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Abstract: Knowledge of the wintertime sea-ice production in Arctic polynyas is an important require-
ment for estimations of the dense water formation, which drives vertical mixing in the upper ocean.
Satellite-based techniques incorporating relatively high resolution thermal-infrared data from MODIS
in combination with atmospheric reanalysis data have proven to be a strong tool to monitor large and
regularly forming polynyas and to resolve narrow thin-ice areas (i.e., leads) along the shelf-breaks
and across the entire Arctic Ocean. However, the selection of the atmospheric data sets has a large
influence on derived polynya characteristics due to their impact on the calculation of the heat loss
to the atmosphere, which is determined by the local thin-ice thickness. In order to overcome this
methodical ambiguity, we present a MODIS-assisted temperature adjustment (MATA) algorithm that
yields corrections of the 2 m air temperature and hence decreases differences between the atmospheric
input data sets. The adjustment algorithm is based on atmospheric model simulations. We focus
on the Laptev Sea region for detailed case studies on the developed algorithm and present time
series of polynya characteristics in the winter season 2019/2020. It shows that the application of
the empirically derived correction decreases the difference between different utilized atmospheric
products significantly from 49% to 23%. Additional filter strategies are applied that aim at increasing
the capability to include leads in the quasi-daily and persistence-filtered thin-ice thickness composites.
More generally, the winter of 2019/2020 features high polynya activity in the eastern Arctic and less
activity in the Canadian Arctic Archipelago, presumably as a result of the particularly strong polar
vortex in early 2020.

Keywords: sea-ice; polynyas; leads; ice thickness; Arctic; reanalysis; regional climate model; MODIS

1. Introduction

Throughout the ice-covered Arctic and Antarctic ocean-areas, the presence of thin
sea-ice during winter has a large influence on a multitude of physical processes at the
sea-ice interfaces, i.e., the ocean and atmosphere. Thin sea-ice is more vulnerable to wind
and ocean induced stress, which can lead to enhanced fracturing of the sea-ice cover. Hence,
vast areas of open water and thin ice (so called polynyas, e.g., [1]) tend to appear regularly
along the Arctic coastlines and fast-ice edge where winds advect the sea-ice offshore. This
process creates openings that are rapidly filled by the formation of new ice due to the large
heat loss from the ocean [2]. Leads, on the other hand, are distributed over the entire Arctic
Ocean and some of the adjacent seas. They are elongated linear features of open water and
thin ice that result from the shearing and stretching of the pack ice due to wind and ocean
currents, likely assisted by the influence of tides and bathymetric effects [3,4].

The use of remote sensing methods to monitor thin ice (i.e., polynyas and leads) in
the wintertime sea-ice cover has noticeably advanced in recent years. While early studies
date back well over 30 years, e.g., among others, [1,5,6], more detailed investigations on
the physical properties of polynyas and leads in both hemispheres were possible with an
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increased availability of spatially and temporally higher resolving passive microwave and
thermal infrared satellite sensors, e.g., among others [2–4,7–12].

The aim of this study is to present an extension to the thin-ice thickness retrieval
using thermal-infrared satellite data that is intended to address issues with using different
atmospheric data sets, all of which feature individual strengths and weaknesses in terms
of sea-ice. Global atmospheric reanalysis such as the ones from the European Centre for
Medium Range Weather Forecasts (ECMWF) ERA-Interim [13] or ERA5 [14] to date use
coarser spatial grids compared to satellite-based observations, which leads to an under-
representation of local sea-ice features such as polynyas or leads. While larger polynyas
(such as the North Water (NOW) polynya between Greenland and Canada; compare
Figure 1) are to some extent accounted for through the assimilation of passive microwave
satellite measurements, many thin-ice features in the sea-ice cover do not have a large
effect on the lower atmospheric state variables in reanalysis. This is especially relevant
for the 2 m air temperature and humidity, which are in reality both altered through the
presence of thin ice or open water—especially in the winter period. When this effect is
omitted, temperatures over thin ice and open waters are, as a consequence, underestimated
in coarse-scale reanalyses. This results in inaccuracies for heat-flux based methods such as
the thin-ice thickness retrieval that uses modelled data in combination with satellited-based
measurements of the ice-surface temperature (IST) [2,11].

Figure 1. Overview map of the Arctic Ocean and adjacent seas, with color-levels indicating ocean
depth (in m) according to IBCAO (v3) bathymetric data [15]. Subset areas for case studies in later
figures are depicted with black frames, showing the Transpolar Drift (TPD; dash-dotted), the wider
Laptev Sea (LAP; solid) and a southern Laptev Sea close-up (LAPs; dashed).
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Previous studies, e.g., by [16,17], demonstrated a strong but complex relationship
between the 2 m air temperature and IST that varies both with location and season. In this
paper, we present an algorithm that adjusts both the 2 m air- and dew-point-temperatures
from atmospheric data sets with the assistance of swath-level Moderate Resolution Imaging
Spectroradiometer (MODIS) IST by applying an empirically-derived linear regression for
the difference between the surface- and 2 m temperatures over sea-ice. This regression is
based on simulations using the regional climate model COSMO in climate mode (CCLM) in
combination with two different sea-ice initializations (see Section 3.2). In principle, this ap-
proach targets an improvement to the MODIS-based thin-ice thickness retrieval by making
it more independent from the type of atmospheric data, while at the same time retaining the
individual strengths of the models (spatial/temporal resolutions, parametrizations, etc.).

