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Abstract: Increasing arctic coastal erosion rates imply a greater release of sediments and organic
matter into the coastal zone. With 213 sediment samples taken around Herschel Island—Qikiqtaruk,
Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical
properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture
(moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes
also play a role. We determined organic matter (OM) distribution and inferred the origin and quality
of organic carbon by C/N ratios and stable carbon isotopes δ13C. The carbon content was higher
offshore and in sheltered areas (mean: 1.0 wt.%., S.D.: 0.9) and the C/N ratios also showed a similar
spatial pattern (mean: 11.1, S.D.: 3.1), while the δ13C (mean: −26.4‰ VPDB, S.D.: 0.4) distribution
was more complex. We compared the geochemical parameters of our study with terrestrial and
marine samples from other studies using a bootstrap approach. Sediments of the current study
contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial
sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on
land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond
the study area.

Keywords: permafrost; Arctic Ocean; stable carbon isotopes; nitrogen; sediment chemistry; sediment
dynamics; Beaufort Sea; grain size

1. Introduction

Approximately 4.9 to 14.0 Tg of particulate organic carbon (OC) are discharged into
the Arctic Ocean via coastal erosion annually [1]—on the same order of magnitude as
the annual amount discharged by rivers [2]. Arctic coasts are increasingly vulnerable to
erosion [3–5], which is reflected in increasing coastal retreat rates across the Arctic [6–9].
Large stretches of the Arctic Ocean coastline are composed of ice-bonded permafrost
soils containing 1.09 to 5.70% OC by weight [10]. Increasing coastal erosion, permafrost
degradation, and river discharge are expected to lead to growing carbon and sediment
fluxes with potential positive feedback to climate change [11–18]. These changes will
also affect local ecosystems and sustenance activities of arctic communities [19] because
additional nutrients may stimulate primary production [20], while turbidity associated
with increased sediment load may decrease it [21,22]. The nearshore zone of the Arctic
Ocean (<20 m depth) accounts for 7.5% of the total ocean and 20% of the shelf area [19,23].
However, there are only a few studies focusing on sediment characteristics and dynamics
in the arctic nearshore zone and none with a high spatial resolution <5 km offshore.
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The nearshore is a locus of various biogeochemical and physical processes that aug-
ment the degradation of terrestrial organic matter (OM). These include fungal and microbial
decay [24,25], UV aided oxidation [26], and physical reworking through waves and ice-
related processes. In the Beaufort Sea, all areas between 5 and 10 m water depths are
subject to at least moderate wave dissipation rates, i.e., wave resuspension and rework-
ing [27]. Terrestrial OM may undergo multiple episodes of cross-shore deposition and
re-suspension. Ice-related processes are important physical agents in the Arctic. The entire
Alaskan Beaufort Shelf is reworked by ice scouring over a 50-year period [28]. Changing
ice cover conditions, especially late in the open-water season when the strongest storms
occur, will cause more resuspension of bottom sediments [29]. Frequently resuspended
‘fluid mud layers’, like in our study area [30], are sites of highly effective OM degradation
because oxic and anoxic conditions alternate and degradation is enhanced (‘primed’) by
the addition of fresh marine OM [31]. Thus, the nearshore is an important site of terrestrial
OM degradation.

Understanding the degradation dynamics of terrestrial OM in the nearshore requires
a characterization and quantification of its sources, sinks and the transport mechanisms
in the marine realm. A growing number of studies provides estimates of carbon fluxes
from rivers and coastal erosion, characterizes the distribution of carbon and its provenance,
or formulates carbon budgets [2,11,32–41]. The provenance and the state of degradation
of OM is typically established by bulk geochemistry, stable carbon isotopes, radiocarbon
dating, or biomarkers [39,42]. Few studies, however, described the sediment patterns and
transport mechanisms in shelf areas of the Beaufort Sea [43–46].

The aforementioned studies, however, typically have a low spatial resolution, and
with some exceptions are restricted to deeper shelf areas. Using sedimentological and
bulk geochemical parameters, we aim to characterize nearshore sediments near Herschel
Island—Qikiqtaruk in Yukon Territory, Canada. Our objective is to identify patterns of
sediment and OM distribution around Herschel Island, including transport and degrada-
tion processes. In comparison with other studies, we want to deduce the fate of terrestrial
organic carbon in this arctic nearshore environment at a high spatial resolution.

