatial distributions of snow depths across the
catchment to be examined. Vertical profiles of snow density,
using a 100 cm3 box cutter (Conger and Mcclung, 2009), and
snowpack temperature were measured at all snowpit loca-
tions for each campaign. Stratigraphic information profiled
in each snowpit (n= 115) was used to assign one of four dif-
ferent layer types (surface snow, wind slab, indurated hoar
and depth hoar) to the measured densities (Fierz et al., 2009)
in order to assess spatial variability in the thickness and prop-
erties of different snowpack layers.

2.3 Snowpack simulations

The Community Land Model v5.0 (CLM; Lawrence et al.,
2019) is the land surface component of the Community Earth
System Model v2.0, which can be run at a variety of spa-
tial scales. In this study, 1D “point mode” (a 0.1× 0.1◦ grid
cell) CLM (PTCLM; CESM research tools, 2021) simula-
tions were centred at the location of the TVC station. Minor
adjustments were made to the model in order to better emu-
late snow accumulation and melt at the point scale; the snow
accumulation factor was increased (Swenson and Lawrence,
2012) from 0.1 to 2.0 and the standard deviation of elevation
set to 0.5 m after Malle et al. (2021; Fig. S4). These adjust-
ments limit the period of fractional snow cover so that PT-
CLM represents a binary state of snow presence or absence
over a flat surface. PTCLM simulations were run from Au-
gust 2017 to August 2019, with model spin-up from January
2013. Spin-up of PTCLM was necessary in order to allow
for soil temperatures to equilibrate. Variation between model
runs with the same parameterisation after more than 2 full
years of spin-up is limited to ∼ 1 ◦C throughout the top 5 m
of the soil column. The impact of spin-up on soil temperature
is further discussed in Appendix B.

Simulations were forced with gap-filled AWS data from
TVC. Following Essery et al. (2016), gaps of 4 h or less were
filled using linear interpolation and larger gaps were filled
using ERA5 reanalysis data (Hersbach et al., 2020). Gap fill-
ing was only required for measurements of incoming long-
wave and short-wave radiation, and comparison of observa-
tions (obs) and reanalysis data showed an offset of less than
60 W m−2. Bias correction of reanalysis data was not under-
taken due to the small size of this offset. Daily precipitation
amounts from the AWS were converted to the hourly resolu-
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tion required by CLM using the fraction of daily precipitation
at each hourly time step from ERA5. ERA5 reanalysis data
were also used to partition precipitation into rain and snow
for comparison against the linear ramp used by CLM. All
precipitation falling when air temperatures are below 0 ◦C
is classed as snow, after which point an increasing propor-
tion of the precipitation is classed as rain until air tempera-
tures are above 2 ◦C, where all precipitation is classed as rain
(Lawrence et al., 2019).

Developments between CLM4.5 and CLM5.0, as outlined
in Van Kampenhout et al. (2017), improved the snow scheme
in CLM. The version of the model used herein produces a
computationally layered snowpack, with the number of snow
layers dependent on the snowpack depth, up to a theoretical
maximum of 12 layers (as opposed to the 5-layer maximum
in previous versions of CLM). Once the total snow depth ex-
ceeds a given threshold, the initial snow layer is subdivided
into two layers with equal properties. Snow layer formation
continues in this manner as layer thicknesses surpass the pre-
scribed ranges given in Jordan (1991). When a layer divides,
the new layer is formed beneath it, rather than new layers
being formed at the surface by new snowfall. As this pro-
cess is not stratigraphically representative, layers are not de-
scribed by snow type (for example, as per Fierz et al., 2009)
but instead numbered from the snow surface down. Layer
thicknesses are also influenced by snow compaction, param-
eterised following Anderson (1976). Unsaturated layers may
compact due to overburden pressure, the breakdown of new
snow crystals or melting, with the thickness of a snow layer
as a function of the snow thickness at the previous time step
and the rate of compaction. Snow depths below 1 cm are not
discretely modelled and are instead combined into the sur-
face soil layer.

Density, thickness and thermal conductivity are output as
a daily mean for each layer. CLM calculates snow density as
a function of the relative proportions of ice (mass of ice: mi)
and liquid water (mass of liquid water:mlw), weighted by the
snow cover fraction (Fsno) for each grid cell (Lawrence et al.,
2018):

ρ =
mi+mlw

Fsno×hsl
. (1)

In practice, due to the adjusted snow cover fraction and as
liquid water in the snowpack is zero until the start of melt
out, the computed snow layer density simplifies to the mass
of ice (mi) divided by the height of the snow layer (hsl).
Changes implemented in CLM5.0 also include a new snow
densification scheme, whereby fresh snow density is parame-
terised as a function of temperature and wind speed. The den-
sity of fresh snow can increase through the process of wind-
driven compaction if wind speeds exceed 0.1 m−1 (Van Kam-
penhout et al., 2017). Over time, the density of the snow-
pack evolves as a result of the compaction processes outlined
above. CLM does not allow for temperature-gradient meta-

morphism and thus does not represent the development of
depth hoar layers (Van Kampenhout et al., 2017).

The computed snow layer densities are then used to calcu-
late snow layer effective thermal conductivities (Keff), as per
Jordan (1991):

Keff =Kair+
(((

7.75× 10−5
× ρ

)
+

(
1.105× 10−6

× ρ2
))
(Kice−Kair)

)
. (2)

Values for Kice and Kair, the thermal conductivities of ice
and interstadial air, are given in Lawrence et al. (2018). Snow
(and soil) temperatures are defined for the midpoint of each
layer at an hourly resolution, with the soil column consist-
ing of 25 layers of increasing thickness (down to a depth
of 49 m). Despite the simplicity of the snowpack scheme in-
cluded in CLM, previous evaluation of snow heat transfer in
CLM4.0 (Slater et al., 2017) suggests this modelling frame-
work should perform well.