In addition, this new version of the thin-ice thickness retrieval incorporates several
minor improvements compared to previous studies, with the most important one being the
inclusion of quasi-daily derived lead maps from MODIS [3,4] as a new filter-strategy for
thin-ice signals within the pack-ice. In the past, these lead-indicating areas were difficult to
differentiate from undetected clouds (i.e., not featured in the MxD35 cloud mask [18]).

Our conclusions at the end of this paper will therefore highlight the need for this new
addition to the retrieval scheme for long-term studies on polynyas and leads, based on
results from the winter-season 2019/2020 that serve as an exemplary showcase for the new
data set version.

2. Data
2.1. Satellite Data Sets

For the derivation of thin-ice thickness (TIT; cf. Figure 2 and Section 3.1), we use the
MxD29 (MxD: MOD29 from Terra and MYD29 from Aqua) Collection 6 sea-ice product
[19,20] derived from MODIS satellite data. It contains swath data of ice surface temperatures
(IST) with a spatial resolution of 1 × 1 km2 at nadir and includes the MODIS cloud mask
(MxD35 C6, [18]). The overall accuracy of the MxD29 C6 IST is given with around 1 to 3 K
[19,20].

Figure 2. The thin-ice thickness (TIT) retrieval using MODIS ice-surface temperature data with
atmospheric variables from COSMO CLM or ECMWF ERA5 reanalysis. The newly added model-
assisted temperature adjustment scheme (MATA) is indicated in blue.
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Two auxiliary satellite data sets are used during post-processing steps of retrieved
thin-ice thicknesses. The lead product by [3,4] contains categorical maps including leads,
artefacts, clouds and sea-ice (example in Figure 3c) for the period from 2002 to 2020
(November to April). Along with these lead maps come fields of sea-ice concentration at a
resolution of 1 km2. This additional data set makes use of the filtering applied in the lead
retrieval and thereby accounts for temperature patterns that are not associated with thin
ice or open water (artefacts). Sea-ice concentration is thus only calculated, where thin ice or
open water is detected by the lead retrieval.

Passive microwave sea-ice concentration (SIC) data, mainly derived from the Ad-
vanced Scanning Microwave Radiometer -EOS/-2 (AMSR-E/AMSR2) on Aqua and GCOM-
W1, respectively [21], are used to complement the MODIS-based retrievals for qualita-
tive/spatial comparisons (Figure 3f) as well as for masking spurious thin-ice signals from
the marginal ice-zones (MIZ) by applying a SIC-threshold of 15%.

Figure 3. Overview of different data products on 3 January 2020. Thin-ice thicknesses (in m) in the
areas of the Laptev Sea and Transpolar Drift ((a) using CCLM data, (d) using ERA5 data) are shown
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together with their respective daily thin-ice persistence (PIX) value in % ((b) using CCLM data,
(e) using ERA5 data). Panel (c) presents daily ArcLead classifications [4], with color labels depicted
below the map. Passive microwave sea-ice concentrations (SIC, in %; [21]) from AMSR2 are comple-
mentary illustrated in Panel (f).

2.2. Atmospheric Data Sets

Atmospheric model-data are an essential part of the thin-ice thickness retrieval scheme
when calculating both the longwave radiative fluxes as well as turbulent heat fluxes. While
a wide range of previous studies [2,10,11] relied on the ECMWF ERA-Interim (discontinued
in 2019) reanalysis [13], we now utilize atmospheric data from the ECMWF ERA5 [14]
reanalysis, as well as data from the regional climate model CCLM with 5 and 15 km
resolution [22,23].

CCLM is used with a horizontal resolution of 15 km for the whole Arctic (C15) and
with 5 km resolution for subdomains of the Kara and Barents Sea (C05) and for the Laptev
and Kara Sea (L05). C15 took part in two CORDEX model intercomparison studies in the
Arctic using ship-based measurements during summer [24,25]. A verification study for C05
a wintertime situation over sea-ice is shown by [23]. Initial and boundary data are taken
from ERA5 [14] with hourly resolution. The model is used in a forecast mode (reinitialized
daily at 18 UTC, spin-up time of 6 h). No nudging is performed. Model output is available
every 1 h. In the vertical, the model extends up to 22 km with 60 vertical levels, 12 levels
are below 500 m in order to obtain a high resolution of the boundary layer. The first model
level is at 5 m above the surface. sea-ice concentration is taken as daily data from AMSR2
data with 6.25 km resolution [21]. In addition, daily SIC and information about sea-ice
leads are taken from MODIS data (see Section 2.1). Sea-ice thickness is prescribed daily
from interpolated Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS)
fields [26]. CCLM includes a two-layer sea-ice model and a tile approach for sea-ice [22,23],
which considers thick ice, subgrid-scale thin ice (such as thin ice in leads and polynyas)
and open water.

A comparison between ERA5 and CCLM is presented in Table 1, that gives an impres-
sion on differences with regard to initial grid resolutions, the spatial domain and available
time periods as well as the boundary fields for sea-ice along with utilized variables.

Table 1. Overview of atmospheric data sets.