2. Study Area

We carried out our fieldwork in Thetis Bay (TB) and Workboat Passage (WBP) (Figure 1),
which are nearshore areas close to Herschel Island—Qikiqtaruk (HI), Yukon Coast, Canada
(69◦36′ N; 139◦04′ W) located in the southern Beaufort Sea. The island marks the farthest
western advance of the Laurentide Ice Sheet during the Wisconsin glaciation [47–49] and
consists of perennially frozen (i.e., permafrost) marine and terrestrial glacigenic sediments.
The permafrost is contains widespread ground ice up to 60–70% by volume [50]. Herschel
Island sediments contain considerable amounts of OC reaching up to 38.9% [34].
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Herschel Island—Qikiqtaruk with the Mackenzie River to the east, and the Firth River to the west.
(c) The focus of the study lies on two localities: Thetis Bay and Workboat Passage. (d) Note
the bimodal wind distribution during the 1995–2016 open water seasons recorded at Herschel
Island—Qikiqtaruk [51–53].

2.1. Meteorological Conditions and Physical Processes

Open-water conditions typically occur from June to early October [54,55]. In the
1995–2016 open-water seasons, the wind distribution at HI was bimodal (Figure 1d). Pre-
vailing SSE winds reached a maximum average hourly speed of 53 km h−1 (mean: 18.4,
S.D.: 8.7) [53]. Dominant NW winds reached a maximum hourly speed of 84 km h−1

(mean: 21.7, S.D.: 12.4). NW winds set up longshore currents flowing eastward along the
Yukon Coast and south along the island’s western shore. East of the island, southeasterly
winds generate westward longshore currents along the mainland coast, and westward- and
southwestward flowing currents along the eastern shore of the island [56].

The astronomical tide range in the area is estimated at <0.4 m [57,58], however NW
winds result in positive surges, while SSE winds produce negative ones [54,59]. Storm
frequency is higher in late August and September. Most storms originate northwest of the
island, and to a lesser extent in the south-southeast [60]. In the Beaufort Sea, fetch length
may exceed 1000 km in September [61], allowing for wave heights exceeding 4 m, with
wave periods up to 10 s [62].

Herschel Sill, a submerged shallow ridge, marks the extent of landfast ice during
winter (Figure 1b), while a lead persists somewhat offshore of the sill where drifting pack
ice moves clockwise to the west [57]. However, ice-related physical processes (e.g., ice scour,
wallow pits, ice rafting, anchor ice, etc.) presumably affect the nearshore areas around
HI [63] as winds can drive drifting ice into TB during the break-up period.

2.2. Coastal Geomorphology and Local Sediment Sources

The Mackenzie River dominates the entire Beaufort Shelf in terms of carbon and
sediment input [2,37,38,64,65]. Depending on the season, the Mackenzie discharge ranges
between 4000 to 23,000 m3 s−1 [66]. The Mackenzie plume tends to drift eastward during the
open water season whereas offshore water with significantly lower sediment concentrations
is drawn southward past HI into Mackenzie Bay [56,57]. However, Mackenzie River
sediments have been identified on inner shelf sediments of the Alaskan Beaufort Sea [39],
ca. 400 km to the west of the study area.

Coastal bluffs (~25 m a.s.l.) comprise the dominant morphology of HI along TB. This
section of HI is drained by several small streams. In addition, numerous retrogressive thaw
slumps indicative of ice-rich permafrost are present. Coastal retreat rates in this part of the
island range from 0–3.1 m a−1 [67], however rates up to 5.5 m a−1 have been reported [9].
Simpson Point (Figure 1c), a gravel spit located in the northeast of TB, also shelters the
shoreline of Pauline Cove from waves (Section 2.1).

Workboat Passage (Figure 1c) is a shallow, fetch-limited lagoon enclosed by HI, its
attached barriers, and the Yukon Coastal Plain. It is roughly 9 km long and ~5 km wide,
and, except for the inlets, <2 m deep. In addition to two tidal inlets at each end of the
lagoon, some portion of the Firth River reaches the lagoon in the west. The mean annual
discharge of the river is 37.7 m3 s−1 [68], while the mean discharge during freshet in June
was 128.5 m3 s−1 for the time period 1972–2014, according to a station maintained near the
mouth by the Water Survey of Canada (http://wateroffice.ec.gc.ca/index_e.html, accessed:
15 April 2017). Low tundra and ice-poor cliffs (<6 m a.s.l.) characterize much of the Yukon
mainland coast and the southeastern portion of HI, with shoreline retreat rates of 0.7 m a−1

along the Yukon Coast and 0.85 m a−1 along the eastern portion of HI, spanning the period
between 1970–2011 in which the rate of coastal retreat significantly increased compared to
the period of 1951–1970 [7,69].

http://wateroffice.ec.gc.ca/index_e.html
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3. Materials and Methods

Seabed samples were obtained using a Van Veen grab sampler during summer ex-
peditions in 2012 and 2013. Sampling was performed along transects in water depths
generally <13 m, to a distance of about 2 km offshore (5 km in WBP). Samples consisted of
approximately 100 g of the top 3–6 cm of sediment and these samples were described on site.
Samples were frozen a few hours after collection and freeze dried before sedimentological
and geochemical analyses were carried out in the lab. Analytical and field data generated
in this study are archived in a data repository [70]. Statistical differences among localities
studied herein were tested using a two-tailed Wilcoxon-Mann–Whitney test (α = 0.01). The
statistical tools are published as a supplement in Radosavljevic [71]. The natural neighbor
method was used for spatial interpolations.