3 Results

3.1 Observed meteorological, soil moisture and
thermal conditions

Mean annual air temperature for 2017–2019 was −7.4 ◦C,
with minimum air temperatures of −33.9 (2018) and
−36.9 ◦C (2019) reached in early January (Fig. 1a). The cold
period was twice as long as the growing season, with consis-
tent subfreezing air temperatures from 10 October 2017 to 30
May 2018 (232 d) and from 23 September 2018 to 11 May
2019 (230 d).

Figure 1c shows snowpack initiation in 2018 was 26 d
earlier than in the previous year, with snow-on dates of 25
September 2018 and 21 October 2017 respectively. A maxi-
mum snow depth of 51 cm (2017–2018) and 59 cm (2018–
2019) was measured at the AWS on 14 April 2018 and
11 May 2019 respectively. Snow depth from spatially dis-
tributed Magnaprobe measurements showed a greater differ-
ence between the 2 years than at the AWS, with mean March
snow depths 11 cm higher in 2018–2019 than 2017–2018.
Magnaprobe measurements also show a higher mean March
snow depth than the AWS, with March 2018 snow depths
more heavily skewed than snow depths in 2019 (Fig. 2a). The
snow-off date, as measured at the AWS snow depth sounder,
was 1 week later in 2017–2018 (30 May) than in the follow-
ing year (23 May).

Soil freeze-up began with the onset of snowfall (Fig. 1b
and d); 5 cm soil temperatures dropped to 0 ◦C on 13 October
in 2017 and a month earlier on 15 September in 2018. Soil
temperatures remained around 0 ◦C as the soil froze and re-
leased latent heat. Soil saturation increased with depth caus-
ing a slower soil freeze-up at 20 than 5 cm depth in both
years. A longer freeze-up in 2018 was evident from the more
gradual liquid soil moisture decrease, particularly at depth
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Figure 1. Daily averaged meteorological and soil conditions at Trail Valley Creek from 1 August 2017 to 31 August 2019: (a) 2 m air
temperature, (b) precipitation as snow (purple) and rain (green), (c) snow depth, (d) soil temperatures at depths of 5 cm (blue) and 20 cm
(orange), and (e) volumetric soil water content at 5 cm (blue) and 20 cm (orange) depths.

Figure 2. (a) Frequency distributions of Magnaprobe depths for each sampling campaign where snow micropenetrometer (SMP) measure-
ments are available. (b–d) Profiles of median SMP-derived densities (colour-coded for the respective campaigns (Fig. 3a); interquartile range
shaded in grey), with snow stratigraphy as per Fierz et al. (2009) superimposed.

(20 cm). Deeper soil (20 cm) stayed at 0 ◦C for longer than
soil nearer the surface (5 cm) and generally remained warmer
until the start of the thaw period. Minimum 2017–2018 soil
temperatures at both 5 cm (−10.9 ◦C) and 20 cm (−10.1 ◦C)
depths in winter were colder than the following year (−9.5
and −8.2 ◦C), as the combined effect of earlier snowpack
initiation and a deeper snow cover prevented colder soil

temperatures being reached. Variations in soil temperature
in response to diurnal and synoptic weather patterns of en-
ergy inputs from the atmosphere became increasingly muted
with depth in the soil column once the snowpack was estab-
lished. Anomalously warm mid-winter air temperatures that
approached (22 December 2017 and 9 February 2019) or ex-
ceeded 0 ◦C (18 and 31 March 2019, with a rain-on-snow
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Figure 3. Distributions of measured layer densities (SS: surface snow, WS: wind slab, DH: depth hoar) from four sampling campaigns: box
(interquartile range), blue line (median) and whiskers (dashed lines) extend from the end of each box to 1.5 times the interquartile range;
blue crosses represent outliers beyond this range.

Table 1. End-of-March snow depth summary. Mean and stan-
dard deviation of spatially distributed measurements with a sam-
ple size greater than n= 1 are shown; otherwise the daily value for
31 March is shown.

Snow depth [cm]

March 2018 March 2019

AWS 35 56
Magnaprobe 33± 15.7 (n= 14966) 44± 14.4 (n= 8541)
CLM 18 34

event occurring on the latter of these dates) had only a muted
influence on the soil temperature profile (Fig. 1d), with tem-
peratures fairly stable until sharply increasing with thaw in
early May. Soil temperatures at 5 cm increased above 0 ◦C for
the first time on the final day of the snowmelt period in both
years (Fig. 1d), with a 5 (2017–2018) to 7 d (2018–2019) lag
in the 20 cm soil temperatures.

3.2 Measured snow properties

Median density profiles from the SMP fall within the in-
terquartile range of measured densities from volumetric sam-

pling in snowpits (Table 2). Snowpacks in all three cam-
paigns (Fig. 2b–d) had a very thin surface snow layer (com-
posed of recent snowfall), with low near-surface snow den-
sities (<300 kg m−3) rapidly increasing in the top 5 % of the
snowpack. A higher-density (∼ 320 kg m3) wind slab layer
was evident between 5 %–30 % of normalised depth from the
snow surface. The next ∼ 10 % of the profile was a transi-
tional section where density decreased by about 100 kg m3.
The lowest ∼ 60 % of the profiles is dominated by a lower-
density (∼ 230 kg m3) depth hoar layer, the density of which
increases slightly towards the base of the snowpack. Dif-
ferences between median layer densities exceed the ∼ 10 %
sampling error associated with the use of density cutters
(Proksch et al., 2016; Conger and Mcclung, 2009), and
in all but one instance, there was no overlap in the in-
terquartile ranges of different snow layers within a campaign
(Fig. 3). Densities between 40 %–80 % of normalised depth
(low-density depth hoar) are likely overestimated due to mi-
crostructural assumptions made by the algorithm of Proksch
et al. (2015), which prevent the calculation of SMP densities
below 200 kg m3 (see Appendix A).

The transitional section, or indurated hoar layer, with tran-
sitioning properties between wind slab and depth hoar, evi-
dent at between ∼ 30 %–40 % depth, is often difficult to cap-
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Table 2. Summary of modelled (CLM) and measured snow densities and thermal conductivities (from the manual density profiles and the
needle probe respectively).