CCLM ECMWF ERA5

Reference Modified from [22,23] [14]
Grid Resolution 5 km or 15 km 31 km
Model type Regional climate model (Arctic) Global reanalysis
Sea-ice reference AMSR-E, AMSR2 SIC SSM/I, SSMIS SIC

(U Bremen; ASI-v5.4 [21]), (OSI-SAF; OSI-401/409 [27] as
MODIS SIC [4] part of OSTIA [28])

Utilized variables T2m, Td,2m, u10m, v10m, T2m, Td,2m, u10m, v10m,
pmsl , Ts pmsl , Ts, mcc

Larger differences between CCLM and ERA5 are seen in terms of grid resolution,
which imprints on the individual ability to account for varying surface (i.e., sea-ice) charac-
teristics such as thin-ice or open water. The latter is also of concern regarding differently
utilized sea-ice data in general. CCLM uses AMSR-E/AMSR2 ASI SIC [21] and MODIS SIC
for its sea-ice model component, while the ERA5 reanalysis fundamentally relies on a suite
of EUMETSAT Ocean and Sea Ice Satellite Applications Facility (OSI-SAF) SIC-products [27]
that serve as the basis for the utilized Met Office’s Operational Sea-surface Temperature
and sea-ice Analysis (OSTIA) data set [28]. As shown by [29], ERA5 features an overly
smooth sea-ice distribution (in part due to its grid size), which is of particular interest
in low sea-ice areas such as the marginal ice zone (MIZ) or polynyas and contrasts more
detailed sea-ice distributions from satellite data sets. The different representation of sea-ice
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in CCLM and ERA5 results in differences in the energy balance and near-surface quantities,
particularly the near-surface temperature. Like most reanalyses, ERA5 uses a fixed ice
thickness and no snow layer on the sea-ice. This results in a warm bias and a missing daily
cycle of the 2 m temperature over Arctic sea-ice areas in winter for ERA5 [23,30].

From all atmospheric data sets, we use surface fields of the 2 m temperature (T2m),
skin-/surface-temperature (Ts), u- and v-components of the 10 m wind (u10m, v10m), mean
sea-level pressure (pmsl) and the 2 m dew-point temperature (Td,2m)). As we will show
later and as previously indicated, e.g., by [31], the use of different atmospheric products
imposes a certain spread on derived polynya statistics and, as a consequence, a range of
uncertainty. Here, we aim to reduce this uncertainty by introducing a novel correction
scheme that addresses differences in 2 m temperatures due to variable sea-ice boundary
fields of the models.

3. MODIS Thin-Ice Thickness Retrieval
3.1. General Description

Estimating the thin-ice thickness from MODIS (MxD29 C6) ice surface temperature
data employs a 1D energy-balance model [2,7,8,31] [among others], wherein the satellite
data are combined with atmospheric model data to calculate the turbulent heat fluxes
and the longwave radiative fluxes. These are then used to derive thin-ice thicknesses
by assuming a balance between the atmospheric heat flux Qatm (restricting to night-time
conditions) and the conductive heat flux through the ice, Qice. Although previous studies
already featured extensive descriptions of the general procedure, some aspects need to be
highlighted here to set the stage for the subsequent description of the new temperature-
adjustment scheme in the following subsection.

In this particular approach that focuses on the extended winter period from December
to March/April, daytime conditions (i.e., sun incidence angle above 0° azimuth) are gener-
ally omitted as the calculation of ice thicknesses (hi,th) is limited to cloud-free pixels with
negative values of Qatm (i.e., energy loss of the ocean- or ice-surface). The measured IST
represents an integrative signal of thin sea-ice of potentially various types and a potential
thin snow layer (if not blown away or incorporated into the wet/slushy ice surface), but
we use the simplifying assumption of a snow-free surface of the newly formed ice (≤20 cm;
within the range of grey-white ice [32]) in order to base our calculations on a single linear
temperature profile through the thin-ice layer (constant ocean-boundary temperature; freez-
ing point of sea water with Tf = 271.35 K). The Monin–Obukhov similarity theory is used to
calculate the turbulent fluxes of sensible and latent heat in an iterative bulk approach [33].
The initial assumption of setting Qatm equal to Qice leads to the following equation for hi,th:

hi,th = κice ·
(ISTMODIS − Tf )

Qatm
(1)

with κice being the thermal conductivity of sea-ice. In a sensitivity analysis of this method,
ref. [31] stated an uncertainty for the ice-thickness retrieval of ±1.0, ±2.1, and ±5.3 cm for
thin-ice classes of 0–5, 5–10, and 10–20 cm, respectively. Uncertainties noticeably increase
beyond 20 cm, such as ±14.4 cm for the thin-ice range 20–30 cm.

Polar nighttime conditions lead to several challenges in the satellite-data processing
chain (overview in Figure 2) that require a set of additional strategies and corrections for
the usage in a long-term investigation. One of the main aspects is the calculation of median
daily composites of IST and TIT from single swath-data, which increases the amount of
potentially usable IST information for an individual pixel substantially due to the high
number of daily overpasses by both MODIS sensors at polar latitudes. From the total
number of daily IST per grid point, a ratio with thereof calculated TIT (below 20 cm) can be
obtained, yielding a pixel-wise daily thin-ice persistence index (PIX; see Figure 3b,e).