3.1. Grain Size Analysis

Grain size distributions were obtained using laser diffractometry (LS200, Beckman
Coulter, Brea, CA, USA). The <1 mm fraction of ca. 3 g of sample material with a dispersing
agent (sodium hexaphosphate) was used for the measurements. Samples were previously
oxidized with H2O2 to remove organics. Results are reported using graphical means
following the method of Folk and Ward [72]. Grain size diameter is expressed in logarithmic
phi (φ) units, where φ = −log2D, with D being the grain diameter in millimeters [73]. Phi
values for grains coarser than one millimeter are negative, while those for grains finer than
one millimeter are positive. The terminology for sorting and grainsize follows Blott and
Pye [74].

3.2. Bulk Geochemical Analyses

The explanatory variables of particular interest reported in this study are the total
organic carbon (TOC) content, the atomic organic carbon to total nitrogen (TN) ratio (here-
after referred to C/N ratio), and the stable carbon isotope signature (δ13C) of TOC. The
C/N is an indicator of the source, nutritional value, and the degree of degradation of
OM [75], although the actual reactivity and availability of TOC for microbial communi-
ties may be influenced by a fraction not detected by bulk measurements [31]. Clay-rich
sediments, especially illite, adsorb ammonia [76]. The clay portion of sediments in the
vicinity of HI contains 46–52% illite [43]. The correction for the adsorbed nitrogen requires
subtracting the value of the intercept (given that a significant linear correlation of TOC
and TN exists) [76]. In our case, the intercept was statistically indistinguishable from
zero. Therefore, even though TN is not strictly organic bound, we assume the nitrogen
in analyzed samples is predominantly free of clay-bound nitrogen and C/N ratios are
representative of sedimentary OM.

The geochemical analyses share some preparatory steps such as freeze drying, ho-
mogenizing, and pulverizing a ca. 10 g subsample for eight minutes at 360 rpm inside a
planetary mill (Fritsch, Idar-Oberstein, Germany, Pulverisette 5 classic line). Total carbon,
TN, and TOC were determined using differential thermal analysis. Results of both analyses
represent weight percent averages of aliquot pairs. Measurements were repeated if the
results differed by more than 5%. Instrument calibration and performance monitoring was
carried out using common standards. We computed C/N only where TOC and TN results
fell above the detection limits (DL) for both elemental analyzers (0.1 wt.%). The analyses of
TC, TIC, and TN do not constitute the focus of the current study and are presented in the
Supplementary Materials.

The stable carbon isotope composition (δ13C) of OM is affected by its source material
(terrestrial or marine derived OM). The δ13C values were determined on carbonate-free
samples (treated with 1.3 mol/L HCl) using isotope ratio mass spectrometers at the Ger-
man Research Centre for Geosciences (GFZ) in Potsdam (DELTAplusXL, Thermo Fisher
Scientific, Waltham, MA, USA) and at the University of Hamburg (Delta Vplus, Thermo
Fisher Scientific, Waltham, MA, USA). Values are expressed in δ13C per mille relative to
VPDB (Vienna Pee Dee Belemnite).
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3.3. Comparisons with Other Studies

We include comparisons to other studies which can be explored using the supple-
mentary script [71]. Naidu et al. [38] provided data representative of marine samples. We
selected samples with TOC, TN, and δ13C values, at least 25 km offshore and less than
600 km off HI for this purpose. The spatial selection in Esri ArcMap was performed using
a vector shoreline for the Beaufort Sea [52].

Terrestrial data was sourced from multiple studies. We subsampled the Couture et al. [34]
dataset for Herschel Island samples, as the study included different landscape units along
the Yukon Coast. Fritz et al. [47] sampled two permafrost exposures on the east side
of the island. Tanski et al. [77] carried out a detailed sampling of a retrogressive thaw
slump and the adjacent permafrost headwall and used a Normalized Difference Vegetation
Index (NDVI) to classify the sampling locations based on vegetation and disturbance.
Obu et al. [78] cored the active layer and the permafrost below on the east side of the island
targeting landscape units derived from vegetation, some of which indicate disturbance.
To compare these data with ours, we tagged sample data as disturbed, if the sediments
were likely re-deposited on land, as indicated by the landscape unit classifications in the
respective studies. Undisturbed samples contain permafrost and active layer samples from
pristine Herschel Island landscapes. The terrestrial class in our comparison refers to the
previously mentioned classes combined.

We compared bulk geochemical (TOC, TN, C/N, and δ13C) parameters of data gath-
ered herein and auxiliary data using a bootstrap approach [79]. Means for each group were
calculated with replacement using 50,000 iterations in R statistical environment [80]. The
group means were compared using a Student’s t-test.