No. of layers Layer Median Interquartile range

Density [kg m−3]

Snowpit obs 3
Surface snow 89 73 152
Wind slab 334 300 365
Depth hoar 249 228 270

CLM 4

1 270 209 328
2 328 285 346
3 340 282 346
4 309 291 326

Thermal conductivity [W m−1 K−1]

Snowpit obs 3
Surface snow – – –
Wind slab 0.20 0.15 0.28
Depth hoar 0.05 0.04 0.06

CLM 4

1 0.25 0.17 0.35
2 0.35 0.28 0.38
3 0.37 0.27 0.38
4 0.32 0.29 0.35

ture through traditional snowpit density profiles due to the
3 cm vertical resolution of density cutters and the layer be-
ing more defined by its crystal shape than density alone. The
SMP enabled the detection of such features due to the in-
creased vertical resolution and vastly reduced sampling times
compared to traditional snowpits. Indurated hoar in SMP
profiles was more pronounced in the 2019 campaigns; well-
defined layers were not as clearly visible in the SMP mea-
surements from March 2018 (Fig. 2b), despite different layer
densities being statistically separate in the snowpit measure-
ments, regardless of which year or when in the winter sea-
son the measurements were taken (Fig. 3). Ice lenses were
present in March 2018 but not during the 2019 campaigns.
Throughout the course of the 2018–2019 winter, slight in-
creases in the density of wind slab and depth hoar layers oc-
curred as the snowpack developed. Late-season snow densi-
ties in both 2018 and 2019 were similar, with the exception of
surface snow. The density of this layer became more variable
as each winter progressed due to the competing processes
of wind compaction (increasing density) and temperature-
gradient metamorphism (decreasing density). The timing of
sampling relative to fresh snowfall events, noted during both
March campaigns, also influenced measured surface snow
densities.

SMP density profiles were used to parameterise profiles
of thermal conductivity for the full depth of the snowpack.
Patterns in parameterised thermal conductivity profiles
(Fig. 4) resemble those in SMP densities from which
they were derived (Fig. 2b–d). Surface snow thermal
conductivities were low (Keff−Sturm ≈ 0.1 W m−1 K−1,
Keffs−Calonne,Jordan,Fourteau ≈ 0.2 W m−1 K−1) but sharply
increased with depth for the upper 5 % of the snow-
pack (Fig. 4b and c). Below this, at normalised depths
of ∼ 5 %–30 %, thermal conductivity reached maximum

values (Keff−Sturm ≈ 0.15 W m−1 K−1, Keff−Fourteau ≈

0.25 W m−1 K−1, Keff−Calonne ≈ 0.3 W m−1 K−1,
Keff−Jordan ≈ 0.35 W m−1 K−1). Between ∼ 25 %–40 %
normalised depth, thermal conductivity declined before sta-
bilising at minimum values (Keff−Sturm ≈ 0.1 W m−1 K−1,
Keff−Fourteau ≈ 0.15 W m−1 K−1, Keffs−Calonne,Jordan ≈

0.2 W m−1 K−1) in the lower ∼ 60 % of the snowpack. All
three parameterisations showed similar variation in thermal
conductivity with depth. Analysis of variance showed the
mean Keff from the Sturm et al. (1997) and Fourteau et
al. (2021b) parameterisations to statistically significantly dif-
fer from those using the parameterisation of either Calonne
et al. (2011) or Jordan (1991) and each other in all 3 months
(FMarch2018 = 3168, FJan2019 = 656, FMarch2019 = 636). No
significant difference was found between the Calonne et
al. (2011) or Jordan (1991) parameterisations in either of the
2019 campaigns. All statistical tests herein gave a p value
less than 0.001, denoting significance at the 99.9 % level.

Profiles of snowpack thermal conductivity were tempo-
rally consistent, with similar shape and values in January and
March 2019. In March 2018, the amplitude of the thermal
conductivity profiles was less pronounced than January and
March 2019, particularly for the parameterisation of Sturm
et al. (1997). We recognise that the thermal conductivity of a
snowpack is dependent on more than just its density (Sturm
et al., 2002), with other factors such as snow microstruc-
ture and temperature also having an influence (i.e. Calonne et
al., 2011), but these profiles still provide novel insights and
a useful first-order approximation of snow heat transfer for
model evaluation.
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Figure 4. Median thermal conductivity profiles (lines) and interquartile range (shaded areas) approximated from SMP densities, using the
parameterisations of Calonne et al. (2011) in black/grey, Sturm et al. (1997) in blue, Jordan (1991) in red and Fourteau et al. (2021b) in
yellow.

Figure 5. Simulated snow layers and their properties for winter 2017–2018: (a) simulated snow layer thicknesses, (b) snow layer densities
and (c) snow layer thermal conductivities. (d–f) As before but for winter 2018–2019. Each colour represents a different computational snow
layer.

3.3 Modelled snowpack properties and comparison
with observations

Simulated snow depths (Fig. 5a and d) were consistently
lower than observations (from either Magnaprobe measure-
ments (mean value) or the acoustic sounder depth on 31
March at the AWS; Fig. 1b, Table 1). Timing of simulated
snowpack accumulation leads to an effective snow depth
in 2018–2019 (Sdepth,effCLM2018−2019 = 66 cm) more than
double that in 2017–2018 (Sdepth,effCLM2017−2018 = 24 cm)
with earlier snow onset allowing for a greater degree of soil
insulation. Simulated snow onset (11 October) and melt-out
dates (25 May) were both approximately a week earlier than
observed at the AWS in 2017–2018; for the following year

the length of this offset was reduced to just 1 d. Observations
of effective snow depth (Sdepth,effObs2017−2018 = 57 cm,
Sdepth,effObs2018−19 = 101 cm) similarly reflect greater insu-
lation of the soil surface in 2018–2019 compared to 2017–
2018.

The physical properties of the simulated snow layers do
not correspond to observations, with the number and thick-
ness of snow layers only a function of overall snowpack
depth. Fig. 5b and e show three (or four) relatively homoge-
nous layers, with a slight increase in density with depth. The
highest mean (329 kg m3) and median (340 kg m3; Table 2)
densities are found in third snow layer (dark blue in Fig. 5).