Contrasting previous MODIS-based studies, we here introduce a modified filter-
strategy for erroneously detected thin-ice signals in the daily composites (i.e., clouds and
other artefacts). The filter is based on an approach that combines a simple PIX-threshold of
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50% [11,34] with identified lead-locations in the auxiliary lead product [4] (compare Sect-
tion 2.1 and Figure 3c). The latter already includes dedicated image-processing strategies
to filter out unidentified cloud-artefacts by using multiple lead metrics in a fuzzy logic
approach. The idea of combining daily PIX values with lead-classifications (persistence
lead filter—“PLF”) is to profit from the exclusion of thin-ice artefacts with low PIX values
on a given day (e.g., through frequent cloud-overpasses), without sacrificing those low-
persistence thin-ice pixels that have a high probability of being a real lead. The Spatial
Feature Reconstruction (SFR) algorithm [35] is not applied in this new data set version,
in order to avoid ambiguities and problems with the temporal interpolation of thin ice in
short-lived and/or moving leads. Thereby, we aim to decrease the likelihood of creating
“artificial” or unrealistic lead locations. This, however, results in an increased likelihood
that some polynya events with heavy cloud coverage, i.e., those cases for which the SFR
algorithm was developed, are not as well captured as in previous MODIS-based or other
passive microwave based studies.

Based on daily PLF thin-ice composites and using the method described for instance
in [34], ice production rates are calculated for each pixel with an ice thickness ≤ 0.2 m,
i.e., a commonly referenced ice-thickness range for polynya areas [31,36].

3.2. Addition of a Model-Based Algorithm to Enable MODIS-Assisted Temperature Adjustments

As briefly introduced in Section 1, the utilization of different atmospheric data sets
in the thin-ice thickness retrieval has an effect on the retrieved ice thickness and related
polynya/sea-ice characteristics. The main reason behind this discrepancy is the varying
capability to resolve or incorporate individual thin-ice features in the modelled surface
fields, that can lead to an underestimation of the effect of such comparatively warm
surface features on the local energy balance—presumably increasing with decreasing grid
resolutions. As a consequence, ambient surface- and 2 m temperatures in proximity of
thin-ice are often too cold in atmospheric data sets, which translates to an overestimation
of turbulent heat fluxes (i.e., underestimation of ice thicknesses) when combined with
satellite-based IST (Ts) in a 1D energy balance model (compare previous section).

The method proposed in the present paper has the goal to reduce the inconsistencies of
the near-surface temperature of atmospheric data sets with the MODIS IST by an adjustment
of atmospheric near-surface data used for the MODIS retrieval. In order to develop this
adjustment algorithm, we run the CCLM model with two different sea-ice concentration
data sets for the same period. In a first setup (standard procedure), the model uses AMSR2
SIC (at 6.25 km resolution). In a second setup, higher resolution MODIS SIC (merged
with AMSR2 SIC for gap filling) is used. Due to the differences of both sea-ice data sets,
differences of the IST and the associated 2 m temperature are simulated. The idea of
the method is not to adjust the 2 m temperature directly, but the differences between the
air temperatures of the two runs at the same pixel by using the differences of surface
temperatures. Hence, this approach is a correction of the near-surface stability (T2m − Ts)
of the models for model grid points, where the simulated Ts is different from MODIS Ts.
This is not a bias correction, but the parameterization of the adaption of the atmosphere
to new surface conditions (that is, the new Ts from MODIS) in a statistical way. In order
to account for different seasons, model resolutions and regions, both setups are run for
the three months January and April 2020 and March 2014 for the pan-Arctic domain at
15 km as well as a spatially limited domains for the Laptev Sea and Barents Sea at 5 km
(see Table 2).
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Table 2. Overview of CCLM simulation runs and determined regression parameters performed
during MATA development.

Domain km Month SIC ≤ 0.7 & TS < −1.7 ◦C SIC ≤ 0.7 & TS < −1.7 ◦C TS < −1.7 ◦C(Surrounding Six Pixels)

slope r2 slope r2 slope r2

Arctic 15 January 2020 0.45 0.94 0.39 0.89 0.53 0.83
Arctic 15 April 2020 0.48 0.93 0.49 0.95 0.61 0.89
Arctic 15 March 2014 0.45 0.94 0.45 0.94 0.58 0.84
Laptev Sea 5 January 2020 0.40 0.93 0.38 0.94 0.57 0.82
Laptev Sea 5 April 2020 0.41 0.90 0.39 0.91 0.65 0.86
Barents Sea 5 March 2014 0.43 0.85 0.42 0.84 0.66 0.83

In order to asses the effect of the high-resolution SIC on the 2 m temperature we
aim for a general empirical relation between the resulting differences in Ts/IST and T2m.
Hence, the change of T2m is expressed as a function of the difference between modelled
Ts,AMSR−SIC and Ts,MODIS−SIC (or ISTMODIS, respectively) by applying a linear regression:

T̂2m,model = −slope · (Ts,model − ISTMODIS)− o f f set + T2m,model (2)

Figure 4 shows two examples of these runs for C15 for January 2020 for (a) all ocean
grid points with a surface temperature below 1.7 ◦C and (b) the same but limited to pixels
that suffice a 70% SIC-threshold polynya criteria [37,38]. The temperature criterion excludes
open water areas. The results show a clear linear relation between the surface temperature
differences and the effect on the 2 m temperatures. For the runs in Figure 4a,b, slopes of
0.53 and 0.45 with respective r2 of 0.83 and 0.94 are found, indicating very good correlations.
We investigated this relationship also for polynya grid points that require at least seven
contiguous polynya grid points (compare Table 2). Since we cover a very large range in
differences between CCLM Ts (AMSR) and CCLM Ts (MODIS), we account for a large
range of conditions and seasons.