4. Results
4.1. Granulometry

The 211 grain size distributions determined herein can be explored with the supple-
mentary script [71]. Sediments are overall medium silt to very fine sand (mean: 5.2 φ, S.D.:
1.7) (Figure 2a) with moderate sorting (mean: 2.1 φ, S.D.: 0.5) (Figure 2b). Sediments in
WBP are generally coarser than in TB (mean: 4.5 φ, S.D.: 1.1 and mean: 5.3 φ, S.D.: 1.7,
respectively, p-value: 0.012) and show a distinctly different spatial distribution. In WBP,
coarse and better sorted sandy sediments are found along the southeastern strike of the
lagoon. The best sorted and coarsest sediments are located near the western tidal inlet.
Finer, moderately to poorly sorted sediments are found closer to shore. The finest sedi-
ments are found in Pauline Cove, a small embayment in northern portion of TB. East of
the spit, and in southern TB, sediments are progressively finer offshore. TB sediments
are moderately sorted on average, with better sorting occurring close to shore. Sediments
are poorly sorted beyond the 4 m contour. Cumulative frequency curves show a trend
of increasing dominance of coarse sediments closer to shore, with largely fine samples
offshore, and often exhibit multiple slope changes indicating different transport modes,
which can be explored using the supplementary script [71].

4.2. Bulk Geochemical Data
4.2.1. Total Organic Carbon

The TOC content measured in our study range from <0.1 to 9.1 wt.%, with a mean
of 1.0 wt.% (S.D.: 0.9). No significant difference between samples from WBP and TB was
found (Supplementary Materials, Table S2), however, substantial differences exist spatially
(Figure 3a). The highest values in WBP are found fringing the shores, while the lowest
occupy the central portion of the lagoon. On the other hand, the highest values in TB are
found in Pauline Cove, and immediately south of Simpson Point where samples contained
coarse OM (e.g., wood fragments, peat). A sample in Pauline Cove consisting almost
exclusively of woody fragments yielded the outlier of 9.1 wt.%. (next highest value of
3.8 wt.% is just south of Simpson Point). Total organic carbon comprises ~88% of the total
carbon on average [71]. In order to remove outlier effects, we considered TOC data up to
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the 95th percentile and found a significant correlation with a grain size of φ > 4 (R2 = 0.57,
p-value: <0.001).
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Figure 2. Spatial distribution and box plots of the (a) grain size mean and (b) sorting in the study area
visualized using a natural neighbor interpolation and expressed in units of φ, where φ = −log2D,
with D being the grain diameter in millimeters. Size classes are indicated as fine (f.), medium (m.), and
coarse (c.). Sorting is very well (v.w.), well (w.), moderately well (m.w.), poor (p.), and very poor (v.p.).
Sample locations shown as open circles. Blue arrows indicate dominant longshore directions. Isobaths
show 1 m contours in Workboat Passage (WBP), and 2 m contours in Thetis Bay (TB) [51,81,82].

4.2.2. Stable Carbon Isotopes and C/N Ratios

The contributions of terrestrial OM to nearshore sediments were assessed using stable
carbon isotope analyses augmented by C/N. Stable carbon isotope analyses (n = 179)
yielded a range of −27.4 to −25.3‰ (mean: −26.4, S.D.: 0.4‰), for samples in Pauline
Cove and at Collinson Head (VF-02 and TB126001), respectively. There is a statistically
significant difference between the δ13C means in TB and WBP samples (Table S2). More
δ13C-depleted values fringe the coast of WBP (Figure 3b). The samples obtained from
these locations contained plant litter, while central, shallower areas with coarser sediments
exhibit enriched δ13C values and also contained living bivalves. In TB, depleted δ13C values
are just south of Simpson Point, along the southern coastline of TB, and in the vicinity of
the massive retrogressive thaw slumps. These samples contained peat and wood fragments.
More depleted δ13C values were measured within Pauline Cove, to the SW of Simpson
Point, and at the western end of the study area, where samples contained living benthic
infauna (Polychaeta, bivalves).
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Figure 3. The spatial distribution and box plots of (a) total organic carbon content, (b) stable carbon
isotopes (δ13C) and (c) carbon-nitrogen (C/N) ratio. Note higher δ13C values in Pauline Cove and
lower values along the fringes of WBP. Additionally, note high C/N in Pauline Cove and along the
fringes of WBP. Locations of samples with either N or TOC below the detection limit are indicated by
black solid circles and were not used in the interpolation. Isobaths show 1 m contours in WBP, and
2 m contours in TB [51,81,82].