This is in contrast to the three observed layers (surface
snow, wind slab and depth hoar) consistently identified in the
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Figure 6. (a) Histograms of measured and simulated thermal con-
ductivity from March 2018 and 2019 sampling campaigns; dashed
lines show the four different thermal conductivity parameterisations
applied to the SMP densities. (b) Sensitivity testing of simulated
thermal conductivities for the same time period using both the de-
fault CLM snow thermal conductivity parameterisation, application
of the α correction (solid lines) and alternative snow thermal con-
ductivity parameterisations (Calonne et al., 2011; Fourteau et al.,
2021b; Sturm et al., 1997; dashed lines). Note the different scales
on the y axes.

snowpit observations. Similar to other snow models (Domine
et al., 2016; 2019) the physical characteristics of the depth
hoar layer at the base of the snowpack (large faceted grains;
low density) are not clearly distinct from an overlying wind
slab layer (small rounded grains; high density). This is the
result of the lack of representation of depth hoar layer de-
velopment in CLM (Van Kampenhout et al., 2017). These
discrepancies between modelled and measured snow density
and stratigraphy negatively impact the simulation of Keff, as
layer thermal conductivities were dependent on density of
each layer (Eq. 2).

CLM overestimated the thermal conductivity of tundra
snowpacks compared to in situ measurements using needle

probes or estimated from SMP profiles (Fig. 6a). Median
simulated snow thermal conductivities (0.34 W m−1 K−1)
were at least 3 times greater than either needle probe
measurements (0.08 W m−1 K−1) or SMP-derived esti-
mates using the Sturm parameterisation (xKeff−Sturm =

0.11 W m−1 K−1), with the median thermal conductivity
using the Calonne, Fourteau and Jordan approximations
still lower (xKeff−Calonne = 0.25 W m−1 K−1, xKeff−Fourteau =

0.21 W m−1 K−1, xKeff−Jordan = 0.27 W m−1 K−1) than sim-
ulated thermal conductivities. SMP Keff parameterisation
from Sturm et al. (1997; derived from snow measurements
in the Alaskan Arctic) is closer to values from needle probe
measurements than SMP Keff derived using Calonne et
al. (2011) (Fig. 6a). The modelled thermal conductivity of
simulated snow layers was relatively homogenous between
layers in contrast to thermal conductivities derived from ei-
ther the SMP (Fig. 4) or the needle probe measurements
(Table 2). Analysis of variance only shows simulated snow
layer thermal conductivities significantly differ from that
of the surface layer (F = 39.74). Needle probe measure-
ments of the depth hoar layer had low thermal conductivi-
ties (0.05 W m−1 K−1), with a slight increase in mean ther-
mal conductivity for indurated hoar (0.09 W m−3 K−1) and a
further increase for the mean wind slab thermal conductivity
(0.20 W m−1 K−1). Distributions of simulated snow thermal
conductivities were statistically significantly different from
all measurement methods at the 0.01 level using a Kruskal–
Wallis test. Differences between the distribution of needle
probe measurements and the SMP with the Sturm parameter-
isation were not statistically significant.

3.4 Improving simulated soil temperatures, snow
thermal conductivity and snow heat transfer

Simulated soil temperatures were considerably colder than
observations (RMSE= 5.0 ◦C, bias=−2.2 ◦C), especially
during the maximum annual duration of continuous simu-
lated snow cover (15 September–31 May; RMSE= 5.8 ◦C).
Two approaches were taken to reduce simulated snow ther-
mal conductivities, both of which resulted in warmer soil
temperatures closer to observed values (Fig. 7a, b).

In order to see how results from the SMP (Fig. 6a) man-
ifested in simulations of soil temperature from CLM, we
reran the model substituting the default parameterisation of
snow thermal conductivity (Eq. 1; Jordan, 1991) for those
of Sturm et al. (1997), Calonne et al. (2011) and Fourteau
et al. (2021b). The Sturm parameterisation resulted in lower
simulated thermal conductivities (Fig. 6b) and closer temper-
atures to observations (Fig. 7b; RMSE= 2.5 ◦C). Soil tem-
peratures in 2017–2018 were still too cold regardless of pa-
rameterisation used, likely due to model underestimation of
snow depth (Fig. 7c). As for the SMP, thermal conductivity
values derived using the Calonne and Fourteau parameterisa-
tions are closer to the default Jordan (1991) parameterisation
than those derived using the Sturm et al. (1997) parameter-
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Figure 7. (a) Simulated 10 cm soil temperature time series using the four different parameterisations of snow thermal conductivity compared
to field measurements. (b) Time series of 10 cm soil temperatures when using different values of the correction factor α compared to field
measurements. (c) Observed and simulated snow depths for the same time period.

isation (Fig. 6b). The impact of either of these parameteri-
sations on simulated wintertime soil temperatures is limited
(Fig. 7a), particularly that of Calonne et al. (2011), which
reduces the RMSE by only 0.2 ◦C. However, all three al-
ternative parameterisations tested do show an improvement
in simulated snow thermal conductivities (Fig. 6b) and soil
temperatures (Fig. 7a), with an increase in the value of the
SHTM in each case.

We also tested the application of a multiplier (α) to the ice
content term in Eq. (1):

ρ =
(α×mi)×mlw

Fsno×hsl
. (3)

Although appearing to be a function of density, this mul-
tiplier is added separately from the calculation of layer snow
densities and only feeds into the calculation of snow thermal
conductivity, and thus snow mass is conserved. Values of α
were chosen which would reduce simulated densities to the
range of observed values, with an α of 0.65 giving the Keff
for snow with a density between the interquartile range of ob-
served values for all snow types (73–365 kg m3). A set of sen-
sitivity tests were then carried out where the value of α was
iteratively changed from 0.75 to 0.25 in increments of 0.05.
As the RMSE and the SHTM quantify changes over slightly
different time periods (RMSE for the entire winter, SHTM
for October–March), different metrics may imply different
adjustments give the best model performance. In 2018–2019,
a value of α between 0.65 and 0.6 resulted in the optimal
model performance, with an SHTM value of 0.991 (or 0.979)

and an RMSE of 1.5 ◦C (or 1.2 ◦C). However, a smaller value
of α was required for best model performance in 2017–2018,
with an α of 0.4 giving the lowest RMSE of 1.6 ◦C and
highest SHTM of 0.986. Reducing simulated snow density
in Eq. (3) (0.3≥ α ≥ 0.55) below the lowest quartile of ob-
served values was required to increase soil temperatures to
the observed range, particularly for 2017–2018, where win-
tertime minimum soil temperatures are up to 12.8 ◦C warmer
relative to the baseline model run (Fig. 7b). Different α val-
ues will better fit different years of the simulation, though us-
ing the same best-fit value of α for the entire model run can
still give good model performance, with a maximum value
for the SHTM of 0.987 for an α of 0.40.