Figure 4. Scatterplots of the difference in surface temperatures (dTs) versus the difference in 2 m
temperatures (dT2m) from CCLM simulations at 15 km grid resolution (both for January 2020). All
values are given in ◦C. Panel (a) features all grid points with a surface temperature < −1.7 ◦C, while
in panel (b) a 70% SIC polynya criteria is applied. Linear regression lines are drawn in red, and the
1:1 line in blue for reference.
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Here, T̂2m,model denotes to the corrected 2 m temperature. While the offset is per default
set to be zero, the slope varies between 0.38 and 0.66 depending on the model domain
(C15 vs. C05) and applied SIC- and Ts -thresholds to delineate thin-ice areas from thicker
ice types (Table 2). All values combined, we get an average slope of around 0.5. This
value is assumed to be representative for a wide range of different conditions and hence
applied for all cases in the present study. In addition, we evaluated different slope values
(0.5 ± 0.05) for their respective effect on retrieved polynya parameters on the Laptev Sea
shelf and saw a minor difference of 1 to 3% in the daily polynya area and sea-ice production.

As the dew-point temperature Td,2m is used as the quantity for humidity-related fluxes
(i.e., latent heat flux and parameterized downwelling longwave radiative flux after [39]) in
the thin-ice retrieval, it has to be to adjusted accordingly using the corrected T̂2m,model and
the initial dew-point depression (Depressiond,model ; defined as the difference T2m − Td,2m):

T̂d,2m,model = T̂2m,model − Depressiond,model (3)

With T̂d,2m,model as the corrected dew-point temperature. Both equations
(Equations (2) and (3)) are integrated into the TIT-retrieval prior to pixel-wise calculat-
ing the surface energy balance and respective thin-ice thicknesses, based on the procedure
described in the previous section.

4. Results
4.1. Case Study from January 2020: Effects of MATA Application

In order to exemplary demonstrate resulting effects of the application of MATA, we
here focus on a case study from the Laptev Sea polynya on 2 January 2020 (0425UTC). It first
becomes evident from the spatial distributions of the specific humidity at 2 m (q2m; Figure 5),
both with and without adjusting the dew-point temperature, that the Td correction leads to
an increase in humidity in proximity of thin ice of around 0.1 to 0.15 g/kg, with some areas
exceeding 0.2 g/kg adjacent to the fast-ice edge. These numbers are comparable to in-situ
measurements over leads, as reported by [40].

Figure 5. Case study in the Laptev Sea subset-region, illustrating the effect of the dew-point correction
within MATA. (a) ERA5 q2m with Td correction, (b) ERA5 q2m without Td correction, (c) resulting
difference in q2m. All displayed values in g/kg for 2 January 2020, 0425UTC. Black contours indicate
areas with ice thicknesses up to 0.2 m. Note the data-gaps (in grey) resulting from the omission of
temperature values with no corresponding MODIS IST.

More humid conditions result in increased downward longwave-radiation fluxes that
lower the total heat loss to the atmosphere (Qatm), due to a humidity-dependency in the
parametrization. In turn, the lower atmosphere gets drier than before further offshore,
leading to an increase in the total heat loss. Although the magnitude of the change in Qatm
is not large, the dew-point correction is necessary for physical consistency and hence an
integral part of MATA.

Figure 6 shows the change in 2 m temperature-distributions for the same polynya
event on 2 January 2020—therefore focusing on the most obvious and central aspect of
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MATA. The direct comparison of corrected (panels (a) and (d)) and uncorrected (panels
(b) and (e)) temperatures from both ERA5 and CCLM strikingly highlights the imprint
of warmer polynya areas adjacent to the cold fast-ice on the lower atmosphere. Absolute
differences in these areas range between 1K to more than 5K. Further offshore and above
cold fast-ice surfaces, MATA also lowers the 2 m temperature by up to 3–4K. These areas
are more widespread in case of ERA5 (Figure 6c and may potentially counteract a warm
bias in the original ERA5 data.

Figure 6. Case study in the Laptev Sea subset-region, showing the total effect of MATA on the 2 m
temperature distribution. Panels (a,d) show T2m from ERA5 and CCLM, respectively, with MATA
and the Td correction applied. (b,e) show the respective T2m distributions without an application of
MATA, while (c,f) feature the resulting differences in T2m. All displayed values in K for 2 January
2020, 0425UTC. Black contours indicate areas with ice thicknesses up to 0.2 m. Note the data-gaps (in
grey) resulting from the omission of temperature values with no corresponding MODIS IST. Points
A (74.22°N, 123.09°E) and B (75.16°N, 124.48°E) mark the transect-line for the extraction of various
profiles (Figure 7).

To illustrate the effect of MATA for both the use of CCLM and ERA5 more clearly,
Figure 7 shows profiles between two selected points A (74.22°N, 123.09°E; located on fast-
ice) and B (75.16°N, 124.48°E; offshore) that cross an active polynya case in the Laptev Sea
on 2 January 2020 (04:25UTC). The distance between the two points (compare Figure 6a) is
113 km.