Atomic C/N ratios were calculated for 99 samples. They are clustered around the
mean (7.9, S.D.: 2.3) and no significant difference among TB and WBP was found (Figure 3c).
In WBP, higher C/N values are located around the fringes of the lagoon, while in much
of the lagoon center TOC and N measurements were below DL. In TB, the highest C/N
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values were found within Pauline Cove, adjacent to a large thaw slump system (Figure S1),
and seaward of the 8–10 m isobaths, but then only in the eastern part of TB. Statistical tests
showed no correlation with grain size parameters.

4.3. Bootstrap Comparisons with Other Studies

Estimates of analyzed geochemical parameter population means using the bootstrap
method are presented in Table 1 and Figure 4. Kernel density plots in Figure 4b show the
distribution of means. The null hypothesis could be rejected in all pairwise comparisons of
means of the current study with marine and terrestrial (disturbed, undisturbed as defined
in the respective studies and combined) samples using a two-tailed Student’s t-test.
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undisturbed sediments are combined under “terrestrial”. δ13C values are expressed as ‰ relative to
the Vienna Pee Dee Belemnite (VPDB) standard.
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Table 1. Estimations of population means and respective 0.01 and 0.99 percentiles (in parentheses)
obtained through the bootstrap analysis. Terrestrial sample values were taken from other studies (see
Section 3.3), including their classification into disturbed and undisturbed. We combined these for the
overall terrestrial values.

Sample Means (0.99 CI)

TOC [wt.%] TN [wt.%] C/N [Atomic] δ13C [‰ VPDB]

Study 0.87
(0.74, 1.02)

0.12
(0.11, 0.12)

11.03
(10.33, 11.75)

−26.36
(−26.42, −26.29)

Marine 1.47
(1.28, 1.67)

0.18
(0.16, 0.2)

9.57
(8.9, 10.33)

−24.89
(−25.33, −24.45)

Terrestrial
(overall)

4.82
(3.9, 5.84)

0.36
(0.31, 0.41)

13.78
(12.78, 14.99)

−26.7
(−26.79, −26.62)

Terrestrial
(Undisturbed)

6.53
(5.2, 8.01)

0.44
(0.37, 0.51)

15.95
(14.89, 17.41)

−26.53
(−26.64, −26.42)

Terrestrial
(Disturbed)

1.8
(1.27, 2.53)

0.21
(0.17, 0.26)

8.43
(7.32, 9.68)

−26.97
(−27.05, −26.89)

5. Discussion
5.1. Sediment Dispersal, Accumulation and Redistribution

The two locations, WBP and TB differ in morphology, prevalence, and intensity
of physical processes. Sediment grain size in TB has greater variance but is finer in
comparison to WBP (Figure 2a), on average. Close to shore, along the eastern part and
southwestern part of TB, well to moderately well-sorted, coarse skewed distributions of
sand to very fine sand indicate relatively high hydrodynamic energy associated with waves
and longshore currents which allow for winnowing of finer sediments. The persistence
of hydrodynamically packed sandy sediments below the surface is corroborated by a
geotechnical investigation carried out by Stark et al. [30]. This zone corresponds to the
resuspension zone classified by an earlier study by Jong et al. 2020 [46]. Moderately- and
poorly sorted muds (φ > 4) are typically found beyond the 4 m contour (Figure 2b). This
environment, ca. 100–300 m offshore, was described as the nearshore deposition zone [46],
where a decline of surface water turbidity suggests deposition of suspended material [84].
Out of 116 samples seaward of the 4 m contour in TB, ca. 64% are very poorly sorted or
poorly sorted. Rafting of coarser sediments by anchor ice, or bottom-fast ice may explain
the poor sorting and is found along the Alaskan Beaufort Sea Coast [85], as well. From
the south end of Thetis Bay, sediments become progressively finer toward Pauline Cove.
Considering the prevailing SE winds and the morphology of barrier spits along TB, the
longshore current direction is to the west and southwest [9,86]. Simpson Point, the spit on
the western corner of HI, protects Pauline Cove and the area immediately west of the spit
from wave attack allowing for fine silt deposition, presumably due to wave and current
interaction with the rapid change in bathymetry.