Errors in the timing and depth of simulated snow cover
(Fig. 7c) impact the magnitude of insulation it provides and
thus the best-fit value of α (Fig. 8). A multiple linear regres-
sion was undertaken to quantify the influence of snow depth
and snow depth error on the value of the best-fit correction
factor, for the period from snow onset to the start of simulated
snowmelt (when the simulated snow cover fraction was equal
to one). This showed errors in the simulated snow depth can
be compensated by a greater adjustment to snow thermal con-
ductivity (Fig. 8b):

α = 0.22+ 1.14S− 0.26E+ 0.55SE, (4)

where S equals the simulated snow depth and E equals
the simulated snow depth error. Best-fit correction values
were strongly related to snow depth (R2

= 0.77, RMSE=
0.066), with different values of α more appropriate for deep
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Figure 8. Influence of observed (x axis; a) and modelled (y axis; both) snow depth and snow depth error (x axis; b) on the best-fit correction
(colour) at each time step for both the 2017–2018 (circles) and 2018–2019 (squares) snow seasons.

(>25 cm, α ≈ 0.6) and shallow (<15 cm, α ≈ 0.3) snow
(Fig. 8a).

4 Discussion

4.1 Variability of snow thermal properties

SMP profiles, processed as detailed in Appendix A, pro-
duced snow layer densities closely matched to density cut-
ter measurements at TVC (Fig. 3) and consistent with
measurements from other Arctic and sub-Arctic environ-
ments, e.g. ρSS =∼ 100 kg m3, ρWS = 300− 500 kg m3 and
ρDH = 150− 250 kg m3 in Barrere et al. (2017), Benson and
Sturm (1993), Derksen et al. (2014), and Domine et al. (2002,
2012, 2016). SMP profiling has considerably increased the
vertical resolution of density measurements and vastly re-
duced sampling times compared to traditional snowpits, en-
abling a far greater number of measurement profiles to be
made across a wider distribution of snowpack conditions.
Deriving profiles of thermal conductivity for the full depth
of the snowpack, as facilitated by the SMP, is a novel ap-
proach, with most previous studies of snow thermal conduc-
tivity based on values sampled at a resolution of ∼ 5–10 cm
(Domine et al., 2012, 2015, 2016; Gouttevin et al., 2018;
Morin et al., 2010).

Depth normalisation of SMP profiles (n>200 per mea-
surement campaign) allowed for comparison of snow prop-
erties with varying absolute depth. Snow depth distributions
from all campaigns matched the shape and median values
of tundra snow depths acquired across a ∼ 1500 km traverse
as described in Derksen et al. (2009), which suggests trans-
ferability across wider Arctic tundra regions. Relative depth
profiles of density at TVC remain consistent for all sampling

campaigns, regardless of overall snowpack depth. Densities
in the portion of the depth hoar layer located between 40 %–
80 % depth were likely overestimated (although SMP esti-
mates remain within the interquartile range of snowpit mea-
surements) due to an assumption of heteroscedasticity made
by the algorithm of Proksch et al. (2015), which may not ap-
ply for a material as anisotropic as depth hoar (Fig. A2). Ad-
ditionally, pressure exerted on the ice matrix by the SMP may
have caused wider collapse of the weak depth hoar struc-
ture during measurement (although SMP operators are easily
able to handle profiles that are obviously affected by depth
hoar collapse). As a result, the force required to penetrate the
snow may be reduced (potentially below the detection limit
of the SMP) in the gaps where the ice matrix has collapsed;
required penetration force will conversely increase towards
the base of the snowpack where the collapsed depth hoar has
accumulated. This, plus an increased probability of SMP–
vegetation interactions at the base of the snowpack, is likely
the cause of density (and density-derived Keff) increases in
the lower ∼ 20 % of all profiles. While the exact impact of
ice matrix collapse in depth hoar is not possible to quantify
directly, this limitation is not without comparison in other di-
rect, contact measurements of snow properties such as vol-
umetric sampling of density (Conger and Mcclung, 2009;
Proksch et al., 2016) and µCT (micro-computed tomogra-
phy; Zermatten et al., 2011).

The higher vertical resolution of SMP density profiles
(1.25 mm; 0.25 % of snowpack depth) relative to traditional
snowpit measurements (3 cm) allows for snowpack features
to be much more finely resolved (Calonne et al., 2020; King
et al., 2020b; Proksch et al., 2015). Moving away from bulk
sampling of layers with boundaries defined by abrupt bi-
nary transitions as identified by traditional stratigraphic tech-
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niques to more continuous profiles enables features such as
indurated hoar, typically a subtle transitional layer, to be
captured and quantified (Pielmeier and Schneebeli, 2003;
Proksch et al., 2016). Higher-resolution measurements (µCT,
SMP) of continuous profiles are increasingly implemented
(e.g. Proksch et al., 2016; Calonne et al., 2020; Wagner et
al., 2022), but this conceptualisation of snow as a continu-
ous profile rather than a series of discrete layers is not yet
implemented in snowpack modelling, excepting the test case
outlined by Simson et al. (2021).