First, we can note that the reanalysis-related differences in ice thickness (panel (a))
and subsequently sea-ice production (SIP; panel (b)) tend to be smaller in those parts with
elevated surface temperatures (panel (c)), i.e., the main polynya area with thicknesses
below 20 cm. The width of the latter varies depending on the used reanalysis and the
use of MATA and ranges between approximately 30 km (MATA cases; CCLM and ERA5
in agreement) and up to 50 km (non-MATA cases; CCLM and ERA5 not in agreement).
Within the active polynya zone, SIP reaches values up to 0.4 cm/h (MATA-cases), fading
down to about 0.2 cm/h at the 20 cm polynya-threshold. Regarding the MATA-induced
adjustment of T2m and Td, panels (c) and (d) reveal that in case of T2m, the effect of the
now included surface-temperature signature leads to a much more realistic temperature
profile compared to the initial ’flat’ profiles of both reanalysis. ERA5 temperatures are
warmer than their CCLM counterparts both with and without MATA, with the absolute
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difference being slightly smaller in the MATA case. A similar effect is visible in terms of the
specific humidity where we see a noticeable increase in the thinner ice region, as presented
in Figure 5.

Figure 7. Various profiles (A to B; cf. Figure 6) for sea-ice and atmospheric variables for the case
study in the Laptev Sea on 02 January 2020, 04:25UTC (CCLM vs. ERA5; with/without MATA).
(a) Calculated thin ice thicknesses (hi,th, in m), (b) sea-ice production scaled to one hour (SIP, in
cm/h), (c) 2 m air temperatures and MODIS IST (all in K), (d) specific humidity (q2m, in g/kg), and
(e) sensible heat flux (in W/m2). Gaps in all panels result from clouds or otherwise missing IST data.

While all MATA-related effects primarily affect the swath-wise calculation of TIT, it is
also required to evaluate differences in the daily composites as they are the basis for all long-
term investigations of Arctic polynyas. Hence, Figure 8 shows the comparison of MATA
and non-MATA daily TIT-composites from 2 January 2020—zoomed in on the same Laptev
Sea polynya event as before. Calculated ice thicknesses that use either of the atmospheric
data sets (ERA5 and CCLM) are plotted against one another for a clear comparison.
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Figure 8. Spatial distributions of thin-ice thicknesses (TIT, in m) in the Laptev Sea, presented as
persistence-lead-filtered (PLF) daily composites for 2 January 2020. Both CCLM and ERA5 are
compared, with (panels (a,c)) and without (panels (b,d)) the application of MATA. Green contours
mark areas with ice thicknesses below or equal to 0.2 m.

We can easily see how the use of MATA leads to a more congruent distribution of
polynyas/thin-ice areas (marked with green outer lines), whereas the non-MATA cases do
in parts largely differ from one another—first and foremost in terms of areal extent. This
is mainly associated with temperature differences in the respective atmospheric forcing,
but differences in the wind field also affect the surface fluxes and thus the computation of
TIT. Another interesting observation is that leads are apparently not equally well captured
by the ERA5 and CCLM versions, with the CCLM based TIT-distributions featuring more
lead-structures than their ERA5 counterparts. Ice thickness estimates in leads mostly range
above the 20 cm polynya-threshold.

4.2. Analysis of the 2019/2020 Winter-Season

Time series of daily polynya area (POLA, in km2; Figure 9a) and daily accumulated
sea-ice production (in km3; Figure 9b) within the Laptev Sea are presented to highlight
the wintertime polynya dynamics in 2019/2020 as well as differences among the data set
versions (CCLM vs. ERA5; AMSR2 polynya area retrieval based on SIC). As in [2,12],
we again set a focus on the Laptev Sea area for this purpose due to its known general
importance in a pan-Arctic context (e.g., major source for sea-ice export into the Transpolar
Drift system [41–43] [among others]) as well as its high activity in 2019/2020.
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Figure 9. Laptev Sea: (a) Daily polynya area (POLA, in km2), (b) accumulated sea-ice production (SIP,
in km3) and (c) average thin-ice thickness (hi,th, in cm) between December 2019 and April 2020. Both
CCLM and ERA5 are compared (based on PLF daily composites), with and without the application
of MATA.

The latter is well visible in both sub-panels, with more or less extensive thin-ice/open-
water areas throughout all months considered. Only in the second half of December 2019
there is a period of about 10 days with hardly any thin-ice/open-water occurrence. The
largest thin-ice extent in found around the February-March transition with approximately
55,000 km2 (MODIS based) to 70,000 km2 (AMSR2 based). Interestingly, larger POLA-values
from AMSR2, as seen in this case, are less frequently seen in 2019/2020 as the opposite
case, with most of the larger polynya events showing higher numbers from MODIS (high
agreement between CCLM and ERA5-versions). Other large polynya events show POLA-
values of around 30,000 to 40,000 km2. Towards the end of April, we see more apparent
differences between the TIT-based MODIS estimates and the SIC-based estimates due to the
methodical limitation to nighttime conditions and hence less frequent TIT-estimations with
potentially missed polynya observations. Average daily thin-ice thicknesses in the Laptev
Sea (Figure 9c) do not differ significantly between the two atmospheric data sets. This is
also the case with the effect of the MATA application, where a light increase in thickness
can be noted, especially for ERA5.