Some of the poorest sorting found in this study is located in the bight of TB, south
of three inactive slumps (Figure 2b). The area is subject to lower hydrodynamic energy
given silty sediments found there, while multiple slope changes in cumulative grain size
distribution curves (transects I-K in supplementary script) [71] indicate multiple transport
processes. Considering the wind conditions during freeze-up and break-up, drifting patches
of landfast ice may concentrate in the bight. Anchor ice and bottom-fast ice may be present
to the 2 m contour, intense reworking by ice keel scour and ice rafting could be expected
given the wind patterns. Keels of imbricated ice floes may possibly reach even greater
depths. Corroborating data is not available, however the seabed backscatter imagery in this
area was described as patchy, and penetrometer measurements indicate stiff sediments [30].
Intense ice scouring might expose the underlying substrate allowing little or no deposition
here. Especially in TB, offshore transport is likely, given the low settling velocities of
fine sediments. Herschel Basin sediments comprise 56 ± 6% of OC of sediments eroded
from HI [87].
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The sediment distribution pattern in WBP is controlled largely by the morphology and
physical processes. Sediments enter the lagoon via longshore drift through two tidal inlets
at opposite sides of the lagoon. Coastal retreat of 0.16 ± 0.35 m a−1 in WBP [69] contributes
relatively little sediment to the lagoon. However, silty sediments along the northern fringe
of the lagoon exhibiting enriched δ13C and high C/N values could also be supplied by
longshore currents, particularly under ESE wind conditions [84]. Fluvial input (i.e., Firth
River) occurs ca. 3 km west of the study area. The mean annual flow for the Firth River is
37.7 m3 s−1 [68]. The barrier island lagoon where the Firth River discharges is connected to
WBP, therefore fluvial sediment input cannot be ruled out and may be indicated by enriched
δ13C values in the southwest of WBP. We interpret the shallow central portion of the lagoon
as the flood tidal deposits reworked by waves and currents. The waves generated within
the lagoon dissipate their energy on the shoal and fine sediments are winnowed. These may
be deposited closer to the fringes of the lagoon (Figure 2a). The sediments in the center of
the lagoon are fairly stiff and sandy indicating the persistent higher energy conditions and
winnowing of low density and fine sediments, while sediments are soft along the western
spit where deposition has been suggested [30]. Apart from the tidal inlets where sediments
are moderately to well-sorted, sorting in the lagoon is poor, indicating the influence of
ice-related processes or glacial source material.

In lower latitudes, sediment supply and hydrodynamic processes influence grain
size distributions in nearshore sediments. Transport of grains occurs once wave- and
tide-generated currents exceed the entrainment velocity for a given grain size. Once mobile,
grains may be transported along the bottom or in suspension. However, unless the critical
shear stress for all different sizes is exceeded, selective transport, i.e., winnowing occurs.
Selective transport therefore sorts sediments. In our case, multiple physical processes
are revealed by slope changes in the cumulative volumetric percentage curves [72,88].
These curves can be explored using the supplementary script [71]. In contrast to lower
latitudes, ice processes in polar regions are able to entrain and transport sediments of
various sizes (including OM) to deeper shelf areas. Super-cool water slush of frazil ice
entrains predominantly fine grained sediments; while flotation of anchor ice incorporates
sand- and gravel-sized material into sea ice [89]. Reimnitz et al. [28] documented a likeli-
hood of ice-bonded sediment and anchor ice occurrence landward of the 20 m contour in
the Alaskan Beaufort Sea. Grain size sorting can therefore indicate ice-related transport,
as ice can transport and deposit coarser sediments where they would not occur given
hydrodynamics alone.

The spatial variation of mean grain size reflects prevailing energy conditions within
depositional environments. Our attempts to explain the variation using multiple linear
models (combinations of depth, distance to coast, northing and easting) yielded adjusted
coefficients of correlation of only 0.21–0.31 (not shown), indicating that higher order vari-
ables such as shoreline orientation, longshore transport and sediment supply might play a
much more important role for the grain size distribution at any given point. However, we
do observe a progressive decrease in grainsize offshore in TB. In the regional context, the
Beaufort Sea shelf is characterized by clay size sediments [44].

The sediments analyzed herein are mostly fine-grained and have low settling velocities.
Although the sediments examined in the following comparison were slightly sandier than
in the current study, bed failure occurs with critical shear velocities of 1.3–1.7 cm s−1, while
resuspension of the less consolidated upper layer occurs at velocities 1.1–1.3 cm s−1 [29].
Lintern et al. [27] observed current velocities of 2–25 cm s−1, ca. 120 km east of Herschel
Island, during a quiescent period using a current meter mounted 0.5 m above the bed in
7 m depth, but during storm events, sediments similar to the ones in the current study
are easily entrained. Therefore, we can assume that the sediments in the study area are
frequently resuspended and that at least a portion of sediments is exported beyond the
current study extent.
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5.2. Total Organic Carbon Content

The TOC concentrations in the studied sediments are similar to sediments elsewhere in
the Arctic Ocean [39,90,91] and fit into the general OC distribution pattern on the Beaufort
Shelf [44,92]. OC concentrations in sediments of the Arctic Ocean range 0–16.5 wt.%,
ranging 0.55–1.45 wt.% between the 75th and 25th percentiles [92], therefore our results are
representative of the Arctic Basin and are comparable to values found in lower latitudes [93].
We found a correlation of TOC with muddy sediments (silt and clay fraction), as greater
mineral surface area also aids sorption of OM [94,95]. Processes responsible for transport
and sorting of sediments also influence the distribution of OC [39,96]. Coarser OM typically
constitutes a minor fraction in the marine environment and is retained closer to shore where
physical reworking aids in disaggregation [97]. Considering both study area locations,
elevated TOC values were found in areas of lower hydrodynamic energy, such as the fringe
of WBP, Pauline Cove, and seaward of the 8 m isobaths in TB (Figure 3a). In the shallow
WBP, physical reworking is more intense and while there is less variance of TOC values, no
significant difference was found in comparison to TB (Figure 3a, Table S2).