4.2 Evaluation of snowpack and soil temperature
simulations

Density profiles of Arctic snow from physical snow model
simulations are inverted relative to observations, exhibiting
low-density snow in the upper part of the snowpack and high-
density snow at the base, similar to what would be expected
in alpine environments (Barrere et al., 2017; Domine et al.,
2019). CLM is no exception, with the model producing three
to four layers of uniformly high-density snow, rather than a
low-density snow layer adjacent to the ground overlain by
a higher-density slab layer. Consequently, simulated density
profiles are not representative of field measurements, and the
overall bulk density of the snowpack is overestimated. This is
common of other snow models of similar physical complex-
ity (e.g. ISBA-ES, Interactions between Soil, Biosphere, and
Atmosphere – explicit snow; Barrere et al., 2017) and higher
complexity (e.g. SNOWPACK, Bartelt and Lehning, 2001;
Crocus, Vionnet et al., 2012) because they do not account for
unique Arctic processes (Domine et al., 2016, 2019), such as
the snowpack vapour flux necessary to form depth hoar. As
Keff is simulated as a function of density, when models are
unable to accurately describe the density profiles of Arctic
snowpacks, this has a negative impact on how well Keff can
be simulated (Gouttevin et al., 2018). Keff values from CLM
are overestimated not only relative to field measurements but
also in comparison to simulations from more complex snow
models in similar environments (Barrere et al., 2017; Domine
et al., 2019). These problems with thermal conductivity sim-
ulations subsequently impact soil temperatures, with similar
issues found for simulations of Arctic snowpacks using other
models, i.e. Crocus, SNOWPACK and ISBA-ES (Barrere et
al., 2017; Domine et al., 2016; 2019; Royer et al., 2021b).

The impact of snow insulation on soil temperatures is de-
pendent on both the depth and thermal conductivity of the
snowpack (Gouttevin et al., 2012), as well as the timing of
snow accumulation (Lafrenière et al., 2013). The start of the
snow season is particularly important because erroneously
modelled heat exchanges between air, snow and soil influ-
ence soil and snowpack properties and development, which
are carried forward until the end of the snow season (Sandells
et al., 2012). Temperature differences between soil and air
induce a strong snowpack temperature gradient, leading to
depth hoar formation and thus determining the structure of

the snowpack and its capacity to insulate the soil (Domine et
al., 2018).

4.3 Impact of approaches to correct snow thermal
conductivity

Prescribing simulated snow thermal conductivity to a more
physically representative value leads to an improvement in
simulating soil temperatures in tundra environments, com-
pared to both the findings herein and the permafrost model
used in Yi et al. (2020). Cook et al. (2007) also found that
reducing simulated snow thermal conductivity to the lower
end of observed values (0.1 W m−3) reduced soil tempera-
ture biases in an older version of CLM (CLM3.0). It has also
been suggested that the simulation of wintertime soil tem-
peratures at TVC may also be influenced by simulated soil
properties and the impact of the snow cover on soil moisture
content (Haagmans, 2021); bias is unlikely to be completely
eliminated solely as a result of changes to snow thermal con-
ductivity.

The impact of alternative parameterisations of snow ther-
mal conductivity on simulated soil temperatures was tested,
with a reduction in the RMSE and an improvement in
the SHTM found for all three alternative parameterisations
tested. Changing the parameterisation of snow thermal con-
ductivity in CLM from that of Jordan (1991) to that of Sturm
et al. (1997) gives the largest improvement to the simulation
of both snow thermal conductivity values and underlying soil
temperatures. Use of the Sturm et al. (1997) thermal conduc-
tivity parameterisation also improved soil temperature sim-
ulation in Crocus (Royer et al., 2021b), with an RMSE of
2.5 ◦C for soil temperatures from Crocus and CLM. The
Sturm et al. (1997) parameterisation demonstrates transfer-
ability between tundra sites, having been derived from ther-
mal conductivity measurements in the Alaskan Arctic and
successfully applied to both CLM and SMP measurements
at TVC. Although concern has been raised that the parame-
terisation of Sturm et al. (1997) may not be physically rep-
resentative, we feel this provides the most feasible solution
to improving soil temperature simulations in CLM given the
sizable improvement in RMSE and its use in more physically
representative land surface models (Royer et al., 2021b).

Application of the correction factor α improves the sim-
ulation of soil temperatures, increasing the value of the
SHTM by up to 0.3. The impact of differences between sim-
ulated and observed snow depth can be compensated by a
greater adjustment to snow thermal conductivity (Figs. 7b
and 8). This bias compensation between underestimates of
snow depth and underestimates of snow thermal conductiv-
ity is also seen in other land surface models, e.g. JULES
(Joint UK Land Environment Simulator) and LPJ-GUESS
(Lund–Potsdam–Jena General Ecosystem Simulator) (Wang
et al., 2016). However, as discrepancies between observed
and simulated snow depth can vary considerably between
years, this results in a best-fit correction factor value which
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also changes between years. A similar bias compensation
effect could apply for the use of alternative parameterisa-
tions of snow thermal conductivity. If snow depth bias was
consistently positive, we suspect that the Calonne, Fourteau
and Jordan parameterisations would likely compensate for an
overthickened snowpack through increased thermal conduc-
tivity. However, under a negative snow depth bias, the Sturm
parameterisation remains more suitable; although the abso-
lute magnitude of the improvement in soil temperatures using
the Sturm parameterisation was lower when the snow depth
bias was greater in 2017–2018, the relative order of impact
of the different parameterisations remained the same. These
findings indicate that thermal conductivity correction factors
are not the solution to soil temperature biases in models like
CLM.