Likewise as POLA, the daily MODIS-based SIP values show a very high agreement
between CCLM and ERA5-versions. There are only two main occasions where CCLM
and ERA5 differ more clearly—first an event at the beginning of February (about 0.6 km3

difference; CCLM > ERA5; mainly western Laptev Sea) and then at the already mentioned
event at he February-March transition (about 0.5 km3 difference; CCLM < ERA5; western
and southern Laptev Sea). Generally, larger polynya events in the Laptev Sea produce
roughly 1 to 2 km3 of new ice per day. At the end of April, this sums up to 68.1 km2 (ERA5;
62.5 km3 for DJFM) and 82.1 km3 (CCLM; 74.9 km3 for DJFM) with applied PLF. Without
any filtering, these values increase by about 5 to 6%. The overall difference between CCLM
and ERA5 SIP-estimates in the Laptev Sea therefore amounts to about 17% in case MATA is
applied, which noticeable reduces the initial difference of 49% without MATA (Table 3).
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Daily average atmospheric variables (Figure 10) serve to illustrate the effect of MATA
on a seasonal timescale. 2 m temperatures over thin ice (≤20 cm) are noticeably adjusted
by up to 6–8 K (Figure 10a), which imprints on the derived average sensible heat flux
(Figure 10c) and leading to a reduction of the total heat loss to the atmosphere. The 10 m
wind speeds are barely influenced by MATA, but it can be noted from Figure 10b that ERA5
wind speeds overall exceed those of CCLM, which has an additional effect on observed
SIP differences.

Figure 10. Laptev Sea: Daily averages of (a) 2 m temperatures (in K), (b) 10m wind speeds (in m/s)
and (c) the sensible heat flux (in W/m2) between December 2019 and April 2020. Both CCLM and
ERA5 are compared (based on PLF daily composites), with and without the application of MATA.

Compared to the SIP in other winters, the season of 2019/2020 lies slightly above
previously reported average values for the Laptev Sea domain [2,44]. Adjacent seas (East
Siberian Sea, Kara Sea) in the eastern Arctic show a similar behaviour in this particular
winter, while a closer look at other polynya regions across the Arctic (Table 3) reveals a
more diverse picture. Especially polynyas in the western Arctic, such as the North Water
polynya between Greenland and Canada, were noticeable less active in 2019/2020 when
compared to preceding winter seasons (even when taking the 2002/2003 to 2017/2018
standard deviation into account). One reason for this contrast could be the extremely
stable polar vortex in the winter 2019/2020, which appeared in concert with an record-high
positive phase of the Arctic Oscillation (AO) between January and March 2020 [45] and
unprecedented warming events over the Siberian Seas [46]. The resulting increase in sea-ice
drift-speed and low (initial) ice thicknesses in the Siberian seas are a likely explanation
for the enhanced polynya activity on the East Siberian and Laptev Sea shelves as well as
reported slightly increased fracturing along the Transpolar Drift [47,48].
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Table 3. Accumulated sea-ice production (SIP, in km3) in Arctic polynyas in 2019/2020 (December to
March (DJFM)/April (DJFMA)), compared to the long-term average from 2002/2003 to 2017/2018
from Preußer et al. (2019) [2]. Percentages in brackets indicate the relative change that results from
applying MATA, both for ERA5 and CCLM, respectively.

ERA5 CCLM ERA Interim [2]
no MATA MATA MATA no MATA MATA MATA 2002/2003 to
2019/2020 2019/2020 2019/2020 2019/2020 2019/2020 2019/2020 2017/2018
(DJFMA) (DJFMA) (DJFM) (DJFMA) (DJFMA) (DJFM) (DJFM)

Canadian Arctic 107 48 (−55%) 34 224 64 (−71%) 47 129 ± 36
Chukchi Sea 134 106 (−21%) 106 289 124 (−57%) 121 85 ± 34
East Siberian Sea 115 54 (−53%) 46 322 80 (−75%) 67 51 ± 25
Franz-Josef-Land 81 57 (−30%) 57 139 64 (−54%) 63 86 ± 33
Kara Sea 187 110 (−41%) 96 322 130 (−60%) 112 181 ± 94
Laptev Sea 132 68 (−48%) 63 261 82 (−69%) 75 70 ± 28
Northeast Water 20 11 (−45%) 11 51 18 (−65%) 17 16 ± 6
North Water 126 74 (−41%) 69 297 113 (−62%) 105 196 ± 58
Storfjorden 21 13 (−38%) 13 22 17 (−23%) 16 18 ± 6
Severnaya Zemlya 13 8 (−38%) 8 34 10 (−71%) 10 18 ± 10

Regarding the application of MATA, we see that the overall difference between CCLM
and ERA5 is reduced from 49% to 23%, with certain regions showing larger decreases than
others (e.g., Chukchi Sea, East-Siberian Sea, Severnaya Zemlya). Table 3 further reveals that
the individual effect of MATA per region noticeably differs between CCLM (SIP reduced by
−23% to −75%) and ERA5 (SIP reduced by −21% to −55%), which is supposedly related
to the initially larger deviations in terms of 2 m temperatures distributions (as shown in
Figure 10a for the Laptev Sea).

In order to highlight spatial differences among the utilization of different atmospheric
data sets (CCLM ((a) and (b)) and ERA5 ((c) and (d))) on a pan-Arctic scale, Figure 11 shows
overviews of accumulated sea-ice production (in m/winter) for the extended winter-season
from December 2019 to April 2020, before and after application of MATA. Maps indicating
the respective difference between CCLM and ERA5 are presented in Figure 11e,f. Overall,
we see broad similarities between the CCLM and ERA5-versions through MATA, both in
terms of the general spatial distribution of increased SIP and in terms of magnitude. This
imprints on generally low differences throughout the Arctic, which is in stark contrast to
larger differences without utilizing MATA. However, a closer look reveals that especially
the CCLM based distribution shows elevated SIP values of typically lower than 1 m/winter
per individual pixel-location further offshore (e.g., central Laptev Sea, East Siberian Sea,
along the Transpolar Drift and within the Beaufort Gyre region), which are seemingly
related to enhanced lead-occurrences.