We compared the results herein with published TOC measurements from sediments
on HI and the Yukon mainland and marine sediments in the Beaufort Sea (Tables 1 and S1).
Terrestrial permafrost sediments were furthermore classified as undisturbed if they orig-
inated from the active layer and the permafrost below, or disturbed if the re-deposited
permafrost sediments were sampled. Several comparisons were made and can also be
explored using the supplementary script [71]. Our comparisons established significant
statistical differences in pairwise comparisons of TOC means using sample means and
bootstrap estimates. Terrestrial sediments contain approximately five times more TOC than
nearshore sediments by weight (Table 1) using the population mean estimates. Further-
more, the bootstrap estimates are on the same order of magnitude as previous studies on
Herschel Island which report an average of 3.17 wt.% TOC [47] (this dataset was included
in the bootstrap) or 1.4–4.4 wt.% TOC [98].

The partial TOC transfer to other pools (e.g., dissolved organic carbon, atmosphere,
and shelf sediments) is related to physical and biochemical processes, and explains the dif-
ference in concentration of TOC in marine and terrestrial sediments. Terrestrial permafrost
OM is vulnerable to continued warming [99] and is reactive, as demonstrated by field and
laboratory experiments [100–102], although only a fraction is readily decomposed over
short time scales (e.g., <5%), and 20–90% could be mineralized over a 50 year incubation
period [103]. Tanski et al. [77] investigated changes of bulk sediment geochemical proper-
ties including OC within a retrogressive thaw slump floor on HI (Figure S1). The results
showed that disturbed sediments on the slump floor contained ca. 80% less TOC on average
compared to undisturbed sediments. According to Tanski et al. [77], OC is rapidly leached
and mineralized from particulate OM [104]. Leaching of OC into the dissolved phase likely
also applies in our case [105,106], as sea water is an efficient leaching agent [107]. The
dataset presented in this study has a greater spatial coverage and resolution than Tan-
ski et al. [77], yet we confirmed (not shown) that disturbed sediment OM from mud pools
in the retrogressive thaw slump is statistically indistinguishable from nearshore sediments
(p-value: <0.001), as stated by Tanski et al. [77]. Therefore, disturbances of permafrost cause
rapid OC loss and it is likely that OC is further mineralized in the nearshore where a range
of physical and geochemical processes operate. With the current methodology, it cannot
be ascertained to what extent degradation processes such as priming, photooxidation [26],
physical breakdown, or the fungal mineralization of refractory OM [25] affect nearshore
TOC content. Fluid mud layers are present in the study area [30] which indicates that the
nearshore area of HI is a dynamic environment with a high potential for resuspension and
OM degradation [24], but also for offshore transport. The latter is corroborated by the
spatial pattern of TOC and its correlation with fine sediments which are easily transported
beyond the study area, as stated previously. Other studies utilized stable and radiocarbon
isotopes, neodymium isotopes, nitrogen isotopes algal pigments, and lignin-phenols to
constrain the contributions of the refractory pool [39,41,108].
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5.3. Nearshore Organic Matter Characteristics

To decrease the sensitivity of statistical tests to outliers, we compared TOC, N and
C/N using a bootstrap approach. Apart from δ13C, significant differences were found
among the parameter means for nearshore samples of this study, terrestrial (both disturbed
and undisturbed) and marine samples (Figure 4, Tables 1 and S1). The δ13C distribution
illustrates that nearshore areas represent the transition between terrestrial and marine
sediments (Figure 4a). Disturbed sediments exhibit the most depleted δ13C values as this
material enriched by OM of colonizing plants. Terrestrial samples with depleted δ13C and
high C/N are most similar to sediments from WBP (Figures 3 and 4a). The lagoon (WBP)
receives eroded shore sediments from HI and the Yukon mainland, longshore transport
from both the northwest and northeast [86], but also a portion of the Firth River discharge.
The regions closer to shore also exhibit higher C/N values pointing to less degraded
OM that is likely of terrestrial origin. It is likely that OM degradation starts on land
once permafrost thaws and landscape disturbance occurs, indicated by significantly lower
TOC and TN concentrations in nearshore environments compared to terrestrial samples
(Figure 4b). This confirms the findings of an earlier study across the different ecological
and morphological zones in a retrogressive thaw slump [77].