Differences between absolute and effective snow depths
from both the model and the observational record highlight
the importance of the early-season snowpack in regulating
soil temperatures for the entire snow season. Simulations are
sensitive to latent heat release during soil freeze-up, which
maintains soil temperatures close to 0 ◦C for an extended pe-
riod of time at the beginning of the winter (Yi et al., 2019).
At this time, the soil thermal regime is also more sensitive
to snow depth, as snow depths are lower and have not yet
reached a point where their insulative capacity has become
saturated (Zhang, 2005; Lawrence and Slater, 2009; Slater
et al., 2017); therefore a stronger correction is needed when
snow cover is below ∼ 25 cm. Shallow snowpacks are likely
to consist of a lower proportion of wind slab (Rutter et al.,
2019), and thus their microstructural properties are less ac-
curately represented by CLM, which does not simulate depth
hoar (Van Kampenhout et al., 2017), stipulating the need for
a larger adjustment to α. We note that issues in simulating
the initial accumulation of the snowpack are likely linked to
uncertainties in the forcing data caused by measurement lim-
itations surrounding the use of precipitation gauges in tundra
environments (Smith, 2008; Watson et al., 2008; Pan et al.,
2016). However, attempting to correct for snow depth errors
through adjustment to the precipitation forcing beyond the
corrections outlined in Pan et al. (2016) is not advisable due
to high variability of snow depth (Fig. 2a) over short spa-
tial scales (metres to tens of metres). Additionally, Fig. 7c
suggests that the timing of the snow onset is more important
in determining the soil temperature than the absolute snow
depth error, as in 2018–2019 soil temperatures simulated us-
ing the Sturm parameterisation which are closer to obser-
vations than in the previous year, despite an absolute snow
depth error of up to 0.2 m. Regardless of the approach, these
changes to the model are most applicable where snowpack
structure is considerably influenced by depth hoar, as can be
approximated by grid-cell plant functional type or climatol-
ogy (Royer et al., 2021a; Sturm and Liston, 2021).

Ekici et al. (2015) suggests that representation of snow
thermal conductivity in land surface models is less impor-
tant for accurate simulation of soil temperatures than other

processes not currently well represented in most land sur-
face schemes, such as blowing snow and depth hoar forma-
tion. Further improvements to the SHTM in future iterations
of CLM will require a physically representative approach to
snow density and thermal conductivity through explicit in-
clusion of vapour transport within the snowpack, currently
under development in standalone snow microphysical mod-
els (Fourteau et al., 2021a; Jafari et al., 2020; Schürholt et al.,
2022). However, this presents computational and mathemat-
ical challenges, as outlined in Jafari et al. (2020). The inclu-
sion of physically representative parameterisations of snow
properties in land surface models, such as that of Royer et
al. (2021b), where the densities of lower snow layers are not
allowed to exceed a maximum observation-based threshold,
are more likely in the near future than the explicit represen-
tation of snowpack vapour transport. Meanwhile the substi-
tution of the Sturm et al. (1997) thermal conductivity param-
eterisation provides a computationally efficient compromise,
reducing both the value ofKeff and the cold bias of simulated
wintertime soil temperatures considerably (RMSE reduction
of 3.3 ◦C).

Model underestimates of soil temperatures follow through
into calculations of soil respiration, further contributing to
uncertainties surrounding estimates of wintertime carbon
flux (Natali et al., 2019) and suggesting that such modelled
values are likely to be an underestimation of the true mag-
nitude of these fluxes. Being able to accurately model fluxes
outside of the growing season is important, as these make a
considerable contribution to the annual carbon budget (Na-
tali et al., 2019; Schuur et al., 2021). A low soil temperature
bias due to poorly simulated snow insulation also has conse-
quences for predicting the evolution of permafrost (Barrere et
al., 2017; Burke et al., 2020) and resultant carbon emissions
when it degrades (Peng et al., 2016).

5 Conclusions

A new recalibration to derive profiles of tundra snow den-
sity and thermal conductivity from SMP profiles of pene-
tration force is presented, with resulting densities and ther-
mal conductivities then used to evaluate the performance
of CLM5.0. SMP-derived density profiles show good agree-
ment with measured snow layer densities at TVC. Compari-
son of measured snowpack properties from in situ SMP and
needle probe techniques with simulations show the model
tends to overestimate snow layer thermal conductivities by
up to factor of 3, with implications for how well wintertime
soil temperatures are simulated. Alternative relationships be-
tween snow density and snow thermal conductivity were con-
sidered, all of which improved the simulation of wintertime
soil temperatures (RMSE reduction of 0.2–3.3 ◦C). Reducing
simulated thermal conductivities through the use of a correc-
tion factor (α) also improves simulation of soil temperature
(RMSE reduction of 3.7 ◦C for an α of 0.45). The optimal
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magnitude of this reduction is strongly linked to snow depth
(with a greater reduction needed for shallower snowpacks).
Different optimal correction factors for different snow sea-
sons illustrate the limitations of this approach, but the results
are still instructive as a diagnostic for model sensitivity to the
treatment of snow thermal conductivity.

Further improvements to simulated snow properties will
require more explicit representation of key processes not cur-
rently accounted for in CLM, chiefly the formation of depth
hoar. A more physically representative snowpack should also
improve simulation of wintertime soil thermal conditions.
Snowpack vapour kinetics are not currently included within
global land surface models, which also have to consider a
large variety of other processes and avenues for future de-
velopment (Blyth et al., 2021; Fisher and Koven, 2020), al-
though developments are being made to consider these in
complex microscale snow physics models. Empirical scal-
ing of snow thermal conductivity provides a computationally
efficient interim solution with a similar impact on soil tem-
peratures as the explicit representation of a large depth hoar
fraction in point-scale simulations by Zhang et al. (1996), but
the value of the required scaling factor changes with snow
depth. Different parameterisations of snow thermal conduc-
tivity also improve simulation of soil temperatures, with that
of Sturm et al. (1997) more appropriate for Arctic snow-
packs (RMSE reduction of 3.3 ◦C) than that of Jordan (1991),
which is used by default in CLM. Improving the accuracy
with which Arctic wintertime soil temperatures can be sim-
ulated may help to reduce sizable uncertainties (Natali et al.,
2019) surrounding current projections of wintertime carbon
fluxes.