While some of these areas are also (less clearly) visible in the ERA5 distribution, the
CCLM distribution more resembles the long-term distribution of leads as presented in [3]
or [4]. However, we have to note that these SIP values/distributions are solely based on
TIT ≤0.2 m, thereby seemingly representing the minority of leads in the central Arctic
Ocean (compare Figure 2 in Section 3) which more commonly seem to exceed our fixed
thin-ice threshold of 20cm. Another interesting difference can be seen for the NOW polynya,
where the SIP using the CCLM data is much larger compared to ERA5 (compare Figure 11e
and Table 3). Here the wind field is largely determined by the channeling effect of the
topography of Nares Strait, which is not adequately represented in the ERA5 data [49].
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Figure 11. Spatial overview of accumulated sea-ice production (SIP, in m/winter for all TIT ≤ 0.2 m)
in the Arctic for December 2019 to April 2020, based on MODIS data at 1km spatial resolution and
atmospheric data from CCLM ((a) MATA, (b) no MATA) and ERA5 ((c) MATA, (d) no MATA). Panels
(e,f) show the difference in SIP between CCLM and ERA5 for the MATA and no MATA versions,
respectively. In contrast to colored areas, pixels in light grey indicate zero SIP as well as masked
ocean areas of the northern Atlantic and Pacific seas.
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5. Discussion and Conclusions

Our results demonstrate the wide-ranging positive effect of adding the MATA algorithm
to the thin-ice thickness retrieval based on MODIS satellite data. First and foremost, the
primary aim of increasing the comparability between different atmospheric data sets that
force the retrieval could be achieved with success. In particular, too cold model-based
2 m temperatures in proximity of warmer ice or ocean areas, as indicated by MODIS IST,
would lead to an overestimation of POLA and SIP. Our proposed MATA method leads to
an adequate adjustment to account for associated changes in atmospheric heat fluxes. The
method definitely improves previous versions of MODIS-based thin-ice thickness retrievals.

While the development of the MATA method is purely model-based (covering a wide
range of atmospheric conditions), the application of MATA needs no modelling and can be
applied by all studies using TIR data in combination with atmospheric reanalyses. Among
the parts of MATA that offer room for future improvement is the currently fixed slope
value of 0.5, which could in principle vary depending on different regional environmental
conditions. As our chosen value is based on both pan-Arctic as well as two regional
domains with a wide range of different conditions, we consider it to be generally applicable
to other use cases. In the course of development, we saw only a minor effect through
varying the slope value (0.5 ± 0.05), with differences of 1–3% in the daily POLA and SIP on
the Laptev Sea shelf.

Another obvious topic for discussion is the meanwhile well-known warm bias (T2m
of ERA5 and ERA Interim) over Arctic sea-ice. Quite recently, the study by [50] presented
a collective overview based on buoy comparisons across the Arctic Ocean between 2010
and 2020. For ERA5, they found a warm bias of 2.34 ± 3.22 K, which implies generally
underestimated heat fluxes during the cold and dark winter months—our period of interest.
In previous MODIS-based studies, this effect caused an additional uncertainty for derived
ice thicknesses and sea-ice production estimates. Through MATA, we noticed a two-
sided effect of our temperature adjustment (as indicated in Sections 3 and 4): In addition,
increased 2 m temperatures above/near polynyas and leads, areas with thicker ice were
also corrected in the opposite direction, thereby compensating the war m bias in the ERA5
data set to some extent.

Along those lines and together with other newly introduced modifications (such
as changes in the cloud-filtering and the addition of classified leads), we note that the
absolute numbers for POLA and SIP are lower than earlier MODIS-based estimates in [12]
or [2]. This is not surprising in case of thin ice, given that the increase in 2 m temperatures
through MATA causes a lower difference to the corresponding IST as well as an increase in
humidity (through the dew-point temperature adjustment). The latter imprints on both the
parameterized downward-longwave radiation and the latent heat flux, with the effect of a
further reduced net energy flux to the atmosphere that leads to thicker ice estimates and
lower ice formation rates. A future long-term comparison (including the complete MODIS
data record) is required to give a final verdict on the exact magnitude of differences.

Regarding the lead-related changes to the TIT retrieval, in particular the inclusion of
the ArcLead-product by [4] as a measure for lead locations in the daily TIT composites, we
certainly re-introduce some potential draw-backs or error-sources that were in parts already
addressed in earlier studies. These include for instance the exclusion of a spatial thin-ice
interpolation scheme [35] and the risk of analysing potentially cloud-influenced (thin-ice)
pixels with a low daily persistence, given they are classified as a lead in the ArcLead-
product. On the other hand, in case of non-cloud-influenced cases, these additional low-
persistence pixels can give valuable information on the spatial thin-ice distribution in a
given region (including characteristic patterns) that would have been omitted in previous
MODIS TIT-based studies or other similar investigations using passive microwave data,
e.g., [9,10,51].

To conclude, we consider the presented changes and additions to the satellite-based
thin-ice thickness retrieval as being vital steps towards an improved characterisation of ice
thicknesses in both polynyas and leads. Together with advances through novel machine-
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learning based cloud-detection algorithms [52] and the availability of thermal-infrared
data from more recent satellite systems (such as Sentinel-3’s SLSTR), these are excellent
prospects for future TIR-based thin-ice investigations in the Arctic and Antarctic seas.
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