However, the distribution of these values is also heavily influenced by physical pro-
cesses as explained in Section 5.1. The central portion of the lagoon contains sandy sedi-
ments where some carbon and nitrogen contents were below the instrument detection limit.
Similar sediments are also found in the southwestern and eastern portion of TB. Sediments
in TB are enriched in marine carbon as indicated by δ13C and include a wider range of C/N
values, locally influenced by thermokarst processes (thaw slumps).

An interesting case is Pauline Cove, the small embayment in northeastern TB. High
values of C/N indicate that OM is less degraded. However, enriched δ13C values suggest a
greater marine influence. We attribute this to the sheltering effect of Simpson Point that
allows terrestrial OM to accumulate, but the sheltering also augments primary production
in the less turbid water column. This could partly explain enriched δ13C, and in addition,
our sampling also collected tubeworms (~5–15% of sample) along with the sediment. Stable
carbon isotopes of tubeworms [20] are higher than terrestrial OM derived from plants
utilizing the C3 pathway common in the Arctic [109].

Previous studies used δ13C signatures to estimate the relative percentages of ter-
rigenous and marine organic carbon in analyzed samples using a two end member
model [34,109,110]. A significant portion of HI sediments originated from Herschel Basin
by glacial ice thrust during the late Pleistocene and is of marine origin [49,50,111]. Although
the bootstrapped t-test comparison of means for undisturbed terrestrial and nearshore
sediment was significant (p-value: <0.001), the ca. 0.2‰ difference in means for these two
groups underscores the marine origin of HI. Furthermore, the limited applicability of stable
isotope mixing models in polar regions has been noted previously [112]. Two end-member
mixing models incorporate bulk OC, and are very sensitive to end-member values [109].
Other approaches, such as chemical biomarker and molecular signature analyses, could
provide a better answer on the contributions of terrestrial carbon in the nearshore [33,39,87].
The separation of the carbon pool into its refractory and labile components could also
be addressed by incorporating nitrogen isotopes in the end member model [107], while
permafrost carbon contributions can be addressed by radiocarbon dating [87].

An important question is if the nearshore zone can sequester terrestrial carbon. This
depends on the burial efficiency, the ratio of OM burial rate and the OM input rate, where
burial refers to sediments buried below the oxic layer. Therefore, if OM were to be se-
questered, the supply rate needs to exceed the burial rate [94,113]. Arctic nearshore areas are
thought to be dominated by erosion [54] when taking into account the physical processes
in the nearshore described in Section 5.1. Nevertheless, the nearshore deposition zone
apparently functions as a sediment sink, at least temporarily [46]. Unlithified permafrost
coasts represent 65% of the total shoreline in the Arctic [10]. Results from the Laptev and
the Beaufort seas show that a large percentage of carbon contained in sediments of the inner
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shelf originates from erosion of the shelf itself [39,41], and is further deposited on the outer
shelf [1]. The changing physical conditions are expected to increase shoreline retreat [4],
which will be accompanied by shoreface erosion as well. However, barrier islands and
spits provide shelter for lagoons and embayments, where the sediment accumulation rate
could facilitate carbon burial. Settings such as the fringe of WBP and Pauline Cove in TB
may function as carbon sinks [56]. Perhaps similar settings along the Yukon Coast (e.g.,
Ptarmigan Bay, Phillips Bay, Roland Bay, etc.) function as sediment traps. In the deep
Herschel Basin just SE of the current study area, more than 12 m of sediments have accu-
mulated over the last ~4000 years and ca. 56% originate from coastal erosion of Herschel
Island [87]. Future studies should attempt to quantify sedimentation rates in these settings,
a prerequisite for a carbon budget.

6. Conclusions

Using grain size data and various bulk geochemical indicators, we determined the
patterns of sediment transport and OM distribution in an Arctic nearshore setting along
erosive permafrost coasts near Herschel Island in the western Canadian Arctic. Further, we
deciphered the main processes controlling the fate of OM in the region. The spatial distri-
bution of sediments in the study area is indicative of the predominance of hydrodynamic
processes, mostly related to waves and longshore currents. Ice rafting of sediments is also
apparent by observations of moderately to poorly sorted sediments seaward of the 2 m
contour. A significant correlation of TOC (mean: 1.02 wt.%) was found with mud content,
thus suggesting that geochemical parameters generally follow spatial trends in grain size.
Apart from this correlation, our fitted models could not explain the parameters indicating
that higher order variables (shoreline orientation, longshore transport, sediment supply)
play a much more important role for the grain size distribution at any given point.

Nearshore sediments contain ~4–5 times less TOC than terrestrial sediments in the
study area. In comparison to terrestrial sediments, lower C/N values in the nearshore
suggest degradation and hint at the redistribution of permafrost OM on the arctic nearshore.
The association of TOC with fine grain size fractions and easy resuspension also indicates
a significant portion of TOC may be exported beyond the study area. Our results show
that the arctic shoreface of the Yukon coast is comparable to other coastal sections of the
Beaufort Sea.
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