Appendix A: SMP processing

Differences between study environments (the original SMP
coefficients were not derived for tundra snow) and SMP hard-
ware for different versions of the SMP used by Proksch et
al. (2015) and this study required new coefficients to be de-
rived in order to relate penetration force to snow density.
Methods from King et al. (2020b) were adapted to recalibrate
SMP measurements from TVC in January and March 2019,
described in detail in Fig. A1. Coincident SMP profiles and
snowpit density measurements were available at 36 locations
across the TVC catchment. A K-fold process is then used to
derive new coefficients (a−d; Table A1) for Eq. (A1) (Eq. 9
in Proksch et al., 2015):

ρSMP = a+ b ln
(
F̃

)
+ c ln

(
F̃

)
L+ dL, (A1)

where F̃ is the median force value over the vertical distance
where density is calculated and L is the element size, the
distance between points where force is exerted by the SMP –
approximately the distance between snow grains (Löwe and
Van Herwijnen, 2012). Individual pairs of SMP-derived and

snowpit-measured densities above the 95th percentile of ab-
solute error were removed (step 7 of Fig. A1), and theK-fold
recalibration was repeated (step 8) to produce revised coef-
ficients to recalibrate the entire SMP dataset (step 9). This
process was iterated until paired SMP–snowpit profiles with
an R2 of less than 0.7 were removed. Poor fitting between
some paired SMP–snowpit profiles was due to the spatially
heterogeneous nature of the snowpack (King et al., 2020b),
as microtopographic variation in hummocky tundra can lead
to considerable sub-metre snowpack variability. Coefficients
(Table A1) were ultimately derived from 21 paired SMP–
snowpit density profiles, 16 from the January 2019 campaign
and 5 from the March 2019 campaign (R2

= 0.88, p<0.001).
These coefficients give an RMSE of 25.2, compared to an
RMSE of 125 for those of Proksch et al. (2015).

Table A1. Coefficients used to calculate density from SMP mea-
surements.

a b c d

Proksch (2015) 420.47 102.47 −121.15 −169.96
King (2020b) 312.54 50.27 −50.26 −88.15
This study 307.36 43.51 −38.95 −79.36
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Figure A1. Recalibration process for SMP densities. Steps 2–9 (purple) mirror the process of King et al. (2020b), with step 10 providing a
quantitative threshold to assess whether the recalibration attempt is successful. Steps 11 to 19 (blue) apply the recalibration to the TVC dataset
and derive thermal conductivity profiles from the recalibrated SMP densities. Step 17 refers to Sturm et al. (1997), Calonne et al. (2011),
Jordan (1991) and Fourteau et al. (2021b).

Figure A2. Relationships between the snowpit densities and SMP microstructural metrics from the paired profiles in the recalibration dataset,
after Fig. 5 of King et al. (2020b).
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These coefficients were used to calculate density profiles
for all 640 profiles from the 2019 campaigns (step 12 of
Fig. A1). Densities for SMP profiles from the March 2018
campaign were also derived from these, but measurements
from this campaign were not included in the recalibration
dataset. Metrics were calculated over a 2.5 mm sliding win-
dow with 50 % overlap (i.e. 1.25 mm resolution), as per
Proksch et al. (2015). Profiles of thermal conductivity were
then calculated from SMP densities, using the density :Keff
relationships derived by Sturm et al. (1997), Calonne et
al. (2011), Jordan (1991) and Fourteau et al. (2021b) (step 17
of Fig. A1). It is important to note that the thermal conductiv-
ity of a snowpack is dependent on more than just its density
(Sturm et al., 2002; Fourteau et al., 2021b), but these param-
eterisations provide a useful first-order approximation.

Prior to recalibration, negative force values were removed
from the SMP profiles. These are erroneous values which
can occur in the SMP output when ice gets caught in the
cog wheel of the SMP or if part of the instrument is dam-
aged (Lutz, 2009). Buried vegetation may also be present in
the lower part of tundra snowpacks, and interaction between
SMP and dense shrubs or branches may cause the SMP sig-
nal to overload and affect the quality of lower sections of the
profile. A normalised percentage depth scale (with profiles
rescaled to a resolution of 0.25 % of total depth using linear
interpolation) was used to compare SMP-derived profiles of
density and Keff from different snow depths (steps 15 and
18). Any negative densities or thermal conductivities were
removed during the depth normalisation process.

Recalibrated density profiles from the SMP do not pro-
duce values below 200 kg m3, despite observations of lower
snow densities in Arctic depth hoar, including some from this
campaign (Fig. 2). Figure A2b shows a large spread in the
value of L for the depth hoar samples, over a relatively small
set of snowpit densities. Large element sizes or distances be-
tween snow grain failures are not unexpected in depth hoar,
but this results in a low signal-to-noise ratio (King et al.,
2020b). Figure A2 shows the relationship between F̃ andL is
not heteroscedastic as initially assumed, leading to an over-
estimation of the density (and density-derived Keff) of this
layer. Proksch et al. (2015) state that their model does not
yet fully account for the anisotropic structure of some snow
types, which is of particular relevance to depth hoar.

Appendix B: Model spin-up

In order to determine the amount of model spin-up required
for soil temperatures to equilibrate, iterative runs of PTCLM
with an additional year of spin-up were undertaken from 1
January 2017 to 1 January 2013. Soil temperatures through-
out the soil column were compared; three depths are shown
in Fig. B1. Internal system variability results in a difference
of∼ 1 ◦C between model runs, with a minimum of 2 years of
spin-up required forKeff adjusted runs to converge at a 10 cm
soil depth. Deviation between different spin-up start times
takes longer to level out deeper in the soil column, but as we
only examine soil properties within the top 20 cm of the soil
column, we feel this length of spin-up is sufficient. Changes
to snow thermal conductivity were evident at all depths in
the soil profile and have an impact on the thickness of the
active layer with seasonal thawing seen to a depth of 1.7 m
(Fig. B1b), in comparison to 1.35 m for the unadjusted CLM
runs and the 1 m active-layer depth reported by Grünberg et
al. (2020).
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Figure B1. Soil temperatures at (a) 10 cm, (b) 1.7 m and (c) 4.3 m (3rd, 11th and 16th CLM soil layers) for varying lengths of model spin-up
(line styles; all spin-ups from 1 January, year given in legend), for both baseline (α = 1; dark red) and Keff adjusted (α = 0.3; navy blue)
model conditions.

Code and data availability. Code and data to produce figures
are available at https://github.com/V-Dutch/TVCSnowCLM and
https://doi.org/10.5281/zenodo.7137729 (V-Dutch, 2022).
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